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Abstract. This survey is based on lectures given by the authors during the program “Noncom-
mutative algebraic geometry and representation theory” at the MSRI in the Spring 2013. It covers
the recent work [44, 45, 46, 47, 48, 49, 50] on noncommutative motives and their applications,
and is intended for a broad mathematical audience. In Section 1 we recall the main features of
Grothendieck’s theory of motives. In Sections 2 and 3 we introduce several categories of noncommu-
tative motives and describe their relation with the classical commutative counterparts. In Section
4 we formulate the noncommutative analogues of Grothendieck’s standard conjectures of type C
and D, of Voevodsky’s smash-nilpotence conjecture, and of Kimura-O’Sullivan finite-dimensionality
conjecture. Section 5 is devoted to recollections of the (super-)Tannakian formalism. In Section 6
we introduce the noncommutative motivic Galois (super-)groups and their unconditional versions.
In Section 7 we explain how the classical theory of (intermediate) Jacobians can be extended to the
noncommutative world. Finally, in Section 8 we present some applications to motivic decomposi-
tions and to Dubrovin’s conjecture.

Contents

1. Grothendieck’s theory of motives 1
2. From motives to noncommutative motives 4
3. Categories of noncommutative motives 7
4. Conjectures in the noncommutative world 8
5. (Super-)Tannakian formalism 9
6. Noncommutative motivic Galois (super-)groups 10
7. From noncommutative motives to motives via Jacobians 11
8. Applications to motivic decompositions and to Dubrovin’s conjecture 12
References 14

1. Grothendieck’s theory of motives

We recall here the main features of Grothendieck’s classical theory of pure motives, which will be
useful when passing to the noncommutative world. These facts are well-known and we refer the
reader to [1, 27, 40] for more detailed treatments. Let k be a base field and F a field of coefficients.

Let V(k) be the category of smooth projective k-schemes. The category of pure motives is obtained
from V(k) by linearization, idempotent completion, and invertion of the Lefschetz motive.

1.1. Correspondences. The linearization of V(k) is obtained by replacing the morphisms of

schemes with correspondences. Concretely, the correspondences Corr∼,F (X,Y ) := Zdim(X)
∼,F (X×Y )

from X to Y are the F -linear combinations of algebraic cycles in X × Y of codimension equal to
dim(X). This includes the case of ordinary morphisms by viewing their graphs as correspondences.
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The composition of correspondences is obtained by pulling back the cycles to the product X×Y ×Z,
taking their intersection product there, and pushing forward the result to the product X × Z:

Corr∼,F (X,Y )× Corr∼,F (Y, Z)→ Corr∼,F (X,Z) (α, β) 7→ (πXZ)∗(π
∗
XY (α) • π∗Y Z(β)) .(1.1)

1.2. Equivalence relations on algebraic cycles. One of the important steps in the construction
of the category of pure motives is the choice of an equivalence relation on algebraic cycles. The usual
choices are rational equivalence, homological equivalence, and numerical equivalence. Rational
equivalence depends upon the moving lemma and gives rise to the category of Chow motives.
Homological equivalence depends on the choice of a “good” cohomology theory (=Weil cohomology
theory) and gives rise to the category of homological motives. Numerical equivalence depends only
on the intersection product between algebraic cycles and gives rise to the category of numerical
motives. These three equivalence relations are summarized as follows:

• A correspondence α from X to Y is rationally trivial, α ∼rat 0, if there exists a β ∈
Z∗∼,F (X × Y × P1) such that α = β(0)− β(∞).
• A correspondence α from X to Y is homologically trivial, α ∼hom 0, if it vanishes under a

chosen Weil cohomology theory.
• A correspondence α from X to Y is numerically trivial, α ∼num 0, if it has a trivial

intersection number with every other algebraic cycle.

It is well-known that ∼rat 6=∼num. The question of whether ∼hom=∼num remains open and is part
of an important set of conjectures about motives which will be described below (see §1.10).

The category of pure motives has different properties depending on the equivalence relation.

1.3. Pure motives. The symmetric monoidal category of effective pure motives Moteff
∼,F (k) is

defined as follows: the objects are the pairs (X, p) (with X ∈ V(k) and p an idempotent of
Corr∼,F (X,X)), the morphisms are the correspondences

HomMoteff
∼,F (k)((X, p), (Y, q)) = pCorr∼,F (X,Y )q ,

the composition is induced from (1.1), and the symmetric monoidal structure is given by (X, p)⊗
(Y, q) = (X × Y, p× q). In what follows we will write hF (X) instead of (X,∆X).

The effective pure motive hF (P1) decomposes as h0
F (P1)⊕ h2

F (P1) ' 1⊕L, where 1 = hF (Spec(k))
and L is called the Lefschetz motive.

The symmetric monoidal category of pure motives Mot∼,F (k) is obtained from Moteff
∼,F (k) by for-

mally inverting the Lefschetz motive. The formal inverse L−1 is called the Tate motive Q(1)
(one writes Q(n) := Q(1)⊗n). Concretely, in the category of pure motives the objects are triples
(X, p,m) := (X, p)⊗ (L−1)⊗m = (X, p)⊗Q(m) and the morphisms are given by

HomMot∼,F (k)((X, p,m), (Y, q, n)) = pCorrm−n∼,F (X,Y )q .

The category Mot∼,F (k) is additive. In the case where m = n, the direct sum (X, p,m)⊕ (Y, q, n)
is defined as (X q Y, p⊕ q,m). The general case reduces to this one using the Lefschetz motive.

Inverting the Lefschetz motive has therefore the effect of introducing arbitrary shifts in the codi-
mension of the algebraic cycles, instead of using only algebraic cycles of codimension equal to
dim(X). One has a canonical (contravariant) symmetric monoidal functor

hF : V(k)op → Mot∼,F (k) X 7→ hF (X) ,

which sends a morphism f : X → Y to the transpose of its graph Γ(f) ⊂ X × Y .

1.4. Chow and homological motives. The category Mot∼,F (k) with ∼=∼rat (resp. ∼=∼hom)
is called the category of Chow motives (resp. homological motives) and is denoted by ChowF (k)
(resp. by HomF (k)).
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1.5. Numerical motives. One of the most important results in the theory of pure motives was
obtained by Jannsen [26] in the nineties. It asserts that the numerical equivalence relation is the
“best one” from the point of view of the resulting properties of the category. More precisely,
Jannsen proved that the following conditions are equivalent:

• Mot∼,F (k) is a semi-simple abelian category;
• Corr∼,F (X,X) is a finite-dimensional semi-simple F -algebra for every X;
• The equivalence relation ∼ is equal to ∼num.

The category Mot∼,F (k) with ∼=∼num is called the category of numerical motives NumF (k).

1.6. Smash-nilpotence. Voevodsky introduced in [66] the smash-nilpotence equivalence relation
on algebraic cycles, ∼⊗nil, and conjectured the following:

Conjecture V (X): we have the following equality Z∗∼⊗nil,F
(X) = Z∗∼num,F

(X).

The ⊗nil-ideal of an F -linear, additive, symmetric monoidal category C is defined as

⊗nil(a, b) = {g ∈ HomC(a, b) | g⊗n = 0 for n� 0} .

The quotient functor C → C/⊗nil is F -linear, additive, symmetric monoidal, and conservative. If
C is idempotent complete, then C/⊗nil is also idempotent complete. One denotes by VoevF (k) :=
ChowF (k)/⊗nil the category of Chow motives up to smash-nilpotence.

1.7. All together. The different categories of pure motives are related by a sequence of F -linear,
additive, full, symmetric monoidal functors ChowF (k)→ VoevF (k)→ HomF (k)→ NumF (k).

1.8. Tate motives. The additive full subcategory of Mot∼,F (k) generated by Q(1) is called the
category of (pure) Tate motives. This category is independent of the equivalence relation.

1.9. Weil cohomology theories. A Weil cohomology theory axiomatizes the properties of a
“good” cohomology theory. It consists of a contravariant functor H∗ : V(k)op → GrVect(F ) to
Z-graded F -vector spaces equipped with the following data:

• Künneth isomorphisms H∗(X × Y ) ' H∗(X)⊗H∗(Y );

• Trace maps tr : H2dim(X)(X)(dim(X))→ F ;
• Cycle maps γn : Zn∼rat,F

(X)→ H2n(X)(n).

One assumes that dimH2(P1) = 1 and some natural compatibility conditions. Examples of Weil
cohomology theories include de Rham, Betti, étale, and cristalline cohomology.

A great deal of difficulty in the theory of pure motives comes from the poor understanding of the
cycle maps. The question of which cohomology classes are in the range of the γn’s is a notoriously
difficult problem (which includes the Hodge conjecture below).

The idea of motives can be traced back to Grothendieck’s quest for a universal cohomology lying
behind all the different Weil cohomology theories.

1.10. Grothendieck’s standard conjectures. Important conjectures relate the properties of the
categories of pure motives with the geometry of schemes. The standard conjectures are traditionally
labelled as type C, D, B, and I. They are summarized as follows:

• type C (Künneth): the Künneth components of the diagonal ∆X are algebraic cycles;
• type D (Hom=Num): the homological and the numerical equivalence relations coincide;
• type B (Lefschetz): the Lefschetz involution ?L,X is algebraic (with Q-coefficients);
• type I (Hodge): the quadratic form defined by the Hodge involution ?H is positive definite.

There are relations between these conjectures: type B and I imply type D and in characteristic
zero type B implies all others. For our purposes, we will focus on types C and D.
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2. From motives to noncommutative motives

As mentioned above, the origin of pure motives was Grothendieck’s quest for a universal cohomology
lying behind all the different Weil cohomology theories. The origin of noncommutative motives is
similar. In the noncommutative world the basic objects are not schemes but rather dg categories.
Instead of cohomology theories, one has homological type invariants such as algebraic K-theory,
cyclic homology (and all its variants), topological Hoschschild homology, etc. In analogy with the
commutative world, one can try to identify a suitable universal invariant lying behind all these
different invariants.

2.1. Dg categories. A differential graded (=dg) category A is a category whose morphism sets
A(x, y) are cochain complexes of k-modules (k can more generally be a commutative ring) and whose
composition law satisfies the Leibniz rule. A dg functor F : A → B is a functor which preserves
this extra structure. For further details, we refer the reader to Bondal-Kapranov’s pioneering work
[6, 7] as well as to Keller’s ICM survey [32]. In what follows, we will denote by dgcat(k) the category
of all (small) dg categories and dg functors.

2.1.1. Perfect complexes. Dg categories should be understood as “noncommutative schemes”. The
reason for this is that one can canonically associate to every scheme X a dg category, namely the dg
category of perfect complexes perfdg(X) of OX -modules. This dg category enhances the classical
derived category of perfect complexes perf(X) in the sense that the latter is obtained from the
former by passing to degree zero cohomology. When k is a field and X is quasi-projective, Lunts
and Orlov proved in [39] that this dg enhancement is in fact “unique”. This construction gives rise
to a well-defined (contravariant) symmetric monoidal functor

V(k)op → dgcat(k) X 7→ perfdg(X) .

An arbitrary dg category should be then considered as the dg category of perfect complexes of an
hypothetical “noncommutative scheme”.

2.1.2. Saturated dg categories. Kontsevich introduced in [35, 36, 37] a particular class of dg cat-
egories whose properties closely resemble those of perfect complexes on smooth proper schemes.
These are called saturated dg categories. Concretely, a dg category A is saturated if it is perfect as
a bimodule over itself and if for any two objects x, y we have

∑
i rankH iA(x, y) <∞. A k-scheme

X is smooth and proper if and only if the associated dg category perfdg(X) is saturated.

As mentioned by Kontsevich in [35], other examples of saturated dg categories arise from represen-
tation theory of (finite) quivers and from deformation by quantization.

2.2. Morita equivalences. A dg functor F : A → B is called a Morita equivalence if the restriction
of scalars between derived categories D(B)

∼→ D(A) is an equivalence of (triangulated) categories.

All the classical invariants, like algebraic K-theory, cyclic homology (and all its variants), topologi-
cal Hochschild homology, etc, are Morita invariant in the sense that they send Morita equivalences
to isomorphisms. It is then natural to consider dg categories up to Morita equivalence.

As proved in [61], the category dgcat(k) carries a Quillen model structure whose weak equivalences
are the Morita equivalences. Let us denote by Hmo(k) the homotopy category hence obtained.
This category is symmetric monoidal and, as shown in [16], the saturated dg categories can be
characterized as the dualizable (or rigid) objects of Hmo(k).

Bondal and Van den Bergh proved in [8] that for every quasi-compact quasi-separated k-scheme X
the dg category perfdg(X) is isomorphic in Hmo(k) to a dg k-algebra with bounded cohomology.
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2.2.1. Bondal-Kapranov’s pre-triangulated envelope. Using one-sided twisted complexes, Bondal
and Kapranov constructed in [6] the pre-triangulated envelope of every dg category A. Intuitively
speaking, one formally adds to A (de-)suspensions, cones, cones of morphisms between cones, etc.
Making use of the Morita model structure, this construction can be conceptually understood as a
functorial fibrant resolution functor; consult [61] for details.

2.2.2. Drinfeld’s DG quotient. A very useful operation on triangulated categories is the Verdier
quotient. Via a very elegant construction (reminiscent from Dwyer-Kan localization), Drinfeld
[20] lifted this operation to the setting of dg categories. Although very elegant, this construction
didn’t seem to satisfy any obvious universal property. The Morita model structure changed this
state of affairs by allowing the characterizing of Drinfeld’s DG quotient as an homotopy cofiber
construction; consult [59] for details.

2.3. Additive invariants. Given a dg category A, let T (A) be the dg category of pairs (i, x),
where i ∈ {1, 2} and x ∈ A. The complex of morphisms in T (A) from (i, x) to (i′, x′) is given
by A(x, x′) if i ≤ i′ and is zero otherwise. Composition is induced by A. Intuitively speaking,
T (A) “dg categorifies” the notion of upper triangular matrix. Note that we have two inclusion dg
functors i1 : A ↪→ T (A) and i2 : A ↪→ T (A). Let E : dgcat(k) → A be a functor with values in an
additive category. We say that E is an additive invariant if it satisfies the following two conditions:

• it sends Morita equivalences to isomorphisms;
• given any dg category A, the inclusion dg functors induce an isomorphism

[E(i1) E(i2)] : E(A)⊕ E(A)
∼−→ E(T (A)) .

Thanks to the work of Blumberg-Mandell, Keller, Quillen, Schlichting, Thomason-Trobaugh, Wald-
hausen, and others (see [12, 33, 54, 56, 60, 64, 67]), all the above invariants are additive.

The universal additive invariant was constructed in [61] as follows: consider the additive symmetric
monoidal category Hmo0(k) whose objects are the dg categories and whose morphisms are given by
HomHmo0(k)(A,B) := K0rep(A,B), where rep(A,B) ⊂ D(Aop⊗L B) stands for the full triangulated
subcategory of those A-B bimodules which are perfect as right B-modules. The composition law
and the symmetric monoidal structure are induced from Hmo(k). As explained in loc. cit., the
canonical composed symmetric monoidal functor

(2.1) U : dgcat(k) −→ Hmo(k) −→ Hmo0(k)

is the universal additive invariant, i.e. pre-composition with U induces a bijection between additive
functors E : Hmo0(k) → A and additive invariants E : dgcat(k) → A. This suggests that Hmo0(k)
is the correct place where noncommutative motives should reside. Let us denote by Hmo0(k)F its
F -linearization (F can more generally be a commutative ring).

2.4. Computations. In order to gain some sensibility with (2.1), we recall some computations:

• Let X be a smooth projective k-scheme whose derived category perf(X) admits a full
exceptional collection of length n (see §8.2). In this case, U(perfdg(X)) identifies with the
direct sum of n copies of U(k); see [47].
• Let X be a quasi-compact quasi-separated k-scheme, A a sheaf of Azumaya algebras over X

of rank r, and perfdg(A) the associated dg category. When 1/r belongs to the commutative
ring F , U(perfdg(A))F identifies with U(perfdg(X))F ; see [63].

• Let A be a central simple k-algebra of degree d :=
√

dim(A) and SB(A) the associated
Severi-Brauer variety. In this case, U(perfdg(SB(A))) identifies with the following direct

sum U(k)⊕ U(A)⊕ U(A)⊗2 ⊕ · · · ⊕ U(A)⊗(d−1); see [11].
• Let k be a perfect field, A a finite-dimensional k-algebra of finite global dimension, and
J(A) its Jacobson radical. In this case, we have U(A) ' U(A/J(A)); see [63].
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• Let A and B be two central simple k-algebras and [A] and [B] their Brauer classes. In this
case, U(A) and U(B) are isomorphic if and only if [A] = [B]; see [62].

2.5. Noncommutative Chow motives. Kontsevich introduced in [35] the symmetric monoidal
category of noncommutative Chow motives NChow(k)F . It can be described as the idempotent
completion (−)\ of the full subcategory of Hmo0(k)F given by the saturated dg categories. Con-
cretely, the objects are of the pairs (A, e) (with A a saturated dg category and e an idempotent),
the morphisms are given by the noncommutative correspondences

HomNChow(k)F ((A, e), (B, e′)) := eK0rep(A,B)e′ ' eK0(Aop ⊗L B)F e
′ ,

the composition law is induced by the derived tensor product of bimodules, and the symmetric
monoidal structure is induced by the derived tensor product of dg categories.

2.5.1. Fundamental theorems. The fundamental theorems in algebraic K-theory and periodic cyclic
homology, proved respectively by Weibel [68] and Kassel [30], are of major importance. Their proofs
are not only very different but also quite involved. The category NChow(k)F allowed a simple,
unified and conceptual proof of these fundamental theorems; consult [58] for details.

2.6. A bridge from Chow to noncommutative Chow motives. Noncommutative motives
should, in a suitable sense, contain the category of motives. This idea was made precise in [57]
(following Kontsevich’s original insight [37]). The precise statement is the existence of a Q-linear
additive fully-faithful symmetric monoidal functor R making the following diagram commute

(2.2) V(k)op

hQ
��

X 7→perfdg(X)
// dgcat(k)

U
��

ChowQ(k)

π

��

Hmo0(k)

(−)Q
��

ChowQ(k)/−⊗Q(1) R
// NChow(k)Q ⊂ Hmo0(k)\Q ,

where ChowQ(k)/−⊗Q(1) stands for the orbit category. This bridge opens new horizonts and oppor-
tunities of research by enabling the interchange of results between the commutative and the non-
commutative world. This yoga was developed in [57] in what regards Schur and Kimura-O’Sullivan
finite-dimensionality (see §4.3 below), motivic measures, and motivic zeta functions.

The above diagram (2.2) holds more generally with Q replaced by any field F of characteristic zero.

2.6.1. Orbit categories. Given an F -linear, additive, symmetric monoidal category C and a ⊗-
invertible object O ∈ C, the orbit category C/−⊗O has the same objects as C and morphisms

HomC/−⊗O(a, b) :=
⊕
i∈Z

HomC(a, b⊗O⊗i) .

The composition law and the symmetric monoidal structure are induced from C. By construction,
the orbit category comes equipped with a canonical symmetric monoidal projection functor π : C →
C/−⊗O. Moreover, π is endowed with a 2-isomorphism π ◦ (− ⊗ O)

∼⇒ π and is 2-universal among
all such functors.
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3. Categories of noncommutative motives

3.1. Periodic cyclic homology as “noncommutative de Rham cohomology”. Connes’ pe-
riodic cyclic homology extends naturally from k-algebras to dg categories giving thus rise to a
functor HP± : dgcat(k)→ sVect(k) to super k-vector spaces. In the case of a smooth k-scheme X
(with k of characteristic zero), the Hochschild-Konstant-Rosenberg theorem show us that

(3.1) HP±(perfdg(X)) ' HP±(X) ' (
⊕
n even

Hn
dR(X),

⊕
n odd

Hn
dR(X)) .

For this reason HP± is considered the noncommutative analogue of de Rham cohomology. For
further details on this viewpoint, we invite the reader to consult Kaledin’s ICM address [28].

As proved in [46, Theorem 7.2], HP± induces symmetric monoidal functors

HP± : NChow(k)F → sVect(F ) HP± : NChow(k)F → sVect(k)(3.2)

under the assumption that F is a field extension of k (left-hand-side) or the assumption that k is
a field extension of F (right-hand-side).

3.2. Noncommutative homological motives. Making use of the above “noncommutative de
Rham cohomology”, one defines the symmetric monoidal category of noncommutative homological
motives NHom(k)F as the idempotent completion of the quotient category NChow(k)F /Ker(HP±).

3.3. Noncommutative numerical motives. In order to define a category of noncommutative
numerical motives one needs to extend to the noncommutative world the notion of intersection
number. This can be done as follows. Let (A, e) and (B, e′) be two noncommutative Chow motives.
Given a noncommutative correspondence B = e[

∑
i aiBi]e

′ from (A, e) to (B, e′) (recall that the
Bi’s are A-B-bimodules), and a noncommutative correspondence B′ = e′[

∑
j bjB

′
j ]e from (B, e′) to

(A, e), one defines their intersection number as the following sum

〈B,B′〉 :=
∑
i,j,n

(−1)nai · bj · rankHHn(A;Bi ⊗L
B B
′
j) ,

where HHn(A;Bi⊗L
BB
′
j) stands for the nth Hochschild homology group of A with coefficients in the

A-A bimodule Bi ⊗L
B B
′
j . The numerical equivalence relation on noncommutative Chow motives is

obtained by declaring a noncommutative correspondence B to be numerically trivial if 〈B,B′〉 = 0 for
all B′. This equivalence relation gives rise to the largest ⊗-ideal N strictly contained in NChow(k)F .
The symmetric monoidal category of noncommutative numerical motives NNum(k)F is then defined
as the idempotent completion of the quotient category NChow(k)F /N .

As proved in [45, Theorem 1.12], the functor R of diagram (2.2) descends to a Q-linear additive
fully-faithful symmetric monoidal functor RN : NumQ(k)/−⊗Q(1) → NNum(k)Q.

A different numerical equivalence relation on noncommutative Chow motives (based on the bi-
linear pairing

∑
i(−1)idim Exti(−,−)), was proposed by Kontsevich in [35]. As proved in [44,

Theorem 1.1], Kontsevich’s notion is equivalent to the above one.

3.4. Semi-simplicity. As proved in [45, Theorem 1.1][46, Theorem 4.6], Jannsen’s result (see §1.5)
holds also in the noncommutative world. Concretely, under the assumption that k and F have
same characteristic, NNum(k)F is abelian semi-simple. This was conjectured by Kontsevich in [35].
Moreover, if J is a ⊗-ideal in NChow(k)F for which the idempotent completion of NChow(k)F /J
is abelian semi-simple, then J agrees with N .

As explained in [45, Corollary 1.1], the semi-simplicity of NNum(k)F (with k of characteristic zero)
combined with the functor R of diagram (2.2) gives rise to an alternative proof of Jannsen’s result.
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3.5. Smash-nilpotence in the noncommutative world. Recall from §1.6 the definition of the
⊗nil-ideal. One denotes by NVoev(k)F := NChow(k)F /⊗nil the category of noncommutative Chow
motives up to smash-nilpotence. As proved in [50, Proposition 3.1], the functor R of diagram (2.2)
descends also to a symmetric monoidal fully-faithful functor RV : VoevQ(k)/−⊗Q(1) → NVoev(k)Q.

3.6. All together. The categories of noncommutative motives are related by F -linear, additive,
full, symmetric monoidal functors NChow(k)F → NVoev(k)F → NHom(k)F → NNum(k)F .

Given a saturated dg category A, we will denote by ∼⊗nil,∼hom,∼num the equivalence relations on
HomNChow(k)F (U(k)F , U(A)F ) ' K0(A)F induced by the above functors.

3.7. Noncommutative Artin motives. The category of Artin motives AMF (k) is by definition
the smallest additive rigid idempotent complete full subcategory of ChowF (k) containing the finite
étale k-schemes. One defines the category of noncommutative Artin motives NAM(k)Q as the image
of AMQ(k) under the functors R ◦ π of diagram (2.2). As proved in [48, Theorem 1.7], this latter
category is independent of the equivalence relation.

4. Conjectures in the noncommutative world

Let A be a saturated dg category.

4.1. Standard conjectures. The authors introduced in [46] the noncommutative analogues of
Grothendieck’s standard conjectures of type C and D.

Conjecture CNC(A): the Künneth projectors

π+
A : HP±(A)→ HP+(A)→ HP±(A) π−A : HP±(A)→ HP−(A)→ HP±(A)

are algebraic, i.e. π±A = HP±(π±A) for noncommutative correspondences π±A.

A weaker version of the standard conjecture of type C (Künneth) is the sign conjecture C+(X): the
Künneth projectors π+

X =
∑

i π
2i
X and π−X =

∑
i π

2i+1
X are algebraic. The restriction of CNC to the

commutative world is weaker than the sign conjecture in the sense that C+(X)⇒ CNC(perfdg(X)).

Conjecture DNC(A): one has the following equality K0(A)F /∼hom= K0(A)F /∼num.

Similarly, the restriction of DNC to the commutative world is weaker than the standard conjecture
of type D (Hom=Num) in the sense that D(X)⇒ DNC(perfdg(X)).

4.2. Smash-nilpotence conjecture. Voevodsky’s nilpotence conjecture (see §1.6) was extended
in [50] to the noncommutative world as follows:

Conjecture VNC(A): we have the following equality K0(A)F /∼⊗nil
= K0(A)F /∼num.

As proved in [50, Theorem 4.1], the restriction of VNC to the commutative world is equivalent to
Voevodsky’s smash-nilpotence conjecture in the sense that V (X)⇔ VNC(perfdg(X)). This suggests
that instead of attacking Voevodsky’s conjecture V , one should alternatively attack conjecture VNC
(using noncommutative tools). The authors are currently developing this approach.

4.3. Finite-dimensionality conjecture. Let F be a field of characteristic zero and C an F -linear,
idempotent complete, symmetric monoidal category. An object a ∈ C is called even (resp. odd)
dimensional if ∧n(a) = 0 (resp. Symn(a) = 0) for some n > 0. An object a ∈ C is called finite-
dimensional if a = a+ ⊕ a−, with a+ (resp. a−) even (resp. odd) dimensional. Kimura [34] and
O’Sullivan [52] conjectured the following:

Conjecture KS(X): the Chow motive hF (X) is finite-dimensional.

This conjecture was extended in [50] to the noncommutative world as follows:

Conjecture KSNC(A): the noncommutative Chow motive U(A)F is finite-dimensional.

The restriction of KSNC to the noncommutative world is weaker than the Kimura-O’Sullivan
finite-dimensionality conjecture in the sense that KS(X)⇒ KSNC(perfdg(X)).
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Under the assumption that k is a field extension of F (or vice-versa), it was proved in [50, Theo-
rem 4.1] that conjectures VNC((Aop)⊗n ⊗ A⊗n), n ≥ 1, combined with conjecture CNC(A), imply
conjecture KSNC(A). Moreover, if conjecture KSNC holds for every saturated dg category and
all symmetric monoidal functors NChow(k)F → sVect(K) (with K a field extension of F ) factor
through NNum(k)F , then conjecture VNC also holds for every saturated dg category.

5. (Super-)Tannakian formalism

5.1. Tannakian categories. Let (C,⊗,1) be an F -linear, abelian, symmetric monoidal category.
In particular, we have commutativity and ⊗-unit constraints

τa,b : a⊗ b ∼→ b⊗ a `a : a
∼→ a⊗ 1 ra : 1⊗ a ∼→ a

and the following equality holds τb,a ◦ τa,b = ida⊗b. The category C is called rigid if there exists
a duality functor (−)∨ : C → Cop, evaluation maps ε : a ⊗ a∨ → 1, and coevaluation maps
η : 1→ a∨ ⊗ a, for which the following composition is equal to the identity

a
`a−→ a⊗ 1

ida⊗η−→ a⊗ a∨ ⊗ a ε⊗ida−→ 1⊗ a ra−→ a .

The categorical trace of an endomorphism g : a→ a is defined as tr(g) = ε ◦ τa∨⊗a ◦ (ida∨ ⊗ g) ◦ η.
The number dim(a) := tr(ida) is called the dimension or Euler characteristic of a.

A category C with the above properties, and with End(1) = F , is called Tannakian if there exists an
exact faithful symmetric monoidal functor ω : C → Vect(K) with values in a category of K-vector
spaces (with K a field extension of F ). The functor ω is called a fiber functor. When this holds
with K = F , C is called a neutral Tannakian category.

If C is a neutral Tannakian category, then there is a ⊗-equivalence of categories C ' RepF (Gal(C)).
The affine group scheme Gal(C) is given by the ⊗-automorphisms Aut⊗(ω) of the fiber functor ω.

Tannakian categories in characteristic zero were characterized by Deligne [17] as follows: an F -
linear, abelian, rigid symmetric monoidal category C, with End(1) = F , is Tannakian if and only
if dim(a) ≥ 0 for all objects a ∈ C.

5.2. Super-Tannakian categories. An F -linear, abelian, rigid symmetric monoidal category C,
with End(1) = F , is called super-Tannakian if there exists a super-fiber functor ω : C → sVect(K)
with values in a category of super K-vector spaces (with K a field extension of F ). When this
holds with K = F , C is called a neutral super-Tannakian category.

If C is a neutral super-Tannakian category, ω induces a ⊗-equivalence between C and the category
RepF (sGal(C), ε) of super-representations of the affine super-group scheme sGal(C) := Aut⊗(ω)
(the super-structure is given by the parity automorphism ε).

Super-Tannakian categories were also characterized by Deligne [18] as follows: an F -linear, abelian,
rigid symmetric monoidal category C, with End(1) = F , is super-Tannakian if and only if it is Schur-
finite. When F is algebraically closed, C is neutral super-Tannakian if and only if it is Schur-finite.

5.2.1. Schur-finiteness. Let C be a category as above, Sn the symmetric group on n symbols, and
Q[Sn] the associated group ring. Every partition λ of n gives rise to an idempotent eλ ∈ Q[Sn] and
to a Schur functor Sλ : C → C, a 7→ eλ(a⊗n). The category C is called Schur-finite if all its objects
are annihilated by some Schur functor.

5.3. Motivic Galois groups. Deligne’s characterization of Tannakian categories is not satisfied in
the case of NumF (k) because dim(hF (X)) is equal to the Euler characteristic χ(X) of the k-scheme
X which can be negative. Jannsen proved in [26] that if the standard conjecture of type C holds,
then one can modify the commutativity constraints τX,Y using the algebraic cycles coming from
the Künneth components of the diagonal. This has the effect of correcting the negative signs of

the Euler characteristic. Let Num†F (k) be the Tannakian category hence obtained. If the standard
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conjecture of type D also holds, then Num†F (k) is a neutral Tannakian category and every Weil
cohomology theory H∗ is a fiber functor. Under these assumptions, one obtains a group scheme

Gal(Num†F (k)) called the motivic Galois group.

5.4. Motivic Galois super-groups. In contrast with §5.3, Deligne’s characterization of super-
Tannakian categories is satisfied in the case of NumF (k). When F is algebraically closed, NumF (k)
is then a neutral Tannakian category. As a consequence, one obtains a super-group scheme
sGal(NumF (k)) called the motivic Galois super-group.

6. Noncommutative motivic Galois (super-)groups

Let k be a field of characteristic zero and F a field extension of k.

Assuming conjectures CNC andDNC , it was proved in [46, Theorem 1.6] that the category NNum†(k)F
(obtained from NNum(k)F by modifying the commutativity constrains) is neutral Tannakian.
An explicit fiber functor is given by periodic cyclic homology. The associated group scheme
Gal(NNum†(k)F ) is called the noncommutative motivic Galois group.

As proved in [46, Theorem 1.2], the category NNum(k)F is super-Tannakian. When F is alge-
braically closed, NNum(k)F is neutral super-Tannakian. Under these assumptions, one obtains a
super-group scheme sGal(NNum(k)F ) called the noncommutative motivic Galois super-group.

6.1. Comparison morphisms. Assuming conjectures C,D,CNC , DNC , we have well-defined (non-
commutative) motivic Galois (super-)groups. As proved in [46, Theorem 1.7], the composed functor

(6.1) Numk(k)
π−→ Numk(k)/−⊗Q(1)

RN−→ NNum(k)k

gives rise to faithfully-flat comparison morphisms

Gal(NNum†(k)k) −� Ker(t : Gal(Num†k(k)) � Gm)(6.2)

sGal(NNum(k)k) −� Ker(t : sGal(Numk(k)) � Gm) ,(6.3)

where Gm is the multiplicative group scheme and t is induced by the inclusion of Tate motives in
Numk(k). These comparison morphisms were suggested by Kontsevich in [35]. Intuitively speak-
ing, they show us that the ⊗-symmetries of the commutative world which can be lifted to the
noncommutative world are precisely those that become trivial when restricted to Tate motives.

The proof of (6.2)-(6.3) makes use of Deligne-Milne’s theory of Tate triples (see [19]), of a suitable
extension of this theory to the super-Tannakian setting, and of Milne’s work [51] on quotients of
Tannakian categories. The key step is the description of the right-hand-side of (6.2) (resp. of (6.3))

as the Galois group (resp. super-group) of the orbit category of Num†k(k) (resp. of Numk(k)).

It is unclear at the moment if the kernel of these comparison morphisms is non-trivial. This problem
is related to the existence of “truly noncommutative numerical motives”, i.e. objects of NNum(k)k
that are not in the essential image of (6.1).

6.2. Unconditional version. The functors (3.2) descend to symmetric monoidal functors

(6.4) HP± : NHow(k)F −→ sVect(K) .

Here, K = F when F is a field extension of k and K = k when k is a field extension of F . Let
NHom(k)±F be the full subcategory of NHom(k)F consisting of those noncommutative homological
motives for which the Künneth projectors are algebraic. By changing the commutativity constraints
of this latter category, one obtains a rigid symmetric monoidal category NHom†(k)±F and an F -linear

symmetric monoidal functor NHom†(k)±F → Vect(K). Making use of André-Kahn’s techniques [2, 3],

the authors showed in [50, §1] that the associated category NNum†(k)±F is Tannakian, semi-simple,



NONCOMMUTATIVE MOTIVES AND THEIR APPLICATIONS 11

and that the canonical functor NHom†(k)±F → NNum†(k)±F admits a ⊗-section sNC (unique up to
conjugation by a ⊗-isomorphism). One obtains in this way a fiber functor

ω : NNum†(k)±F
sNC

−→ NHom†(k)±F −→ Vect(K).

The associated group scheme Gal(NNum†(k)±F ) is called the unconditional noncommutative motivic
Galois group. As proved in [50, Theorem 1.7], we have a faithfully-flat comparison morphism

Gal(NNum†(k)±k ) −� Ker(t : Gal(Num†k(k)±) � Gm) .(6.5)

Assuming conjectures C,D and CNC , DNC , the unconditional noncommutative motivic Galois
group agree with the conditional one Gal(NNum†(k)k) and (6.5) identifies with (6.3).

6.3. Base-change. As proved in [48, Theorem 1.9], one has the following short exact sequence

(6.6) 1 −→ Gal(NNum†(k̄)F )
I−→ Gal(NNum†(k)F )

P−→ Gal(k̄/k) −→ 1 .

Some explanations are in order: I is induced by base-change−⊗kk : NNum†(k)F → NNum†(k)F ; the
absolute Galois group Gal(k̄/k) is obtained from the Tannakian formalism applied to the category
of noncommutative Artin motives NAM(k)F ; and finally I is induced by the inclusion of the latter

category in NNum†(k)F .

Deligne-Milne’s proof [19] of the classical commutative counterpart of (6.6) makes full use of “com-
mutative arguments” which don’t seem to admit noncommutatice analogues. The proof of (6.6)
is not only very different but moreover much more conceptual from a categorical viewpoint. By
extracting the key ingredients of this latter proof we have established in [48, Appendix A] a general
result about short exact sequences of Galois groups. This led to a new proof of Deligne-Milne’s
short exact exact sequence which circumvents their “commutative arguments”.

7. From noncommutative motives to motives via Jacobians

We have described in §2.6 a bridge from motives to noncommutative motives. One can ask is there
a bridge in the opposite direction, associating a “commutative shadow” to every noncommutative
motive? This (vague) idea can be implemented using the theory of Jacobians, suitably extended to
the noncommutative world. Let k ⊆ C be an algebraically closed field.

7.1. Jacobians. Jacobians J(C) of curves C are geometric models for the cohomology H1(C).
The study of Jacobians is in fact one of the historic precursors of the theory of motives. Given an
arbitrary smooth projective k-scheme X, the Picard Pic0(X) and the Albanese Alb(X) varieties

provide, in a similar way, geometric models for the pieces H1(X) and H2dim(X)−1(X). In what
concerns the remaining pieces of the cohomology, Griffiths’ intermediate Jacobians

Ji(X) :=
H2i+1
B (X,C)

F i+1H2i+1
B (X,C) +H2i+1

B (X,Z)
0 < i < dim(X)

where HB stands for Betti cohomology and F for the Hodge filtration, are not algebraic. Never-
theless, they contain an algebraic part Jai (X) ⊆ Ji(X) defined by the image of the Abel-Jacobi

map AJi : CH i+1
Z (X)alg → Ji(X), where CH i+1

Z (X)alg is the group of algebraically trivial cycles of
codimension i+ 1.
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7.2. Pairings. Given a smooth projective k-scheme X, consider the following k-vector spaces

NH2i+1
dR (X) :=

∑
C,γi

Image
(
H1
dR(C)

H1
dR(γi)−→ H2i+1

dR (X)
)

0 ≤ i ≤ dim(X)− 1 ,(7.1)

where C is a smooth projective curve and γi : hQ(C) → hQ(X)(i) is a morphism in ChowQ(k).
Intuitively speaking, (7.1) are the odd pieces of de Rham cohomology that are generated by curves.
By restricting the classical intersection pairings on de Rham cohomology to (7.1) one obtains

〈−,−〉 : NH
2dim(X)−2i−1
dR (X)×NH2i+1

dR (X) −→ k 0 ≤ i ≤ dim(X)− 1 .(7.2)

7.3. Jacobians of noncommutative motives. In [49, Theorem 1.3] the authors constructed a
Q-linear additive “Jacobian” functor

(7.3) J(−) : NChow(k)Q −→ AbQ(k)

with values in the category of abelian varieties up to isogeny. Among other properties, one has

an isomorphism J(perfdg(X)) '
∏dim(X)−1
i=0 Jai (X) whenever the above pairings (7.2) are non-

degenerate. As explained in loc. cit., this is always the case for i = 0 and i = dim(X) − 1 and
the remaining cases follow from Grothendieck’s standard conjecture of type B. Hence, the pairings
(7.2) are non-degenerate for curves, surfaces, abelian varieties, complete intersections, uniruled
threefolds, rationally connected fourfolds, and for any smooth hypersurface section, product, or
finite quotient thereof (and if one trusts Grothendieck for all smooth projective k-schemes).

Given a noncommutative Chow motive N , the abelian variety J(N) was constructed as follows:

• first, via h1
Q(−) and the fully-faithful functor RN (see §3.3), one observes that AbQ(k)

identifies with a semi-simple abelian full subcategory of NNum(k)Q;
• secondly, the semi-simplicity of NNum(k)Q implies that N admits a unique direct sum

decomposition S1 ⊕ · · · ⊕ Sn into simple objects;
• finally, one defines J(N) as the smallest piece of the noncommutative numerical motive
N ' S1 ⊕ · · · ⊕ Sn which contains the simple objects belonging to AbQ(k).

Roughly speaking, (7.3) show us that the classical theory of Jacobians can be extended to the
noncommutative world as long as one works with all the intermediate Jacobians simultaneously.
Note that this restriction is an intrinsic feature of the noncommutative world which cannot be
avoided because as soon as one passes from X to perfdg(X) one loses track of the individual pieces
of H∗dR(X) (see (3.1)).

7.4. Some applications. The above theory of Jacobians of noncommutative motives allowed cate-
gorical Torelli theorems, a new proof of a classical theorem of Clemens-Griffiths concerning blow-ups
of threefolds, and several new results on quadric fibrations and intersections of quadrics; see [10].
Recently, this theory allowed also the proof of a conjecture of Paranjape [53] in the case of a
complete intersection of either two quadrics or three odd-dimensional quadrics; see [9].

8. Applications to motivic decompositions and to Dubrovin’s conjecture

8.1. Motivic decompositions. It is well-know that h(Pn) = 1 ⊕ L ⊕ · · · ⊕ L⊗n; see Manin [40].
Other examples of motivic decompositions containing only ⊗-powers of the Lefschetz motive arise
from quadrics. Given a non-degenerate quadratic form (V, q) of dimension n ≥ 3 defined over an
algebraically closed field k of characteristic zero, let Qq ⊂ P(V ) be the associated smooth projective
quadric of dimension d := n−2. The motivic decomposition of Qq (due to Rost [55]) is the following

hQ(Qq) '
{

1⊕ L⊕ · · · ⊕ L⊗d d odd

1⊕ L⊕ · · · ⊕ L⊗d ⊕ L⊗(d/2) d even .
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Fano 3-folds also fit in this pattern. In this case, thanks to Gorchinskiy-Guletskii [23], we have

hQ(X) ' 1⊕ h1
Q(X)⊕ L⊕b ⊕ (h1

Q(J)⊗ L)⊕ (L⊗2)⊕b ⊕ h5
Q(X)⊕ L⊗3 ,

where h1
Q(X) and h5

Q(X) are the Picard and Albanese motives, b = b2(X) = b4(X), and J is an
abelian variety which is isogenous to the intermediate Jacobian when k = C. Whenenver the odd
cohomology of X vanishes, this motivic decomposition reduces to a direct sum of ⊗-powers of the
Lefschetz motive. Further exemples include toric varieties and certain homogeneous spaces (see
Brosnan [13]), and moduli spaces of pointed curves of genus zero (see Chen-Gibney-Karshen [14]).

8.2. Full exceptional collections. A collection of objects {E1, . . . , En} in a k-linear triangulated
category C is called exceptional if RHom(Ei, Ei) = k, for all i, and RHom(Ei, Ej) = 0 for all i > j.
It is called full if the objects E1, · · · , En generate the triangulated category C.
The derived category Perf(X) ' Db(Coh(X)) of a smooth projective k-scheme X admits a full
exceptional collection in several cases: projective spaces (see Beilinson [5]), quadrics (see Kapranov
[29]), toric varieties (see Kawamata [31]), certain homogeneous spaces (see Kuznetsov-Polishchuk
[38]), moduli spaces of pointed curves of genus zero (see Manin-Smirnov [43]), and Fano 3-folds
with vanishing odd cohomology (see Ciolli [15]). In all these examples the corresponding motivic
decomposition contain only ⊗-powers of the Lefschetz motive. It is therefore natural to ask if there
is a relation between these two notions. The answer is “yes”, as we now explain.

8.3. From exceptional collections to motivic decompositions. Let X be a smooth projective
k-scheme for which perf(X) admits a full exceptional collection {E1, . . . , En}. Then, as proved in
[47, Theorem 1.3], there is a choice of integers `1, . . . , `n ∈ {0, . . . ,dim(X)} such that

(8.1) hQ(X) ' L⊗`1 ⊕ · · · ⊕ L⊗`n .

The motivic decomposition (8.1) was obtained as follows:

• first, as mentioned in §2.4, the noncommutative Chow motive U(perfdg(X))Q decomposes
into the direct sum of n copies of U(k)Q;
• secondly, the commutativity of diagram (2.2) implies that hQ(X) (considered as an object

of the orbit category NChowQ(k)/−⊗Q(1)) decomposes into the direct sum of n copies of L;
• finally, one observes that the “fiber” of L under the projection functor from noncommutative

Chow motives to its orbit category consists solely of ⊗-powers of the Lefschetz motive.

The decomposition (8.1) holds more generally with X a smooth proper Deligne-Mumford stack.

The decomposition (8.1) has recently greatly refined: instead of working with Q-coefficients it
suffices to invert the prime factors of the integer (2dim(X))!; consult [11] for details.

8.4. Dubrovin’s conjecture. At his ICM address [21], Dubrovin conjectured a striking connection
between Gromov-Witten invariants and derived categories of coherent sheaves. The most recent
formulation, due to Hertling-Manin-Teleman [25], is the following:

Conjecture: Given a smooth projective C-scheme X, the following holds:

(i) The quantum cohomology of X is semi-simple if and only if X is Hodge-Tate (i.e the Hodge
numbers hp,q(X) are zero for p 6= q) and perf(X) admits a full exceptional collection;

(ii) The Stokes matrix of the structure connection of the quantum cohomology identifies with
the Gram matrix of the full exceptional collection.

Thanks to the work of Bayer, Golyshev, Guzzeti, Ueda, and others (see [4, 22, 24, 65]), items (i)-(ii)
are known to be true in the case of projective spaces (and its blow-ups) and Grassmannians. Item
(i) also holds for minimal Fano threefolds. Moreover, Hertling-Manin-Teleman proved in [25] that
the Hodge-Tate property follows from the semi-simplicity of quantum cohomology.
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Making use of the above motivic motivic decomposition (8.1), the authors proved in [47, Proposition
1.9] that the Hodge-Tate property follows also from the existence of a full exceptional collection.
As a consequence, this assumption can be removed from item (i) of Dubrovin’s conjecture.
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