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Preface

Alexandre Grothendieck conceived his definition of motives in the 1960s. By
that time, it was already established that there exist several cohomology theories
for, say, smooth projective algebraic varieties defined over a given field k, and A.
Weil’s brilliant insight about counting points over finite fields via Lefschetz trace
formula was validated.

With his characteristic passion for unification and “naturality”, Grothendieck
wanted to construct a universal cohomology theory (with, say, coe�cients R) that
had to be a functor h from the category Var(k) of smooth k-varieties to an abelian
tensor category Mot(k) of “(pure) motives” (or Mot(k)R, where R is a ring of
coe�cients), satisfying a minimal list of expected properties.

Grothendieck also suggested a definition of Mot(k) and of the motivic functor.
It consisted of several steps.

At the first step, one keeps objects of Var(k), but replaces its morphisms by cor-
respondences. This passage implies that morphisms Y æ X now form an additive
group, or even a R-module rather than simply a set. Moreover, correspondences
themselves are not just cycles on X ◊ Y but classes of such cycles modulo an “ade-
quate” equivalence relation. The coarsest such relation is that of numerical equiv-
alence, when two equidimensional cycles are equivalent if their intersection indices
with each cycle of complementary dimension coincide. The finest one is the rational
(Chow) equivalence, when equivalent cycles are fibres of a family parametrized by
a chain of rational curves. Direct product of varieties induces the tensor product
structure on the category.

The second step in the definition of the relevant category of pure motives
consists in a formal construction of new objects (and relevant morphisms) that
are “pieces” of varieties: kernels and images of projectors, i.e. correspondences
p : X æ X with p2 = p. This produces a pseudo-abelian, or Karoubian completion
of the category. In this new category, the projective line P1 becomes the direct sum
of the (motive of) a point and the Lefschetz motive L (intuitively corresponding to
the a�ne line).

The third, and last step of the construction, is one more formal enhancement
of the class of objects: they now include all integer tensor powers L¢n, not just
non-negative ones, and tensor products of these with other motives. An important
role is played by L≠1 which is called the Tate motive T.

The first twenty five years of the development of the theory of motives were
summarised in the informative Proceedings of the 1991 Research Conference con-
ference “Motives”, published in two volumes by AMS in 1994.

Already by that time it was however clear that the richness of ideas and prob-
lems involved in this project resists any simple-minded notion of “unification”, and

vii



viii PREFACE

with time, the theory of motives was more and more resembling a Borgesian gar-
den of forking paths. Each strand of the initial project tended to unfold in its own
direction, whereas the central stumbling stone on the Grothendieck visionary road,
the Standard Conjectures, resisted and still resists all e�orts.

ı ı ı ı ı

The book by Gonçalo Tabuada is a dense combination of a survey paper and a
research monograph dedicated to the development of the theory of motives during
the next twenty five years. The author contributed many important results and
techniques in the theory in recent years. In this book, he focuses on the so called
“noncommutative motives”. I will make a few brief comments about the scope of
this subject.

In very general terms, one can say that motivic constructions of the New Age
start not with just smooth varieties but rather with triangulated categories and
their enhancements, dg categories. Classical varieties fit there by supplying their
derived and more general enhanced derived categories, such as categories of perfect
complexes. Enhancement essentially means that morphisms rather than objects are
treated as complexes, complexes modulo homotopy, etc. Hence the usual categorical
framework is not su�cient anymore: we must deal with 2-categories and eventually
with categories of higher level.

Correspondences between such “varieties” are introduced using Morita-like
constructions. Recall that in the basic Morita theory morphisms between non-
necessarily commutative rings A æ B are replaced with (A, B)-bimodules, and
that the di�erence between commutative and noncommutative rings in this frame-
work essentially vanish because any commutative ring is Morita equivalent to the
ring of matrices of any given order over it.

One of the first great surprises of this insight transplanted into (projective)
algebraic geometry was Alexander Beilinson’s discovery (1983) that the derived
category of coherent sheaves of a projective space can be described as a triangu-
lated category made out of modules over a Grassmann algebra. In particular, a
projective space became “a�ne” in some kind of noncommutative geometry! The
development of Beilinson’s technique led to a general machinery describing tri-
angulated categories in terms of exceptional systems and expanding the realm of
candidates to the role of noncommutative motives.

Thus the abstract properties of the categories constructed in this way justify
the intuition and terminology of “noncommutative geometry” which was one mo-
tivation for M. Kontsevich’s project of Noncommutative Motives and became the
central subject of Tabuada’s book.

This shift of the viewpoint required much work needed to establish how much
do we lose by passing from the classical picture to the new one, and what do we
gain in understanding of both old and new universes of Algebraic Geometry. Some
of these exciting results are surveyed in Tabuada’s monograph, and the reader who
wants to focus on a particular strand of research will be able to follow the relevant
original papers cited in the ample references list.

This stimulating book will be a precious source of information for all researchers
interested in algebraic geometry.

Yuri I. Manin



Introduction

The theory of motives began in the early sixties when Grothendieck envisioned
the existence of a “universal cohomology theory of algebraic varieties” acting as a
gateway between algebraic geometry and the assortment of the classical Weil coho-
mology theories (de Rham, Betti, étale, crystalline). After the release of Manin’s
foundational article [Man68] on the subject, Grothendieck’s ideas became popular
and a powerful driving force in mathematics.

The theory of noncommutative motives is more recent. It began in the eighties
when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) started
the study of algebraic varieties via their derived dg categories of coherent sheaves.
It turns out that several invariants of algebraic varieties can be recovered from
their derived dg categories. The idea of replacing algebraic varieties by arbitrary
dg categories, which are morally speaking “noncommutative algebraic varieties”,
later led Kontsevich [Konb] to envision the existence of a “universal invariant of
noncommutative algebraic varieties”.

The purpose of this book is to give a rigorous overview of some of the main
advances in the theory of noncommutative motives. It is based on a graduate course
(18.917 - Noncommutative Motives) taught at MIT in the spring of 2014 and its
intended audience consists of graduate students and mathematicians interested in
noncommutative motives and their applications. We assume some familiarity with
algebraic geometry and with homological/homotopical algebra. The contents of the
book can be divided into three main parts:

• Part I: Di�erential graded categories – Chapter 1.
• Part II: Noncommutative pure motives – Chapters 2-7.
• Part III: Noncommutative mixed motives – Chapters 8-10.

A di�erential graded (=dg) category is a category enriched over complexes (mor-
phism sets are complexes). An essential example to keep in mind is the derived
dg category of an algebraic variety. Several invariants such as algebraic K-theory,
cyclic homology (and all its variants), and topological Hochschild homology, can be
defined directly on dg categories. In order to study all these invariants simultane-
ously, we introduce the notion of an additive invariant and of a localizing invariant.

A functor, defined on the category of (small) dg categories and with values in
an additive category, is called an additive invariant if it inverts Morita equivalences
and sends semi-orthogonal decompositions in the sense of Bondal-Orlov to direct
sums. Chapter 2 is devoted to the study of this class of invariants and to the con-
struction of the universal additive invariant. The theory of noncommutative pure
motives can be roughly summarized as the study of the target additive category of
this universal additive invariant. Making use of Kontsevich’s smooth proper dg cat-
egories, which are morally speaking the “noncommutative smooth proper algebraic

1



2 INTRODUCTION

varieties”, we introduce in Chapter 4 several additive categories of noncommutative
pure motives and relate them to their commutative counterparts. An important
example is the category of noncommutative numerical motives. Among other prop-
erties, we prove that this category is abelian semi-simple. This result, combined
with some noncommutative (standard) conjectures stated in Chapter 5, leads to a
(conditional) theory of noncommutative motivic Galois groups and to the exten-
sion of the classical theory of intermediate Jacobians to “noncommutative algebraic
varieties”; consult Chapters 6 and 7, respectively.

A functor, defined on the category of (small) dg categories and with values in
a triangulated category, is called a localizing invariant if it inverts Morita equiv-
alences, preserves filtered homotopy colimits, and sends Drinfeld’s short exact se-
quences to distinguished triangles. The rigorous formalization of this notion re-
quires the language of Grothendieck derivators, which can be found in Appendix A.
Chapter 8 is devoted to the study of this class of invariants and to the construction
of the universal localizing invariant. The theory of noncommutative mixed motives
can be roughly summarized as the study of the target triangulated category of
the universal localizing invariant. Making use once again of Kontsevich’s smooth
proper dg categories, we introduce in Chapter 9 several triangulated categories
of noncommutative mixed motives and relate them with Voevodsky’s triangulated
category of geometric mixed motives. Finally, in Chapter 10 we briefly describe the
(unconditional) theory of noncommutative motivic Hopf dg algebras, which is the
mixed analogue of the theory of noncommutative motivic Galois groups.

Although recent, the theory of noncommutative motives already led to the
(partial) solution of some open problems and conjectures in adjacent research areas.
Some of these will be discussed throughout the book.

We refrain from giving a lengthy introduction to the contents of each chapter.
The table of contents combined with the introduction of each chapter provides the
corresponding information.
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