1. Previously in the Seminar...

We recall some preliminaries discussed in previous talks. We always assume that \(X\) is a complex manifold.

Definition 1.1. A filtered regular holonomic \(\mathcal{D}\)-module with \(\mathbb{Q}\)-structure is a triple \(\mathcal{M} = (\mathcal{M}, F_{\bullet} \mathcal{M}, K)\) consisting of the following objects:

1. A constructible complex of \(\mathbb{Q}\)-vector spaces \(K\).
2. A regular holonomic right \(\mathcal{D}_X\)-module \(\mathcal{M}\) with an isomorphism
 \[
 DR(\mathcal{M}) \simeq \mathbb{C} \otimes_{\mathbb{Q}} K.
 \]
 By the Riemann-Hilbert correspondence, this makes \(K\) a perverse sheaf.
3. A good filtration \(F_{\bullet} \mathcal{M}\) by \(\mathcal{O}_X\)-coherent subsheaves of \(\mathcal{M}\), such that
 \[F_p \mathcal{M} \cdot F_k \mathcal{D} \subset F_{p+k} \mathcal{M}\]
 and such that \(gr^F \mathcal{M}\) is coherent over \(gr^F \mathcal{D}_X \simeq \text{Sym}^\bullet T_X\).

Its Tate twist is defined by \(M(k) = (\mathcal{M}, F_{\bullet-k} \mathcal{M}, K \otimes \mathbb{Q} Q(k))\) where \(Q(k) = (2\pi i)^k \mathbb{Q} \subset \mathbb{C}\).

For a given function \(f : X \to \mathbb{C}\), we want to define the nearby and vanishing cycles, denoted \(\psi_f\) and \(\phi_f\), in the category of filtered regular holonomic \(\mathcal{D}\)-modules with \(\mathbb{Q}\)-structure. If \(f^{-1}(0)\) is not smooth, instead of \(\mathcal{M} = (\mathcal{M}, F_{\bullet} \mathcal{M}, K)\) we consider \((id, f)_* \mathcal{M} = (\mathcal{M}_f, F_{\bullet} \mathcal{M}_f, K_f)\) where

\[
\mathcal{M}_f = (id, f)_+ \mathcal{M} = \mathcal{M}[\partial_t], \quad F_{\bullet} \mathcal{M}_f = F_{\bullet}(id, f)_+ \mathcal{M} = \bigoplus_{i=0}^{\infty} F_{\bullet-i} \mathcal{M} \otimes \partial_t^i, \quad K_f = f_* K.
\]
Now we recall the definition of nearby and vanishing cycles of \mathcal{D}-modules. To that end we will only consider objects with quasi-unipotent local monodromy, thus the eigenvalues of monodromy operator T on \mathcal{M}_f are rational. Then we defined

$$
\psi_f \mathcal{M}_f = \bigoplus_{-1 \leq \alpha < 0} \text{gr}^V_{\alpha} \mathcal{M}_f \simeq \bigoplus_{-1 \leq \alpha < 0} \mathcal{M}_{f,\alpha}, \quad \phi_f \mathcal{M}_f = \bigoplus_{-1 < \alpha \leq 0} \text{gr}^V_{\alpha} \mathcal{M}_f \simeq \bigoplus_{-1 < \alpha \leq 0} \mathcal{M}_{f,\alpha}
$$

where the superscript V denotes the (rational) V-filtration, which is a refinement of the Kashiwara-Malgrange filtration. Note that these \mathcal{D}-modules are regular holonomic if \mathcal{M}_f is regular holonomic.

We recall some properties of V-filtration.

(1) $t \partial_t - \alpha$ acts nilpotently on $\text{gr}^V_{\alpha} \mathcal{M}_f$.

(2) $t : \text{gr}^V_{\alpha} \mathcal{M}_f \rightarrow \text{gr}^V_{\alpha - 1} \mathcal{M}_f$ is an isomorphism for $\alpha < 0$.

(3) $\partial_t : \text{gr}^V_{\alpha} \mathcal{M}_f \rightarrow \text{gr}^V_{\alpha + 1} \mathcal{M}_f$ is an isomorphism for $\alpha \neq -1$.

(4) $V_{<0} \mathcal{M}_f$ only depends on the restriction of \mathcal{M} to $X - X_0$.

2. NEARBY AND VANISHING CYCLES

On the perverse sheaf side, we also have $p\psi_f K, p\phi_f K,$ and

$$
p\psi_f K := \psi_f K[-1], \quad p\phi_f K := \phi_f K[-1]
$$

are perverse sheaves by Gabber’s theorem. As the category of perverse sheaves is abelian we have

$$
p\psi_f K = \bigoplus_{\lambda \in \mathbb{C}^*} p\psi_{f,\lambda} K, \quad p\phi_f K = \bigoplus_{\lambda \in \mathbb{C}^*} p\phi_{f,\lambda} K
$$

where $\psi_{f,\lambda} K, \phi_{f,\lambda} K$ are generalized eigenspaces of T corresponding to eigenvalue λ.

These two notions of nearby and vanishing cycles are connected by de Rham functor as follows. (Here $\lambda = e^{2\pi i \alpha}$.)

$$
\text{DR}(\mathcal{M}_{f,\alpha}) \simeq p\psi_{f,\lambda}(\text{DR}(\mathcal{M})) \text{ for } -1 \leq \Re \alpha < 0 \quad \text{DR}(\mathcal{M}_{f,\alpha}) \simeq p\phi_{f,\lambda}(\text{DR}(\mathcal{M})) \text{ for } -1 < \Re \alpha \leq 0
$$

Thus we have

$$
\text{DR}(\psi_f \mathcal{M}_f) \simeq \mathbb{C} \otimes_{\mathbb{Q}} p\psi_f K, \quad \text{DR}(\phi_f \mathcal{M}_f) \simeq \mathbb{C} \otimes_{\mathbb{Q}} p\phi_f K.
$$

This suggests that we should have

$$
\psi_f M = \left(\bigoplus_{-1 \leq \alpha < 0} \text{gr}^V_{\alpha} \mathcal{M}_f, ???, p\psi_f K \right),
$$

$$
\phi_f M = \left(\bigoplus_{-1 < \alpha \leq 0} \text{gr}^V_{\alpha} \mathcal{M}_f, ???, p\phi_f K \right),
$$

$$
\psi_{f,\lambda} M = \left(\text{gr}^V_{\alpha} \mathcal{M}_f, ???, p\psi_{f,\lambda} K \right),
$$

$$
\phi_{f,\lambda} M = \left(\text{gr}^V_{\alpha} \mathcal{M}_f, ???, p\phi_{f,\lambda} K \right)
$$
where $\lambda = e^{2\pi i \alpha}$. But some of them are not well-defined, because:

1. For $1 \neq \lambda \in \mathbb{C}^\times$ in general $p\psi_{f,\lambda}K \simeq p\phi_{f,\lambda}K$ is not defined over \mathbb{Q}. But $p\psi_fK, p\phi_fK, p\psi_{f,1}K, p\phi_{f,1}K$ are defined over \mathbb{Q}.

2. If we want to define $\partial_t : \psi_fM \to \phi_fM$ and $t : \phi_fM \to \psi_fM(-1)$, we are tempted to adopt the following definition

$$\phi_fM = \left(\bigoplus_{0 \leq \alpha < 1} \text{gr}_\alpha^V M_f, ???, p\phi_fK \right)$$

instead of the above. But $\text{DR}(\bigoplus_{0 \leq \alpha < 1} \text{gr}_\alpha^V M_f) \not\simeq p\phi_fK$. (We already observed that $\text{DR}(\bigoplus_{-1 < \alpha \leq 0} \text{gr}_\alpha^V M_f) \not\simeq p\phi_fK$.) Thus in order to define var and can, we need (and it suffices) only to define $\phi_{f,1}M$.

Thus we will define

$$\psi_fM = \left(\bigoplus_{-1 \leq \alpha < 0} \text{gr}_\alpha^V M_f, ???, p\psi_fK \right),$$

$$\psi_{f,1}M = (\text{gr}_{-1}^V M_f, ???, p\psi_{f,1}K),$$

$$\phi_{f,1}M = (\text{gr}_0^V M_f, ???, p\phi_{f,1}K)$$

It remains to define the filtration on each \mathcal{D}-module. For each $\text{gr}_\alpha^V M_f$, there is only one reasonable way to define such filtration; we define

$$F_p \text{gr}_\alpha^V M_f := F_p M_f \cap V_\alpha M_f / F_p M_f \cap V_{<\alpha} M_f$$

which is the induced filtration. On the other hand, the filtration on $\bigoplus_{-1 \leq \alpha < 0} \text{gr}_\alpha^V M_f$ is a bit subtle; there are two ways to define "induced filtrations" on it.

1. $F_p \left(\bigoplus_{-1 \leq \alpha < 0} \text{gr}_\alpha^V M_f \right) := F_p M_f \cap V_{<0} M_f / F_p M_f \cap V_{<1} M_f$

2. $F_p \left(\bigoplus_{-1 \leq \alpha < 0} \text{gr}_\alpha^V M_f \right) := \bigoplus_{-1 \leq \alpha < 0} F_p M_{f,\alpha}$

Here we adopt the second definition, which "respects" each graded piece of $\bigoplus_{-1 \leq \alpha < 0} \text{gr}_\alpha^V M_f$. It turns out to be a good notion...

To summarize, in the category of filtered regular holonomic \mathcal{D}-modules with \mathbb{Q}-structure we may define

$$\psi_fM = \bigoplus_{-1 \leq \alpha < 0} (\text{gr}_\alpha^V M_f, F_{-1} \text{gr}_\alpha^V M_f, p\psi_{f,e^{2\pi i \alpha}} K)$$

$$\psi_{f,1}M = (\text{gr}_{-1}^V M_f, F_{-1} \text{gr}_{-1}^V M_f, p\psi_{f,1}K)$$

$$\phi_{f,1}M = (\text{gr}_0^V M_f, F_0 \text{gr}_0^V M_f, p\phi_{f,1}K)$$

provided the filtrations are good. Also ∂_t, t give the following maps

$$\text{can} : \psi_{f,1}M \to \phi_{f,1}M, \quad \text{var} : \phi_{f,1}M \to \psi_{f,1}M(-1).$$
The compositions can $\circ \varnothing, \varnothing \circ$ can are the same as $N = \frac{1}{2\pi i} \log T_n$. As it is nilpotent, we have a natural filtration induced by N, called monodromy weight filtration, denoted $W_*\psi_f M$ and $W_*\phi_{f,1} M$.

3. STRICT SUPPORT

Definition 3.1. Let $Z \subset X$ be an irreducible subvariety. We say that a D-module \mathcal{M} has strict support Z if the support of every nonzero subobject or quotient object of \mathcal{M} is equal to Z.

For a regular holonomic \mathcal{M}, it has strict support Z if and only if $DR(\mathcal{M})$ is an intersection cohomology complex of a local system on a Zariski open subset of Z. Also we have the following.

Lemma 3.2. Let $f : X \to \mathbb{C}$ be a nonconstant holomorphic function and \mathcal{M} be a regular holonomic D-module on X. Then

1. \mathcal{M} has no nonzero subobject supported on $f^{-1}(0) \iff t : \text{gr}_0^V M_f \to \text{gr}_1^V M_f$ is injective.

2. \mathcal{M} has no nonzero quotient object supported on $f^{-1}(0) \iff \partial_t : \text{gr}_1^V M_f \to \text{gr}_0^V M_f$ is surjective.

3. $\text{gr}_1^V M_f = \ker(t : \text{gr}_0^V M_f \to \text{gr}_1^V M_f) \oplus \text{im}(\partial_t : \text{gr}_1^V M_f \to \text{gr}_0^V M_f) \iff \mathcal{M} \simeq \mathcal{M}' \oplus \mathcal{M}''$ where $\text{supp} \mathcal{M}' \subset f^{-1}(0)$ and \mathcal{M}'' does not have nonzero subobjects or quotient objects whose support is contained in $f^{-1}(0)$.

Proof. We have

$$0 \to H^{-1} i^* M_f \to \text{gr}_1^V M_f \xrightarrow{\partial_t} \text{gr}_0^V M_f \to H^0 0^* M_f \to 0$$

$$0 \to H^0 0^* M_f \to \text{gr}_0^V M_f \xrightarrow{t} \text{gr}_1^V M_f \to H^1 0^* M_f \to 0$$

where $i : f^{-1}(0) \hookrightarrow X$. Thus (1), (2) are clear. For (3), first suppose the latter condition. Then $\text{gr}_1^V M_f = 0, \text{gr}_0^V M_f \simeq \ker(t : \mathcal{M}'_f \to \mathcal{M}'_f) = \ker(t : \text{gr}_0^V M_f \to \text{gr}_1^V M_f)$ as supp $\mathcal{M}' \subset f^{-1}(0)$.

(Recall that the V-filtration on \mathcal{M}'_f is given by

$$V_0 \mathcal{M}'_f = \ker(t^{[\alpha + 1]} : \mathcal{M}'_f \to \mathcal{M}'_f) = \bigoplus_{0 \leq i \leq |\alpha|} (\mathcal{M}'_f)_i$$

where $(\mathcal{M}'_f)_0 = \ker(t : \mathcal{M}'_f \to \mathcal{M}'_f)$ and $(\mathcal{M}'_f)_i = (\mathcal{M}'_f)_0 \partial_t^i$. Also $t : \text{gr}_0^V \mathcal{M}''_f \to \text{gr}_1^V \mathcal{M}_f$ is injective and $\partial_t : \text{gr}_1^V \mathcal{M}''_f \to \text{gr}_0^V \mathcal{M}_f$ is surjective. Thus

$$\ker(t : \text{gr}_0^V \mathcal{M}_f \to \text{gr}_1^V \mathcal{M}_f) \oplus \text{im}(\partial_t : \text{gr}_1^V \mathcal{M}_f \to \text{gr}_0^V \mathcal{M}_f)$$

$$= \ker(t : \text{gr}_0^V \mathcal{M}_f \to \text{gr}_1^V \mathcal{M}_f) \oplus \text{im}(\partial_t : \text{gr}_1^V \mathcal{M}_f \to \text{gr}_0^V \mathcal{M}_f)$$

$$\oplus \ker(t : \text{gr}_0^V \mathcal{M}''_f \to \text{gr}_1^V \mathcal{M}_f) \oplus \text{im}(\partial_t : \text{gr}_1^V \mathcal{M}''_f \to \text{gr}_0^V \mathcal{M}_f)$$

$$= \text{gr}_0^V \mathcal{M}_f \oplus \text{gr}_0^V \mathcal{M}''_f = \text{gr}_0^V \mathcal{M}_f$$

as desired. Proving the converse is tricky; one may refer to [Sai88, Lemme 5.1.4].

Therefore...
Lemma 4.4. Suppose the difference between the definition of quasi-unipotency and the condition of the lemma already know that
\[\partial V \, V = \partial f : V \to V, \]
along \(f \).

\[\sum_{i=0}^{\infty} (F_{p-i}V_{<0}M) \partial^i \]

\[\text{for every locally defined holomorphic function } f. \]

4. Compatibility of Nearby and Vanishing Cycles and the Filtration

We define the following.

Definition 4.1. We say that \(M = (M, F_\bullet M, K) \) is quasi-unipotent along \(f = 0 \) if all eigenvalues of the monodromy operator on \(\psi_f K \) are roots of unity, and if the \(V \)-filtration \(V_\bullet M_f \) satisfies the following two additional conditions.

1. \(t : F_p V_\alpha M_f \to F_p V_{\alpha-1} M_f \) is surjective for \(\alpha < 0 \).
2. \(\partial : F_p \, gr_\alpha^V M_f \to F_{p+1} \, gr_{\alpha+1}^V M_f \) is surjective for \(\alpha > 0 \).

Also, we say that \(M \) is regular along \(f = 0 \) if \(F_\bullet M_f \) is a good filtration for every \(-1 \leq \alpha \leq 0\).

Thus if \(M \) is regular along \(f = 0 \) then \(\psi_f M, \psi_{f,1} M, \phi_{f,1} M \) are well-defined as filtered regular holonomic \(D \)-modules with \(\mathbb{Q} \)-structure. But what does it mean that \(M \) is quasi-unipotent along \(f = 0 \)? It will be clear as we observe the following lemmas.

Lemma 4.2. Suppose \(M \) has strict support \(Z \subset X \) and \(f \) is nonconstant on \(Z \). Let \(j : X \times (\mathbb{C} - \{0\}) \to X \times \mathbb{C} \) be the inclusion map and \(F_p V_{<0} M_f = V_{<0} M_f \cap F_p M_f \). Then \(F_p V_{<0} M_f = V_{<0} M_f \cap j_* j^* F_p M_f \) if and only if \(t : F_p V_\alpha M_f \to F_p V_{\alpha-1} M_f \) is surjective for every \(\alpha < 0 \).

Lemma 4.3. Suppose \(M \) has strict support \(Z \subset X \) and \(f \) is nonconstant on \(Z \). Also suppose \(\partial : gr_{\alpha-1}^V M \to gr_\alpha^V M \) is surjective. (It indeed follows from strict support condition.) Then \(F_p M = \sum_{i=0}^{\infty} (F_{p-i} V_{<0} M) \partial^i \) if and only if \(\partial : F_p V_\alpha^V M \to F_{p+1} V_{\alpha+1} M \) is surjective for \(\alpha \geq -1 \).

Recall that \(M_f = \sum_{i=0}^{\infty} (V_0 M_f) \partial^i \), i.e. \(M_f \) is generated by \(V_0 M_f \) as a \(D \)-module. As we already know that \(\partial : gr_{\alpha-1}^V M \to gr_\alpha^V M \) is surjective, we have \(M = \sum_{i=0}^{\infty} (V_{<0} M_f) \partial^i \). Remark that \(V_{<0} M_f \) depends on the restriction of \(M_f \) to \(X \setminus X_0 \). Thus if we combine two lemmas above, we see that \(F_p M_f \) is completely determined by the data on \(X \setminus X_0 \), i.e.

\[F_p V_{<0} M_f = V_{<0} M_f \cap j_* j^* F_p M_f = V_{<0} M_f \cap j_* j^* \sum_{i=0}^{\infty} (F_{p-i} V_{<0} M_f) \partial^i = \sum_{i=0}^{\infty} (V_{<0} M_f \cap j_* j^* F_{p-i} M_f) \partial^i. \]

Note the difference between the definition of quasi-unipotency and the condition of the lemma above; after we introduce Hodge modules it would become clear.

Now what if \(Z \subset f^{-1}(0) \)?

Lemma 4.4. Suppose supp \(M \subset f^{-1}(0) \) and set \(M_0 = \ker(t : M \to M) \) and \(F_p M_0 = F_p M \cap M_0 \). Then \(M \cong M_0 \oplus \partial \) and \(F_p M \cong \bigoplus_{i=0}^{\infty} F_{p-i} M_0 \otimes \partial^i \) if and only if \(\partial : F_p V_\alpha^V M \to F_{p+1} V_{\alpha+1}^V M \) is surjective for \(\alpha > -1 \).

Lemma 4.5. Suppose supp \(M \subset f^{-1}(0) \). Then \(M = (M, F_\bullet M, K) \) is quasi-unipotent and regular along \(f = 0 \) if and only if \((F_p M) f \subset F_{p-1} M \) for all \(p \in \mathbb{Z} \).
Thus the definition above has a meaning even when \(\text{supp} M \subset f^{-1}(0) \). Indeed, we use this definition to decompose filtered regular holonomic \(\mathcal{D} \)-modules with \(\mathbb{Q} \)-structure as follows.

Proposition 4.6. Let \(M \) be a filtered regular holonomic \(\mathcal{D} \)-modules with \(\mathbb{Q} \)-structure which is quasi-unipotent and regular along \(f = 0 \) for every locally defined holomorphic function \(f \). Then

\[
M = \bigoplus_{Z \subset X} M_Z
\]

where \(M_Z \) is a filtered regular holonomic \(\mathcal{D} \)-module with \(\mathbb{Q} \)-structure which has strict support \(Z \), if and only if

\[
\phi_{f,1}M = \ker(\text{var} : \phi_{f,1}M \rightarrow \psi_{f,1}M(-1)) \oplus \text{im}(\text{can} : \phi_{f,1}M \rightarrow \psi_{f,1}M)
\]

for every locally defined holomorphic function \(f \). Here the filtration of \(\text{im}(\text{can} : \phi_{f,1}M \rightarrow \psi_{f,1}M) \) is induced from that of \(\phi_{f,1}M \).

5. **Definition of Pure Hodge Modules**

Here comes our main object.

Definition 5.1. Consider the category of filtered regular holonomic \(\mathcal{D} \)-modules with \(\mathbb{Q} \)-structure that are quasi-unipotent and regular along \(f = 0 \) for any locally defined holomorphic \(f \), and that are direct sums of objects which have strict support. Then we define the category of (pure) Hodge modules of weight \(w \), denoted \(\text{HM}(X, w) \), to be the largest full subcategory of the above such that

1. if \(M \) has support \(\{x\} \subset X \), then \(M = i_x^!(H^\bullet_{\mathbb{C}}F^\bullet_{\mathbb{C}}H^\bullet_{\mathbb{Q}}) \) where \(i_x : \{x\} \hookrightarrow X \) is the inclusion, and \((H^\bullet_{\mathbb{C}}, F^\bullet_{\mathbb{C}}H^\bullet_{\mathbb{Q}}) \) is a rational Hodge structure of weight \(w \),

2. for all Zariski open \(U \subset X \), \(f : U \rightarrow \mathbb{C} \) a non-constant holomorphic function, and \(M \) having support not contained in \(f^{-1}(0) \), if \(M \in \text{HM}(X, w) \), then for all \(k \in \mathbb{Z} \) the graded modules \(\text{gr}^W_k \psi_f M \) and \(\text{gr}^W_k \phi_{f,1}M \) are Hodge modules of weight \(k \) with support on \(f^{-1}(0) \) where \(W \) is a monodromy weight filtration.

Then we have the following properties.

Proposition 5.2.

1. \(\text{HM}(X, w) \) is a direct sum \(\bigoplus_{Z \subset X} \text{HM}_Z(X, w) \) where \(\text{HM}_Z(X, w) \) is the category of Hodge modules of weight \(w \) on \(X \) with strict support on \(Z \).

2. Every morphism between two Hodge modules is strictly compatible with the filtration, i.e. the map from coimage to image is an isomorphism of filtered objects.

3. \(\text{HM}(X, w) \) is an abelian category.

4. Every morphism from one Hodge module to the other of strictly smaller weight is trivial.

Now consider \(\partial_t : F_p \text{gr}^V_{-1}M_f \rightarrow F_{p+1} \text{gr}^V_0 M_f \). By strict support condition we already know that \(\partial_t : \text{gr}^V_{-1}M_f \rightarrow \text{gr}^V_0 M_f \) is surjective. As \(\partial_t \) is strictly compatible with the filtration, it implies \(\partial_t : F_p \text{gr}^V_{-1}M_f \rightarrow F_{p+1} \text{gr}^V_0 M_f \) is also surjective. Compare this result with the definition of quasi-unipotency along \(f = 0 \).
6. Polarization

We want to define polarized Hodge modules. To that end it is natural to consider $K \otimes K \to \mathbb{Q}(-w)[2n]$, or equivalently, $K(w) \to \mathbb{D}K$. Also we can define $\mathcal{D}M$, so that we can consider $\mathcal{M} \to \mathbb{D}\mathcal{M}$. But the problem is that it does not behave well with the filtration: we cannot just take the Verdier dual of the filtration. Fortunately, we can define a good notion of dual $\mathbb{D}M \in H^\bullet_{\mathbb{Q}}(X, -w)$ such that $rat\mathbb{D}M = \mathbb{D}K$ is the usual Verdier dual of K. (It is related to the Cohen-Macaulayness of $gr^B\mathcal{F} \mathcal{M}$ over $gr^B\mathcal{D}X$, proved in [Sai88, Lemme 5.1.13].)

Now the definition:

Definition 6.1. A polarization on a Hodge module $M \in H^\bullet_{\mathbb{Q}}(X, w)$ is a morphism $K(w) \to \mathbb{D}K$ such that

1. it is nondegenerate and compatible with the filtration, thus it extends to $M(w) \simeq \mathbb{D}M$,
2. if M has strict support $Z \subset X$ and U is Zariski open dense in X such that $Z \cap U \neq \emptyset$, if a holomorphic $f : U \to \mathbb{C}$ is not constant on $Z \cap U$, then the induced morphism $pr^\bullet f K(w) \to \mathbb{D}(pr^\bullet f K)$ gives a polarization on primitive parts for N,
3. if M is supported on a point, then $K(w) \to \mathbb{D}K$ is induced by a polarization of Hodge structures.

If M admits one polarization then we say that M is polarizable. Also we denote by $H^\bullet_{\mathbb{P}}(X, w)$, $H^\bullet_{\mathbb{P}}(X, w)$ the full subcategory of polarizable Hodge modules in $H^\bullet_{\mathbb{Q}}(X, w)$, $H^\bullet_{\mathbb{Z}}(X, w)$, respectively.

7. On Singular Spaces

If X is not smooth, then we can use Kashiwara’s theorem. Thus if X can be embedded to smooth Y, then we define $H^\bullet_{\mathbb{Q}}(X, w)$, $H^\bullet_{\mathbb{P}}(X, w)$ to be full subcategories of $H^\bullet_{\mathbb{Q}}(Y, w)$, $H^\bullet_{\mathbb{P}}(Y, w)$ whose objects are (polarizable) Hodge modules supported on X. Note that Kashiwara’s theorem does not work for all the filtered regular holonomic \mathcal{D}-modules with \mathbb{Q}-structure as a coherent sheaf with support in X is not the same thing as a coherent sheaf on X, thus the notion of good filtration differs. But it is still true if we consider modules which are quasi-unipotent and regular along $f = 0$ for any locally defined holomorphic f. Also the definition of $H^\bullet_{\mathbb{Q}}(X, w)$ is independent of the choice of embedding, thus it is well-defined. Note that if X is not globally embedded and we can locally embed X and glue categories together to get $H^\bullet_{\mathbb{Q}}(X, w)$.

References

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, U.S.A.

E-mail address: sylvaner@math.mit.edu