1 Proof of Kashiwara’s Theorem

Theorem 1.1 (Kashiwara). Let \(i : X \to Y \) be a closed embedding. Then \(i_* \) is an equivalence between \(\mathcal{M}'(D_X) \) and \(\mathcal{M}'_X(D_Y) \), where \(\mathcal{M}'_X(D_Y) \) is the category of right \(D_Y \)-modules set-theoretically supported on \(X \), i.e. for any \(f \in \mathcal{J}_X \) and \(m \in M \), \(mf^N = 0 \) for some \(N \in \mathbb{N} \).

To prove this, we first show the necessary condition.

Theorem 1.2. The image of \(i_* : \mathcal{M}'(D_X) \to \mathcal{M}'(D_Y) \) is contained in \(\mathcal{M}'_X(D_Y) \).

Proof. Indeed, \(i_*(M) = M \otimes_{D_X} D_{X \to Y} \), and \(D_{X \to Y} = \mathcal{O}_X \otimes_{\mathcal{O}_Y} D_Y = D_Y / JD_Y \) for a closed immersion. So we only need to prove this for \(D_{X \to Y} \). But note that the \(D_Y \) action is defined on the right, that is we need to prove for any \(m \in D_{X \to Y} \), \(mJ^N = 0 \) for some \(N \in \mathbb{N} \). But it is still true by using commutator relation, i.e. for any \(\partial^N, \partial^N f^{N+1} = \partial^{N-1} f^{N+1} \partial + \partial^{N-1} (N+1) f' f^N = \cdots = f(\partial^N + \cdots) \), whence the assertion.

Now we define a functor \(i^0 : \mathcal{M}'(D_Y) \to \mathcal{M}'(D_X) \) as

\[
i^0M = \text{Hom}_{\mathcal{O}_Y}(\mathcal{O}_X, M) = \{ m \in M \mid mJ = 0 \}\]

To give a right \(D_X \)-module structure, for any vector field \(v \in \text{Vec}(X) \) you need to define something like \(mv \) such that \(mvJ = 0 \). For this, we need the following lemma.

Lemma 1.3. For any \(v \in \text{Vec}(X) \), we can locally find \(\tilde{v} \in \text{Vec}(Y) \) such that \(\tilde{v}|_X = v \) and \(\tilde{v} \) preserves \(J \).

Proof. Since \(X \) is smooth, it is a local complete intersection [1, Theorem 8.17, Example 8.22.1]. Thus for any \(x \in X \), there exists \(U \subset X \) and an étale coordinate system \(x_1, \ldots, x_k, y_1, \ldots, y_l \) such that \(X \cap U = V(y_1, \ldots, y_l) \) and \(x_1, \ldots, x_k \) gives an étale coordinate system on \(X \). Now it is clear that any vector field on \(X \) can be lifted locally, and they indeed preserve \(J \).
Now we define \(m \cdot v = m \tilde{v} \). It is invariant under the choice of the lifting, since if \(\tilde{v}' \) is another lifting we have \(m(\tilde{v} - \tilde{v}') = 0 \) since \(\tilde{v} - \tilde{v}' \in \mathcal{J} Vec(Y) \). (The restriction on \(X \) is zero. Use the local chart around the point as before!) Also \(m v \mathcal{J} = 0 \) is zero since \(v \) preserves \(\mathcal{J} \); indeed, for any \(f \in \mathcal{J} \), \(m \mathcal{J} f = m[v, f] + mfv = 0 \) since \([v, f] = v(f) \in \mathcal{J} \).

Why do we define this functor?

Theorem 1.4. (1) \(i^0 \) is the right adjoint to \(i_{*0} \). i.e. \(i_{*0} : \mathcal{M}^{r}(\mathcal{D}_{X}) \leftrightarrow \mathcal{M}^{r}(\mathcal{D}_{Y}) : i^0 \).

(2) If we restrict \(i^0 \) to \(\mathcal{M}^{r}_{X}(\mathcal{D}_{Y}) \), then they are mutually inverses.

Proof. \(\text{Hom}_{\mathcal{D}_{Y}}(i_{*0}M, N) = \text{Hom}_{\mathcal{D}_{X}}(M, i^{0}N)? \) \(f \in \text{Hom}_{\mathcal{D}_{Y}}(i_{*0}M, N) \), define \(\tilde{f} : M \to i_{*0}M \to N \) by \(M \to i_{*0}M : m \mapsto m \otimes 1 \in M \otimes_{\mathcal{D}_{X}} \mathcal{D}_{X} \to \mathcal{D}_{Y} \). Since for \(a \in \mathcal{J} \) and \(m \in M \), \(\tilde{f}(m) = a = f(m \otimes 1) = f([m, a]) = 0 \), \(f(M) \subset i^{0}N \). Also for any \(v \in \text{Vec}(X) \), \(\tilde{f}(mv) = f(m \otimes \tilde{v}) = f([m, \tilde{v}] = 0 \) where \(\tilde{v} \) is the lifting of \(v \) on \(Y \) (locally.) (Note the definition of \(\mathcal{D}_{X} \)-action on \(i^{0}N \!\) ! Also \(v \cdot (1 \otimes 1) = 0 + 1 \otimes v \) by the \(\mathcal{D}_{X} \)-module structure of \(\mathcal{D}_{X} \to \mathcal{D}_{Y} \).)

Conversely, for \(g \in \text{Hom}_{\mathcal{D}_{X}}(M, i^{0}N) \), we define \(\tilde{g} = i_{*0}M = M \otimes_{\mathcal{D}_{X}} \mathcal{D}_{X} \to N : m \otimes L \mapsto g(m)L \). Since \(\mathcal{D}_{X} \to \mathcal{D}_{Y} = \mathcal{D}_{Y} / \mathcal{J} \mathcal{D}_{Y} \), it is well-defined by the definition of \(i^{0}N \!\) ! Is it \(\mathcal{D}_{Y} \)-linear? if \(v \in \text{Vec}(Y) \), then \(\tilde{g}(m \otimes f) = g(m)Lv \). Clear! Now they are inverse to each other, just by following the definition.

By adjointness, we have a canonical morphism \(M \to i^{0}i_{0}M \) for \(M \in \mathcal{M}^{r}_{X}(\mathcal{D}_{X}) \) and \(i_{*0}i^{0}N \to N \) for \(N \in \mathcal{M}^{r}_{X}(\mathcal{D}_{Y}) \). We will show that they are isomorphisms. WLOG we may look at this locally, and by induction on codimension we may assume that \(X \) is a smooth codim 1 hypersurface defined by a single \(f \), thus locally we have an étale coordinate \(y_{1}, \ldots, y_{m} \) and corresponding vector fields \(\partial_{y_{1}}, \ldots, \partial_{y_{m}} = \partial_{f} \) on \(Y \) such that \(y_{m} = f \). We will show that \(\mathcal{D}_{X} \to \mathcal{D}_{Y} = \bigoplus_{n \in \mathbb{N}} \mathcal{D}_{X} \partial_{y}^{n} \), thus in particular free over \(\mathcal{D}_{X} \). But indeed \(\mathcal{D}_{X} \to \mathcal{D}_{Y} = \mathcal{D}_{Y} / \mathcal{J} \mathcal{D}_{Y} \), and \(\mathcal{D}_{X} = \bigoplus \mathcal{O}_{X} \partial_{y_{1}} \cdots \partial_{y_{m-1}}^{n} \).

Now, thus, \(i_{*0}M = \bigoplus_{n \in \mathbb{N}} M \partial_{y}^{n} \). What is killed by \(\mathcal{J} \), i.e. \(f \)? Since \(m \partial_{y}f = mf \partial_{y} + nm \partial_{y}^{n} = 0 \) only \(M \partial_{y}^{n} \) part is killed, thus \(i^{0}i_{0}M = M \).

Conversely, for \(N \in \mathcal{M}^{r}_{X}(\mathcal{D}_{Y}) \), \(i_{*0}N = \ker(N \xrightarrow{f} N) \). Then \(i_{*0}i^{0}N = \bigoplus_{n \in \mathbb{N}} (i^{0}N) \partial_{y}^{n} \). First note that \(i_{*0}i^{0}N \subset N \) is an injection; if \(n \partial_{y}^{n} = 0 \in i_{*0}i^{0}N \), then by applying \(f \) \(l \) times on the right we get \(n = 0 \). Also it is the direct sum since each part has different eigenvalue w.r.t. \(f \partial \). Meanwhile, we know that \(f \) acts locally nilpotently on \(N \) since \(N \) is set-theoretically supported on \(X \). Thus it suffices to show that on \(N/i_{*0}i^{0}N \) \(f \) has zero kernel. But if \(n \partial_{y} \in i_{*0}i^{0}N \), then \(n \partial_{y} = \tilde{n}f \) for some \(\tilde{n} \in i_{*0}i^{0}N \) since \(f : i_{*0}i^{0}N \to i_{*0}i^{0}N \) is a surjection. But it means \(n - \tilde{n} \in i^{0}N \subset i_{*0}i^{0}N \). Thus \(i_{*0}i^{0}N = N \) as desired. \(\square \)

2 Definition of \(\mathcal{M}^{r}_{X}(\mathcal{D}_{X}) \) for a Singular Variety \(X \)

Now for any affine \(X \) not necessarily nonsingular, we first choose a closed embedding \(f : X \to \mathbb{A}^{n} \), or more generally \(f : X \to Y \) where \(Y \) is a smooth affine variety and
define $M'(\mathcal{D}_X) = M'_X(\mathcal{D}_Y)$. If X is smooth, then it is the same as our original definition by Kashiwara's theorem. To show that this is well-defined, you need to check that it is invariant under the choice of embedding.

Remark. We only need to consider the closed embedding to affine spaces, since for general $X \to Y$, then we embed Y into an affine space and use Kashiwara’s theorem to deduce that $M'_X(\mathcal{D}_Y) = M'(\mathcal{D}_X)$.

Suppose we have two embeddings $i_1 : X \to \mathbb{A}^{n_1} = \mathbb{A}_1$ and $i_2 : X \to \mathbb{A}^{n_2} = \mathbb{A}_2$. Then we will construct the canonical equivalence $\phi_{21} : M_{i_1}(\mathcal{D}_X) \to M_{i_2}(\mathcal{D}_X)$ where $M_{i_1}(\mathcal{D}_X)$ are defined in the obvious sense. First, we assume $X \xrightarrow{i_1} \mathbb{A}_1 \xrightarrow{j_1} \mathbb{A}_2$ where j is also a closed embedding and $j \circ i_1 = i_2$. Then we set $\phi_{21} = j_*0 : M'_X(\mathcal{D}_{\mathbb{A}_1}) \to M'_X(\mathcal{D}_{\mathbb{A}_2})$. We claim this is an equivalence; to prove this, we mimic the proof of Kashiwara’s theorem. i.e.

1. $j_*0 M'_X(\mathcal{D}_{\mathbb{A}_1}) \subset M'_X(\mathcal{D}_{\mathbb{A}_2})$?
2. define $j'^0 : M'_X(\mathcal{D}_{\mathbb{A}_2}) \to M'_X(\mathcal{D}_{\mathbb{A}_1})$? i.e. $\text{Hom}_{\mathbb{A}_2}(\mathcal{O}_{\mathbb{A}_1}, M)$ is supported on X?
3. how to define $\mathcal{D}_{\mathbb{A}_1}$-action?
4. are they adjoint to each other?
5. are they mutually inverses?

The only difference is that the ideal of X becomes smaller, but we can still use an étale coordinate system since \mathbb{A}_1 and \mathbb{A}_2 are smooth regardless of X.

In general, we will use the following theorem.

Theorem 2.1 (Schwede, [2], 3.4). Suppose A and B are rings. Further suppose I is an ideal of A and there exists a map γ from B to A/I. We will denote the quotient map from A to A/I by π. Let $X = \text{Spec}A$, $Y = \text{Spec}B$, and $Z = \text{Spec}A/I$, so that Z is a closed subscheme of X. Then $X \cup_Z Y$ is an affine scheme with Y a closed subscheme, $(X \cup_Z Y) - Y \cong X - Z$, and the maps $\alpha : X \to X \cup_Z Y$ and $\beta : Y \to X \cup_Z Y$ are morphisms of schemes.

Also following the proof, we see that if X, Y, Z are affine k-varieties the the pushout is at least an affine scheme of finite type over k. In other words, in general we can always have an affine space \mathbb{A}_{12} and the following commutative diagram:

```
          X \xrightarrow{i_2} \mathbb{A}_2 \\
          \downarrow{i_1} \quad \downarrow{j_2} \\
\mathbb{A}_1 \xrightarrow{j_1} \mathbb{A}_{12}
```

Now we define $\phi_{21} = (j_2)^{-1}_0 (j_1)_* : M'_X(\mathcal{D}_{\mathbb{A}_1}) \to M'_X(\mathcal{D}_{\mathbb{A}_2})$. 3
Is it well-defined? i.e. ϕ_{21} is canonical? for this, we use the following diagram;

\[
\begin{array}{ccc}
X & \rightarrow & A_1 \\
\downarrow & & \downarrow \\
A_2 & \rightarrow & A_{12} \\
\downarrow & & \downarrow \\
A_3 & \rightarrow & A_{123}
\end{array}
\]

which exists by the theorem of Schwede. Since $f_{*0} : M'_X(A_{12}) \rightarrow M'_X(A''_{12})$ and $g_{*0} : M'_X(A_{12}) \rightarrow M'_X(A''_{12})$ are isomorphisms, the assertion follows from the functoriality and diagram chasing.

Now we need to show that ϕ_{21} satisfies the cocycle condition, from which the well-definedness of $M'(D_X)$ follows. For this, we use the same trick;

\[
\begin{array}{ccc}
A_1 & \rightarrow & A_{12} \\
\downarrow & & \downarrow \\
A_2 & \rightarrow & A_{123} \\
\downarrow & & \downarrow \\
A_3 & \rightarrow & A_{13}
\end{array}
\]

and again this is justified by diagram chasing.

Now note that for $i : X \rightarrow \mathbb{A}^n$, we have a functor $\Gamma : M'(D_X) = M'_X(D_{\mathbb{A}^n}) \rightarrow M'(O_X) : M \mapsto \{m \in M \mid mJ = 0\} = i^!M$ as an O_X-module. It’s called the functor of global sections. Is it well-defined? Again using diagram chasing, we see that it is well-defined regardless of the embedding and the corresponding affine space. Thus we indeed have a functor $\Gamma : M'(D_X) \rightarrow M'(O_X)$ for an arbitrary affine variety. Note that if X is smooth, then it is just ”forgetting” the D_X-module structure.

Remark. For an embedding $X \rightarrow Y$, we have $D_{X \rightarrow Y} = D_Y/JD_Y$, and by definition $\Gamma = \text{Hom}_{D_Y}(D_{X \rightarrow Y}, \bullet)$. Now if we have another embedding $j : Y \rightarrow Z$, then $j_{*0}D_{X \rightarrow Y} = D_{X \rightarrow Y} \otimes_{D_Y} D_{Y \rightarrow Z} = D_Y/JD_Y \otimes_{D_Y} D_Z/J'D_Z = O_X \otimes_{O_Y} D_Z = D_{X \rightarrow Z}$, thus using the same argument above we have a well-defined object $D_X = \{D_{X \rightarrow Y}\} \in M'(D_X)$. In this sense, Γ is representable. Note that if X is singular then D_X is not an algebra and also $D(X) \neq D_X$. But it is still true that $D(X) = \text{End}(D_X)$. Now it means $D(X)$ acts on $\Gamma(M) = \text{Hom}_{D_Y}(D_X, M)$ on the right, but it does not mean that we can reconstruct M by using this information. Also note that if X is singular then D_X may not be projective and thus Γ may not be exact. On the smooth case, D_X is projective and Γ is exact.

3 $!$-crystal

If X is an affine scheme of finite type (not necessarily reduced,) then we can still use the same argument to define $M'(D_X)$. Since this construction only uses the set-theoretic
support of X under the embedding $X \to Y$ for a smooth Y, if we let $X_{red} \subset X$ be a corresponding reduced scheme, i.e. variety, then $\mathcal{M}(\mathcal{D}_X) = \mathcal{M}(\mathcal{D}_{X_{red}})$. However, Γ is different, because for an embedding $X \to Y$, $\mathcal{D}_X = \mathcal{D}_Y / \mathcal{J} \mathcal{D}_Y$, whereas $\mathcal{D}_{X_{red}} = \mathcal{D}_Y / \sqrt{\mathcal{J}} \mathcal{D}_Y$.

It is related to the notion of $!$-crystal. Let X be a variety, $M \in \mathcal{M}(\mathcal{D}_X)$, and X' be an affine scheme of finite type such that $X'_{red} = X$. Then by the previous argument, M defines an object in $\mathcal{M}(\mathcal{D}_{X'})$. Thus we can define $M_{X'} = \Gamma_{X'}(M)$. Now if $\eta : X' \to X''$ is a finite morphism such that its restriction on X gives the identity, then by functoriality we have an isomorphism $\alpha_\eta : M_{X'} \to \eta^! M_{X''}$. (Note that Γ is as the same as $i^!0$ if we forget the \mathcal{D}_X-module structure.) Also this α_η satisfies the obvious relation which is compatible with compositions of morphisms, i.e. for $Y \xrightarrow{\eta} Z \xrightarrow{\rho} W$ we have $\alpha_{\rho \eta} = (\eta^! (\alpha_\rho)) \circ \alpha_\eta$. Such a structure is called $!$-crystal on X. Now we have the theorem, which is as follows.

Theorem 3.1. The category $\text{Crys}(X)$ of $!$-crystals on X is equivalent by the above functor to $\mathcal{M}(\mathcal{D}_X)$.

4 Push-forward for General Varieties

For $f : X \to Y$ where X,Y are singular, we wish to define f_*0. Note that by embedding Y to an affine space, we only need to deal with the case $f : X \to \mathbb{A}^n$. Now we fix an embedding $i : X \to \mathbb{A}^m$ and consider the following diagram

$$
\begin{array}{ccc}
X & \xrightarrow{i} & \mathbb{A}^m \\
\downarrow{f} & & \downarrow{\theta} \\
\mathbb{A}^n
\end{array}
$$

which exists since $\mathcal{O}_{\mathbb{A}^n}$ is free. Now we define $f_*0 = \theta_*0 \circ i_*0$. Where i_*0 is the equivalence $\mathcal{M}(\mathcal{D}_X) \to \mathcal{M}(\mathcal{D}_{\mathbb{A}^m})$.

References
