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Abstract. Our aim is to establish some new cases of the global Langlands correspondence for
GLm. Along the way we obtain a new result on the description of the cohomology of some compact

Shimura varieties. Let F be a CM field with complex conjugation c and Π be a cuspidal automorphic

representation of GLm(AF ). Suppose that Π∨ ' Π ◦ c and that Π∞ is cohomological. A very mild
condition on Π∞ is imposed if m is even. We prove that for each prime l there exists a continuous

semisimple representation Rl(Π) : Gal(F/F )→ GLm(Ql) such that Π and Rl(Π) correspond via the

local Langlands correspondence (established by [HT01] and [Hen00]) at every finite place w - l of F
(“local-global compatibility”). We also obtain several additional properties of Rl(Π) and prove the

Ramanujan-Petersson conjecture for Π. (See Theorem 1.2 and Corollary 1.3 below.) This improves
the previous results obtained by [Kot92a], [Clo91], [HT01] and [TY07] where it was assumed in

addition that Π is square integrable at a finite place. It is worth noting that the mild condition on

Π∞ in our theorem is removed by a p-adic deformation argument, thanks to Chenevier and Harris
([CH]).

Our approach generalizes that of [HT01], which constructs Galois representations by studying

the l-adic cohomology and bad reduction of certain compact Shimura varieties attached to unitary
similitude groups. The central part of our work is the computation of the cohomology of the so-called

Igusa varieties. Some of the main tools are the stabilized counting point formula for Igusa varieties

([Shi09], [Shi10]) and techniques in the stable and twisted trace formulas.
Recently there have been results by Morel ([Mor10]) and Clozel-Harris-Labesse ([CHLa]) in a

similar direction as ours. Our result is stronger in a few aspects. Most notably, we obtain information

about Rl(Π) at ramified places.

1. Introduction

A version of the global Langlands conjecture states that

Conjecture 1.1. Let F be a number field and Π be a cuspidal automorphic representation of GLm(AF )
which is algebraic in the sense of [Clo90, Def 1.8]. For each prime l, with the choice of an isomorphism

ιl : Ql
∼→ C, there exists an irreducible continuous semisimple representation Rl,ιl(Π) : Gal(F/F ) →

GLm(Ql) such that Rl,ιl(Π) is potentially semistable at every place y of F dividing l and

WD(Rl,ιl(Π)|Gal(Fy/Fy))
F−ss ' ι−1

l Lm,Fy (Πy) (1.1)

for every finite place y of F (including y|l).
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Here WD(·) denotes the associated Weil-Deligne representation for local Galois representations and
(·)F−ss means the Frobenius semisimplification. (See [TY07, §1] for instance, to review these notions.)
The notation Lm,Fy (Πy) means the local Langlands image of Πy where the geometric normalization is
used (§2.3). Since Π is unramified at all but finitely many places, the conjecture implies that Rl,ιl(Π)
has the same property. The representation Rl,ιl(Π) is unique up to isomorphism by Cebotarev density
theorem, if it exists. For simplicity of notation, we write Rl(Π) for Rl,ιl(Π) later on.

If m = 1, Conjecture 1.1 is completely known by class field theory. If m = 2 and F is totally real, a
lot is known about the conjecture. (See [BR93], [Tay89], [Sai06] and the references therein.) We will
be mostly concerned with the case m ≥ 3. In general the conjecture is still out of reach, but there
are favorable circumstances where more tools are available in attacking the conjecture. Let F be a
CM field. Use c to denote the complex conjugation. Suppose that Π∨ ' Π ◦ c and that Π is regular
algebraic ([Clo90, Def 3.12]). The latter is equivalent to the condition that Π∞ is cohomological
for an irreducible algebraic representation of GLm. These assumptions on Π essentially ensure that
Π “descends” to a representation of a unitary group and that the descended representation can be
“seen” in the l-adic cohomology of a relevant PEL Shimura variety of unitary type. In particular many
techniques in arithmetic geometry become available. There are some solid results in this setting. If
we further assume that

• Π is square integrable at some finite place,

then Conjecture 1.1 is known by a series of works [Kot92a], [Clo91], [HT01] and [TY07] for every
y - l. More precisely, the assertions of Theorem 1.2 below, without any condition on Π∞ when m is
even, are known under the additional assumption on Π as above. (Although the assertion (vi) is not
explicitly recorded, it follows easily from the contents of [TY07].)

It has been conceived for some time that the additional condition on Π might be superfluous.
However, it has also been realized by many people that it would require techniques in the trace
formula and a better understanding of endoscopy to remove the superfluous assumption on Π. One
of the most conspicuous obstacles was the fundamental lemma, which had only been known in some
special cases. Thanks to the recent work of Laumon-Ngô ([LN08]), Waldspurger ([Wal97], [Wal06])
and Ngô ([Ngo]) the fundamental lemma (and the transfer conjecture of Langlands and Shelstad) are
now fully established. This opened up a possibility for our work.

Our paper is aimed at proving Conjecture 1.1 at y - l, without assuming that Π is square integrable
at a finite place, but with a very mild assumption on Π∞ when m is even. (See the third assumption
on Π of Theorem 1.2.) This last assumption has been removed by a p-adic deformation argument by
Chenevier and Harris ([CH, Thm 3.2.5]), so it should not be regarded as a serious condition. (However,
the equality (i) of the theorem is preserved only up to semisimplification in the p-adic deformation
argument.) No such assumption on Π∞ is necessary when m is odd.

The main theorem is the following. (See Remark 7.6 for the case where F is a totally real field.)
Note that we also prove the assertions (v) and (vi) below, which are predicted by Conjecture 1.1 at
y|l, as well as a few additional properties of Rl(Π). Unfortunately we do not prove that Rl(Π) is
irreducible. (If Π is square integrable at a finite place, the irreducibility is known by [TY07, Cor 1.3].)

Theorem 1.2. (Theorem 7.5, Theorem 7.11, Corollary 7.13) Let m ∈ Z≥2. Let F be any CM field.
Let Π be a cuspidal automorphic representation of GLm(AF ) such that

• Π∨ ' Π ◦ c and
• Π∞ has the same infinitesimal character as some irreducible algebraic representation Ξ∨ of

the restriction of scalars RF/QGLm.
• Ξ is slightly regular, if m is even.

Then for each prime l and an isomorphism ιl : Ql
∼→ C, there exists a continuous semisimple repre-

sentation Rl(Π) = Rl,ιl(Π) : Gal(F/F )→ GLm(Ql) such that

(i) for any place y of F not dividing l, there is an isomorphism of Weil-Deligne representations

WD(Rl(Π)|Gal(Fy/Fy))
F−ss ' ι−1

l Lm,Fy (Πy).

(ii) Suppose y - l. For any σ ∈WFy , each eigenvalue α of Rl(Π)(σ) satisfies |α|2 ∈ |k(y)|Z under

any embedding Q ↪→ C.
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(iii) Let y be a prime of F not dividing l where Πy is unramified. Then Rl(Π) is unramified

at y, and for all eigenvalues α of Rl(Π)(Froby) and for all embeddings Q ↪→ C we have
|α|2 = |k(y)|m−1.

(iv) For every y|l, Rl(Π) is potentially semistable at y with distinct Hodge-Tate weights, which
can be described explicitly.

(v) If Πy is unramified at y|l, then Rl(Π) is crystalline at y.
(vi) If Πy has a nonzero Iwahori fixed vector at y|l, then Rl(Π) is semistable at y.

In fact, our method allows to prove a stronger assertion that there exists a compatible system of
λ-adic representations associated to Π. That is to say, for each Π as above, there is a number field L
such that the representations Rl,ιl(Π) for varying l and ιl are realized on Lλ-vector spaces for varying
finite places λ of L. This can be done by realizing ξ on an L-vector space (where L is large enough
to contain the field of definition of Π, cf. [Clo90, 3.1]) and Lξ as a smooth Lλ-sheaf rather than a

Ql-sheaf (cf. [Kot92a, p.655]), where ξ and Lξ are as in §5.2.
It is standard that the theorem implies the Ramanujan-Petersson conjecture for Π as above, but it

is worth remarking on the order of proof. First we prove Theorem 1.2 with a weaker version of the
first assertion, namely that (i) holds only up to semisimplification. This is enough for deducing the
corollary below. Then the temperedness of Π, among others, is used to strengthen the statement of
(i).

Corollary 1.3. (Corollary 7.9) Let m, F , Π be as in the previous theorem. Then Πw is tempered at
every finite place w of F .

We sketch the strategy of proof of Theorem 1.2. In fact we content ourselves with explaining the
proof of only the first assertion as it is more or less standard to prove the other parts. Our strategy
relies on the theory of Shimura varieties, whose cohomology is expected to realize the global Langlands
correspondence in an appropriate sense. Since there are no Shimura varieties for GLn if n > 2, the
next best thing is to use the Shimura variety for a unitary similitude group G. Suppose that the CM
field F contains an imaginary quadratic field E. We find a Q-group G such that

• G is quasi-split at all finite places,
• G(R) is isomorphic to U(1, n− 1)× U(0, n)[F :Q]/2−1 up to multiplier factor, and
• G(AE) ' GL1(AE)×GLn(AF ).

Note that the first assumption is not satisfied by the groups considered in [Kot92a], [Clo91] and
[HT01]. When n is odd, such a group G always exists. When n is even, G exists if and only if
n ≡ 2 (mod 4) and [F : Q]/2 is odd. In our work it is enough to consider the case when n is odd.
Indeed, in order to construct m-dimensional Galois representations, we use n = m if m is odd and
n = m + 1 if m is even. In case m is odd (resp. even), Rl(Π) will be realized in the stable (resp.
endoscopic) part of the cohomology of Shimura varieties attached to G as above. These correspond
to (Case ST) and (Case END) below. Before elaborating on this point, let us give more details about
the setup.

Consider a projective system of Shimura varieties, denoted by Sh, whose associated group is G. If
F 6= E then Sh is a projective system of smooth projective varieties over F , which arise as the moduli
spaces of abelian schemes with additional structure. The projectivity of Sh and the fact that G/Z(G)
is anisotropic over Q are related to each other and essential in our argument. Let ξ be an irreducible
algebraic representation of G over Ql, which gives rise to a lisse l-adic sheaf Lξ on Sh. The étale

cohomology space Hk(Sh,Lξ) := Hk(Sh×F F ,Lξ) is a smooth representation of G(A∞)×Gal(F/F ).
We have a decomposition

Hk(Sh,Lξ) =
⊕
π∞

π∞ ⊗Rkξ,l(π∞)

as π∞ runs over the set of irreducible admissible representations of G(A∞). Write H(Sh,Lξ) :=∑
k(−1)kHk(Sh,Lξ).
Fix a prime p split in E as well as a place w of F above p. The Shimura variety Sh has an integral

model over OFw and its special fiber Sh has the Newton polygon stratification into Sh
(b)

where b
is a parameter for an isogeny class of p-divisible groups with additional structure. We can define a

smooth variety Igb over Fp (which is also a projective system of varieties) from Sh
(b)

. Also defined is
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a Qp-group Jb which is an inner form of a Levi subgroup of GQp . The cohomology space H(Igb,Lξ)
is naturally a virtual representation of G(A∞,p) × Jb(Qp). On the other hand, there is a functor
Mantb,µ : Groth(Jb(Qp)) → Groth(G(Qp) ×WFw), which is defined in terms of the cohomology of a
certain moduli space of p-divisible groups. Mantovan’s formula ([Man05, Thm 22], [Man, Thm 1]) is
the following identity in Groth(G(A∞)×WFw), which generalizes [HT01, Thm IV.2.8].

H(Sh,Lξ) =
∑
b

Mantb,µ(Hc(Igb,Lξ)). (1.2)

An important point is that Mantb,µ is purely local in nature and well-understood thanks to Harris
and Taylor. (See §2.4).

Consider a regular algebraic automorphic representation Π = ψ ⊗ Π1 of G(AE) ' GL1(AE) ×
GLn(AF ) where Π∞ is determined by ξ. We deal with two possibilities for Π1 as follows (§6.1).

• (Case ST) Π1 is cuspidal, or
• (Case END) Π1 = n-ind(Π1 ⊗ Π2) where Πi is a cuspidal automorphic representation of
GLni(AF ) and n1 > n2 > 0. (n1 + n2 = n)

For simplicity of exposition, we assume that the local base change from the representations of G(A∞)
to those of G(A∞E ) is well-defined at every finite place. (In practice we work under simplifying
assumptions to make sense of base change unconditionally, as in §4.1. To our knowledge, this idea
is due to Harris and Labesse (e.g. [Lab]).) We would like to define the “Π∞,p-part” of Hc(Igb,Lξ).
Write

Hc(Igb,Lξ) =
∑

π∞,p⊗ρp

n(π∞,p ⊗ ρp) · [π∞,p ⊗ ρp]

where n(π∞,p ⊗ ρp) ∈ Z and the sum runs over irreducible admissible representations of G(A∞,p) ×
Jb(Qp). Then define

Hc(Igb,Lξ){Π∞,p} :=
∑

π∞,p⊗ρp
BC(π∞,p)'Π∞,p

n(π∞,p ⊗ ρp) · [ρp].

Also define R̃l(Π) :=
∑
π∞ Rξ,l(π

∞) where π∞ are representations such that BC(π∞,p) ' Π∞,p.
We are ready to state our results on the cohomology of Igusa varieties and Shimura varieties. First,

Hc(Igb,Lξ){Π∞,p} is explicitly described in terms of Πp. (For a precise statement, see Theorem 6.1.)
In fact, in (Case END), the description depends on not only Πp but also Π1,p and Π2,p. This result,
together with (1.2) and our knowledge of Mantb,µ, leads to a description of Rl(Π) in Groth(WFw). (In

fact, as a by-product, we know not only R̃l(Π) but also the contribution to R̃l(Π) from each Newton
polygon stratum.) Up to some explicit nonzero multiplicity and character twist, it turns out that
(Theorem 6.4)

• (Case ST) R̃l(Π)|WFw
is the local Langlands image of Π1.

• (Case END) R̃l(Π)|WFw
is the local Langlands image of Π1 or Π2.

In particular dim R̃l(Π) = n in (Case ST) whereas dim R̃l(Π) = n1 or n2 in (Case END), up to multi-

plicity. Moreover, it can be shown that R̃l(Π) is a true representation concentrated in Hn−1(Sh,Lξ).
So far we indicated how the local-global compatibility is established at w on the condition that p = w|Q
splits in E. This can be extended to all places not dividing l. (See the proof of Proposition 7.4.)

With the above result on the cohomology of Shimura varieties, it is not too difficult to deduce
Theorem 1.2. Harris proposed a strategy generalizing [BR93] (which may be regarded as the case
with m = 2 and n = 3) and its outline is as follows. As the notation Π is already being used, let
Π0 denote the cuspidal automorphic representation of GLm(AF ) in the theorem. If m is odd, use

n = m and Π1 = Π0. Then R̃l(Π) is essentially the desired Galois representation. If m is even,

use n = m + 1 and Π1 = Π0. In this case, it is possible to choose Π2 so that R̃l(Π) is essentially
the desired representation, namely it corresponds to Π1 rather than Π2. To prove this, we carry out
explicit computation of signs in real endoscopy. The slight regularity assumption of Theorem 1.2
ensures that a good choice of Π2 exists. Actually our construction of Galois representations a priori
relies on additional assumptions on F and Π, for technical reasons including the issue of local base
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change. To remove these assumptions we apply a “patching” argument as in [BR89] and [HT01]. (See
the proof of Theorem 7.5.)

We have explained how a result on Hc(Igb,Lξ){Π∞,p} implies a result on R̃l(Π), thus enabling
us to prove Theorem 1.2. The remaining problem is the computation of Hc(Igb,Lξ){Π∞,p}, which
is at the core of our work. The starting point is the following stable trace formula ([Shi09]), which
stabilizes the counting point formula for Igusa varieties ([Shi10]).

tr (φ∞,p · φ′p|ιlHc(Igb,Lξ)) = | ker1(Q, G)|
∑
G~n

ι(G,G~n)STG~ne (φ~nIg) (1.3)

The notations should be explained. The function φ∞,p ·φ′p ∈ C∞c (G(A∞,p)×Jb(Qp)) is any acceptable
function in the sense of [Shi09, Def 6.2]. The sum is taken over elliptic endoscopic groups G~n for G
(§3.2). The test functions φ~nIg away from p,∞ are the Langlands-Shelstad transfer of φ∞,p. See §5.3

for φ~nIg,p and φ~nIg,∞. We remark that an analogous formula for Shimura varieties was obtained earlier

by Kottwitz ([Kot92b], [Kot90]) and plays a central role in the computation of Frobenius action on
the cohomology of Shimura varieties at the primes of good reduction. Kottwitz’ formula is a key input
in [Kot92a], [Mor10], [CHLa], to name a few. However, his formula is not needed in [HT01] and our
work, where the trace formula for Igusa varieties is importantly used.

We can proceed from (1.3) using similar techniques as in work of Clozel, Harris and Labesse ([Lab],
[CHLb]) on the base change and endoscopic transfer for unitary groups. The point is that each
summand in (1.3) is (up to constant) equal to the geometric side of the twisted trace formula for
G×QE with respect to the Galois action of the nontrivial element θ ∈ Gal(E/Q). This in turn equals
the spectral side of the trace formula, expanded in terms of θ-stable automorphic representations
of G~n(AE). By a result of Jacquet-Shalika, we can separate a string of Hecke eigenvalues, or the
Π∞,p-part from the spectral expansion. It turns out that this process singles out a unique term in the
spectral expansion in (Case ST) and two terms in (Case END). Using various character identities, an
explicit description of Hc(Igb,Lξ){Π∞,p} is finally obtained. In doing so, the most interesting and
perhaps mysterious character identities are those at p (Lemma 5.10). These arise naturally from the
stabilization process for (1.3) at p and reflect the structure of Newton stratification of Sh.

So far we sketched the proof of Theorem 1.2. We end by mentioning latest work of others in a
similar direction. Recently Morel announced a result ([Mor10, Cor 8.4.9, 8.4.10]) similar to Theorem
1.2 and its corollary, as an application of her study of non-compact unitary Shimura varieties. (In
contrast, our work offers no information about the geometry or cohomology of those Shimura varieties.)
When m is odd, she constructed Rl(Π) up to multiplicity and proved (i) of Theorem 1.2 at the places
y where Πy is unramified, as well as (iii). Now suppose that m is even. If m ≡ 2 mod 4 and
[F+ : Q] is odd, she obtains the same result as in the case of odd m. Otherwise, she can still
construct ∧2Rl(Π) up to multiplicity and prove an analogue of (i) and (iii) at unramified places.
(Actually Morel states the main results only in the case F+ = Q, but it seems that her results
extend to the cases mentioned above without much difficulty.) Perhaps the most important input in
Morel’s work is the counting point formula (and its stabilization) for the special fibers of noncompact
Shimura varieties (cf. [Mor05], [Mor08]), which generalizes [Kot92b] and [Kot90] to the noncompact
setting. On the other hand, Clozel, Harris and Labesse ([CHLa]) have succeeded to construct even
dimensional Galois representations attached to Π as in our work under a similar restriction on Π∞.
Their method shares some common features with ours in that they use the same compact Shimura
varieties and the endoscopic transfer from U(m) × U(1) to U(m + 1) as well as the twisted trace
formula. The essential difference is that they employ (the stabilization of) Kottwitz’ counting point
formula ([Kot92b], [Kot90]) and obtain information only at unramified (good) places. In contrast,
our method makes use of the counting point formula for Igusa varieties and can deal with bad places.
Actually we can even describe the compact support cohomology of each Newton stratum (at a possibly
bad place) in the endoscopic setting, in a suitable sense.

It is worth noting that there has been a precise conjecture about the cohomology of PEL Shimura
varieties of type (A) or (C) for many years. (See the formula on page 201 of [Kot90]. Compare with
[LR92, Thm B, p.293] in the case of U(3).) If fully established, the conjecture would imply our result

on R̃l as well as our main theorem. So the issue has been not to speculate what should be true
in general but to justify what is already expected about the cohomology of Shimura varieties, in as
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many cases as possible. To our knowledge, our work is the first to unconditionally describe the Galois
representations in the endoscopic part of the cohomology at bad places, even in the case of U(3).

We briefly outline the structure of the article. We review background materials in §2-§6. In
section 2 we define the functor Mantb,µ and recall the results of [HT01] on Mantb,µ. Sections 3 and 4
are devoted to the discussion of endoscopy, local base change and the twisted trace formula for unitary
similitude groups. It is worth remarking that the functions at infinity reviewed in §3.5 and §4.3 play
an important role in the study of the cohomology of Shimura varieties and Igusa varieties. In (Case
END), the sign calculation of §3.6 is crucial. On the other hand, the functions at infinity allow us
to simplify the geometric and the spectral sides of the twisted trace formula (§4.5). In section 5 we
recall the definition of Shimura varieties and Igusa varieties, Mantovan’s formula and the stable trace
formula for Igusa varieties (Propositions 5.2 and 5.3) as well as some other facts. It is important
to allow the prime p (where the local structure is to be analyzed) to be ramified in F . As some of
our references ([Man05], [Shi09] and [Shi10]) assume that p is unramified in F , we explain how the
results there can be extended to our setting. We also need a stable trace formula for G, which will
be used to control automorphic multiplicity (Corollary 6.5.(iv).) This is essentially used in obtaining
later corollaries. The subsections 5.5 and 5.6 are devoted to an explicit version of “endoscopy for
Igusa varieties” at p. Although the local endoscopy of G at p is banal, our discussion clarifies how
the global endoscopy for G interacts with the Jb(Qp)-representations in Hc(Igb,Lξ), which encode
certain information about bad reduction. The main body of argument is given in §6 and §7. We
mainly consider (Case ST) and (Case END), which are introduced in the beginning of §6.1. (See
Remark 6.11 for a comment on other cases.) The stable trace formula and the twisted trace formula
are combined in the proof of Theorem 6.1, which is a key result of our paper. It is pleasant to see that
Theorem 6.4 is derived from Theorem 6.1. Although this may not be very surprising in (Case ST), the
computation is more curious in (Case END). In §6.2, we deduce several consequences from Theorem
6.1, Mantovan’s formula and the known facts about the functor Mantb,µ. In the proof of Corollaries
6.5, 6.7, 6.8 and 6.10 we borrow important ideas from Harris and Taylor. The last two corollaries yield
the desired Galois representation by removing an unwanted multiplicity (and multiplying an obvious
character), under the technical assumptions made in §5 and §6. In §7.1 and §7.2, we prove the main
results on Rl(Π). In the case of even dimensional Galois representations, it is crucial to make a good
choice of an auxiliary Hecke character (Lemma 7.3). This relies on our computation of §3.6. Another
important idea is to remove all extra technical assumptions by using patching argument for many
quadratic extensions, which is due to [BR89] and [HT01]. In Corollary 7.9 we prove relevant cases of
the Ramanujan-Petersson conjecture. Finally in section 7.3, we imitate the argument of [TY07] to
prove a stronger result on the local-global compatibility and the last assertion of Theorem 1.2.
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1.1. Notation and Convention. Suppose that F is a number field or a local field. By this we mean
that F is a finite extension of Q or Qv for some place v of Q. (We allow v =∞.) The Weil group WF

of F is defined in [Tat79]. Let G be a connected reductive group over F . Denote by Ĝ the dual group

of G, which is a complex Lie group. Define the L-group LG := ĜoWF of G via a semi-product. (See
[Bor79] for precise definition.) If F is a finite extension of K, then RF/KG denotes the Weil restriction

of scalars (whose set of K-points is the same as G(F )). Let H1(F,G) := H1(Gal(F/F ), G(F )). When
F is a number field, write ker1(F,G) for the kernel of H1(F,G) →

∏
vH

1(Fv, G) where v runs over

all places of F . Similarly define ker1(F,H) for any complex Lie group H equipped with the action of
Gal(F/F ) factoring through a finite quotient.

Let F be a number field and y be a place of F . Write k(y) for the residue field of Fy. Let IFy denote
the inertia group of WFy . Denote by Froby the geometric Frobenius element of WFy/IFy , namely the

element inducing x 7→ x−|k(y)| in Gal(k(y)/k(y)).
When L is a finite extension of a number field F , we denote by RamL/F (resp. UnrL/F , SplL/F )

the set of finite places of F which are ramified (resp. unramified, completely split) in L. When
Π ∈ Irr(G(A)), let RamQ(Π) denote the set of primes p of Q such that there exists a place v dividing
p where Πv is ramified.

Suppose that F is a local non-archimedean field. Denote by DF,λ the central division algebra over

F with Hasse invariant λ ∈ Q/Z. Let ArtF : F×
∼→ W ab

F be the local Artin map normalized so that
a uniformizer of F× maps to a lift of a geometric Frobenius element. Let | · |F : F× → R×>0 denote

the character which is trivial on O×F and maps the inverse of any uniformizer to the cardinality of the

residue field. Set | · |WF
:= | · |F ◦Art−1

F . There is a unique way to choose | · |1/2F : F× → R×>0. When

ιl : Ql
∼→ C is fixed, we often write | · |1/2F for ι−1

l | · |
1/2
F by abuse of notation.

Keep assuming that F is a local non-archimedean field. We denote by Irr(G(F )) (resp. Irrl(G(F )))
the set of all isomorphism classes irreducible admissible representations of G(F ) on vector spaces over
C (resp. Ql). When π is an irreducible unitary representation of G(F ) (modulo split component
in the center), π may also be viewed as an irreducible admissible representation by taking smooth
vectors, so we may say π ∈ Irr(G(F )). The subset Irr2(G(F )) of Irr(G(F )) is the one consisting
of (essentially) square-integrable representations. Let C∞c (G(F )) denote the space of smooth and
compactly supported C-valued functions on G(F ). Let P be an F -rational parabolic subgroup of
G with a Levi subgroup M . For each πM ∈ Irr(M(F )) and π ∈ Irr(G(F )), we can define the nor-

malized Jacquet module JGP (π) and the normalized parabolic induction n-indGP (πM ) so that JGP (π)

(resp. n-indGP (πM )) is an admissible representation of M(F ) (resp. G(F )). The induced repre-

sentation n-indGP (πM ) will often be written as n-indGM (πM ) when working inside of Groth(G(F ))
or computing traces, since different choices of P give the same result. Define a function DG/M

on M(F ) by DG/M (m) = det(1 − ad(m))|Lie (G)/Lie (M) and a character δP : M(F ) → R×>0 by
δP (m) = |det(ad(m))|Lie (P )/Lie (M)|F . In case G = GLn and M =

∏
iGLni (

∑
i ni = n), con-

sider πi ∈ Irr(GLni(F )). Denote by �iπi the Langlands subquotient of n-indGP (⊗iπi) (cf. [BW00,
Ch IV], [Sil78]), which is independent of the choice of P . For any s ∈ Z>0 and a supercuspi-
dal π ∈ Irr(GLn(F )), let Sps(π) ∈ Irr2(GLsn(F )) denotes the generalized Steinberg representation
([HT01, p.32]). Let e(G) ∈ {±1} denote the Kottwitz sign defined in [Kot83]. When F = Qv, we
often write ev(G) for e(G). The definitions in this paragraph make sense for F = R (except Sps(π))
using the usual absolute value | · | on R and the infinitesimal equivalence between representations of
G(R).

Assume that G is an unramified group over a non-archimedean field F . Choose a hyperspecial group
K ⊂ G(F ). Define a Haar measure on G(F ) so that K has volume 1. Define H ur(G(F )) to be the
C-subspace of C∞c (G(F )) consisting of bi-K-invariant functions. The convolution equips H ur(G(F ))
with C-algebra structure with charK being the multiplicative identity. Let Irrur(G(F )) denote the
subset of Irr(G(F )) consisting of unramified representations of G(F ). For each π ∈ Irrur(G(F )),
define χπ : H ur(G(F )) → C by f 7→ trπ(f). The association π 7→ χπ gives a natural bijection from
Irrur(G(F )) onto the set of C-algebra morphisms H ur(G(F )) → C. (To see the inverse exists, use
[Bor79, 7.1, 9.5].)
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For a number field F and a finite set S consisting of places of F , we denote by ASF the restricted
product of Fv for v /∈ S. In case F = Q, write AS for ASQ and AS for

∏
v∈S Qv. Define Irr(G(ASF )),

C∞c (G(ASF )) and H ur(G(ASF )) via restricted product, where the last one makes sense under the
assumption that GFv is unramified for all v /∈ S. The normalized induction is defined in this adelic

context. Let ArtF : A×F /F×
∼→W ab

F denote the global Artin map, which is compatible with the local
Artin map defined above.

Let G be a connected reductive group over Q. Write AG for the maximal Q-split torus in the
center of G and define AG,∞ := AG(R)0. Let K∞ be a maximal compact subgroup of G(R). Let ξ
be an irreducible finite dimensional representation of G(C). Then the restriction of ξ to AG,∞ gives
a character χξ : AG,∞ → C×. Define C∞c (G(R), χξ) to be the space of smooth C-valued bi-K∞-finite
functions f on G(R) which are compactly supported modulo AG,∞ and such that f(ag) = χξ(a)f(g)
for all a ∈ AG,∞ and g ∈ G(R).

We frequently confuse an isomorphism class or an equivalence class with its member. For instance,
when we write π ∈ Irrl(G(Qp)), it means that π is an irreducible admissible representation of G(Qp)
on a Ql-vector space.

Finally let us agree that (z/z)N/2 (N ∈ Z) denotes eiNθ for z = reiθ ∈ C× with r ∈ R>0 and
θ ∈ R/2πiZ.

2. Rapoport-Zink spaces of EL-type

Let p and l be prime numbers such that p 6= l. The aim of §2 is to recollect the description of
the cohomology of certain Rapoport-Zink spaces, which will be incorporated into various versions of
“Mant” functors defined below. We describe these functors in terms of the local Langlands correspon-
dence and study their properties in the cases which are relevant to the Shimura varieties of §5. We
will freely adopt notations from §3.1 such as In, Pn−h,h, GLn−h,h, and so on.

2.1. B(G) and isocrystals. Let G be a connected reductive group over Qp. Let L := FracW (Fp).
Denote by σ the Frobenius on L which induces the p-th power map on the residue field. Define
B(G) to be the set of equivalence classes in G(L) where x, y ∈ G(L) are equivalent if there exists
g ∈ G(L) such that x = g−1ygσ. The set B(G) classifies the isomorphism classes of isocrystals (over
Fp) with G-structure in the sense of Rapoport and Richartz ([RR96, 3.3, 3.4.(i)]). For a Qp-morphism
µ : Gm → G, Kottwitz defined a finite subset B(G,µ) of B(G). The set B(G,µ) often provides
parameters for the Newton polygon stratification in the context of Shimura varieties ([Har01, §4],
[Man05], cf. [Shi09, §5]).

Let T be a maximal torus of G defined over Qp. Let Ω = Ω(G,T ) be the Weyl group over Qp. Put

N(G) := ((X∗(T )⊗Z Q)/Ω)Gal(Qp/Qp). There is a Newton map ([Kot85, §4], [RR96, 1.7-1.9])

ν̄G : B(G)→ N(G)

which is useful in describing the set B(G).
Suppose that G is a finite product of connected reductive Qp-groups Gi. Write µ =

∏
i µi for

µi : Gm → Gi. Then we have a natural identification

B(G,µ) =
∏
i

B(Gi, µi).

2.2. Mantb,µ functor. Let n ∈ Z>0 and Φp(F ) := HomQp(F,Qp). Consider a quadruple
(F, V, µ, b) where

(i) F is a finite extension of Qp. (We do not assume that F is unramified over Qp.)
(ii) V = Fn is an F -vector space. Let G := ResF/QpGLF (V ).

(iii) µ : Gm → G is a homomorphism over Qp (up to G(Qp)-conjugacy) which induces a weight

decomposition V ⊗F F = V0 ⊕ V1, defined over a finite extension of Qp, where µ(z) acts on
Vi by zi for i = 0, 1.

(iv) b ∈ B(G,−µ).
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Giving µ is equivalent to giving a pair of nonnegative integers (pσ, qσ) for each σ ∈ Φp(F ) such
that pσ + qσ = n. Given such data, the corresponding µ is represented by the homomorphism

Q×p →
∏
σ∈Φp(F )GLn(Qp) given by

z 7→
∏
σ

diag(z, . . . , z︸ ︷︷ ︸
pσ

, 1, . . . , 1︸ ︷︷ ︸
qσ

).

Roughly speaking, B(G,−µ) classifies isocrystals with F -action up to isomorphism (or Barsotti-Tate
groups with OF -action up to isogeny, via covariant Dieudonné theory) whose Hodge polygons are
determined by µ. Note that N(G) may be identified with the set of unordered n-tuple of rational
numbers. In fact ν̄G is injective, thus each b ∈ B(G) is uniquely characterized by its image under the
Newton map

ν̄G(b) = (λ1, . . . , λ1︸ ︷︷ ︸
m1

, λ2, . . . , λ2︸ ︷︷ ︸
m2

, . . . , λr, . . . , λr︸ ︷︷ ︸
mr

)

where r ∈ Z>0 and λi ∈ Q and mi ∈ Z>0 for 1 ≤ i ≤ r. We may and will assume λ1 < · · · < λr. See
[Shi09, Ex 4.3] for the explicit condition on r, {λi} and {mi} in order that b ∈ B(G,−µ).

The reflex field E is by definition the fixed field in Qp of the stabilizer in Gal(Qp/Qp) of the pairs
{(pσ, qσ)}σ∈Φp(F ). We will be only concerned with the case

∑
σ pσ ≤ 1. If pσ = 0 for all σ then

E = Qp. If pσ = 1 for a unique σ then E is identified with σ(F ) ⊂ Qp.
The datum (F, V, µ, b) gives rise to a formal scheme Mb,µ over Spf OF̂ur representing a moduli

problem for Barsotti-Tate groups with OF -action. In fact Mb,µ is non-canonically isomorphic to Z-
copies of the Lubin-Tate deformation space for formal OF -modules of dimension 1 and height n, where
the latter is studied in [Car90], [HG94] and [HT01, Ch 2], for instance. (See [RZ96, 3.78-3.79] for
details. In the description of Mb,µ in Proposition 3.79, replace Spf W (Fp) with Spf OF̂ur . Although
Rapoport and Zink discuss the same moduli space as in our case, there is a difference in the choice of
b. See (1.47) there. The source of the difference is that Barsotti-Tate groups of OF -slope λ correspond
to isocrystals of slope −λ in our convention but to isocrystals of slope 1− λ in that book.)

There is a standard construction to obtain a tower of rigid analytic spaces Mrig
b,µ,U over F̂ ur for

open compact subgroups U of GLn(OF ) ([RZ96, Ch 5]), whereMrig
b,µ,GLn(OF ) coincides with the rigid

analytic space attached to Mb,µ. (Here GLn(OF ) is regarded as the stabilizer of the standard lattice
OnF inside V .) We consider the étale cohomology of Rapoport-Zink spaces in the sense of Berkovich
([Ber93]), for which we use the following abbreviated notation:

Hj
c (Mrig

b,µ,U ) := Hj
c (Mrig

b,µ,U ×Êur Êur,Ql).

This Ql-vector space has the structure of a smooth representation of Jb(Qp) ×WE . The last action

commutes with the action of G(Qp) on the tower ofMrig
b,µ,U via Hecke correspondences. Details about

these actions can be found in [RR96, Ch 5], [Far04, Ch 4] and [Man04].
Define1 the functor Mantb,µ : Groth(Jb(Qp))→ Groth(G(Qp)×WE) by

Mantb,µ(ρ) :=
∑
i,j≥0

(−1)i+j lim−→
U

ExtiJb(Qp)-smooth(Hj
c (Mrig

b,µ,U ), ρ))(−D). (2.1)

in the notation of [Man05] and [Man]. (Our Jb(Qp) is denoted by Tb in [Man05]. Our Mantb,µ is Eb
in [Man].) Here D is the dimension ofMrig

b,µ,U and (−D) is the Tate twist. The Ext-groups are taken

in the category of smooth representations of Jb(Qp) and the limit is over open compact subgroups
U as above. Since the Ext-groups in (2.1) vanish beyond a certain degree and yield finite length
representations for each U ([Far04, §4.4]), Mantb,µ is well-defined.

1Although we named this functor after Mantovan’s work clarifying its relationship with the cohomology of Shimura
varieties, it should be noted that (variants of) Mantb,µ were considered previously by several authors, as in [Rap95],

[Har01], [Far04].
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2.3. Local Langlands correspondence. Let F be a finite extension of Qp. Harris-Taylor ([HT01])
and Henniart ([Hen00]) proved that there is a natural bijection

recn,F : Irr(GLn(F ))→WD-Repn(WF )

where WD-Repn(WF ) is the set of isomorphism classes of Frobenius semisimple n-dimensional Weil-
Deligne representations of WF on C-vector spaces. See [HT01, p.2] for the characterizing properties
of recn,F . We will often use the following normalization.

Ln,F (π) := recn,F (π∨)⊗ | · |−(n−1)/2
WF

2.4. The case of dimension 0 and 1. Let n ∈ Z>0. Fix a finite extension F over Qp, an embedding

τ0 : F ↪→ Qp and an isomorphism ιl : Ql
∼→ C. By abuse of notation, ι−1

l | · |
1/2
F : F× → Q×l will be

denoted by | · |1/2F or | · |1/2.

Write Gn := RF/QpGLn. Let µn,τ0 : Gm → Gn ×Qp Qp '
∏
σ∈Φp(F )(GLn)Qp be the Qp-morphism

given by

z 7→
((

z 0
0 In−1

)
σ=τ0

, (In)σ 6=τ0

)
.

Let µn,ét : Gm → Gn ×Qp Qp denote the trivial map. Define bn,0, b0,n ∈ B(Gn) so that νGn(bn,0) =
(−1/n, . . . ,−1/n) and b0,n = 1. Observe that bn,0 ∈ B(Gn,−µn,τ0) and b0,n ∈ B(Gn,−µn,ét). For
1 ≤ h ≤ n − 1, define bn−h,h ∈ B(Gn) to be the image of (bn−h,0, b0,h) under the block diagonal
embedding Gn−h×Gh ↪→ Gn. Then bn−h,h ∈ B(Gn,−µn,τ0). For any 0 ≤ h ≤ n−1, define an F -group

Jn−h,h := D×F,1/(n−h) × GLh, where D×F,1/(n−h) is an inner form of GLn−h coming from a division

algebra with invariant 1/(n− h). Set J0,n := GLn. We see that RF/QpJn−h,h is isomorphic to Jb for
b = bn−h,h (0 ≤ h ≤ n). Let Pn−h,h be the parabolic subgroup of GLn whose (i, j)-component is zero
exactly when i > n− h and j ≤ n− h. Define a character

δ̄
1/2
Pn−h,h

: Jn−h,h(F )→ Q×l

by the relation δ̄
1/2
Pn−h,h

(g) = δ
1/2
Pn−h,h

(g∗) where g∗ ∈ GLn−h,h(F ) is any element whose conjugacy class

is transferred from that of g.
Let us write Mantn−h,h (0 ≤ h ≤ n− 1) and Mant0,n for Mantb,µ when (b, µ) = (bn−h,h, µn,τ0) and

(b, µ) = (b0,n, µn,ét), respectively. For each 0 ≤ h ≤ n, define n-Mantn−h,h by the relation

n-Mantn−h,h(ρ) := e(Jn−h,h) ·Mantn−h,h(ρ⊗ δ̄1/2
Pn−h,h

) (2.2)

for every ρ ∈ Groth(Jn−h,h(F )). Note that the Kottwitz sign e(Jn−h,h) equals (−1)n−h−1 if 0 ≤ h ≤
n− 1 and 1 if h = n.

Lemma 2.1. For each π ∈ Irrl(GLn(F )), Mant0,n(π) = [π][1] where 1 is the trivial character of WQ.

Proof. Follows from [Far04, Ex 4.4.8]. �

Recall that there exists a natural bijection JLn : Irr2(D×F,1/n)
∼→ Irr2(GLn(F )) uniquely character-

ized by a character identity ([DKV84]).

Proposition 2.2. (i) If π ∈ Irrl(GLn(F )) is supercuspidal, n-Mantn,0(JL−1
n (π)) = [π][Ln,F (π)].

(ii) For s ∈ Z>0, g = n/s ∈ Z>0 and a supercuspidal π ∈ Irrl(GLg(F )), n-Mantn,0(JL−1
n (Sps(π)))

equals

s∑
j=1

(
[Spj(π)� π|det |j � · · ·� π|det |s−1]⊗ [Lg,F (π|det |j−1)⊗ | · |g(1−s)/2]

)
(iii) For each ρ1 ∈ Irrl(Jn−h,0(F )) and ρ2 ∈ Irrl(J0,h(F )),

n-Mantn−h,h(ρ1 ⊗ ρ2) = n-ind
GLn(F )
Pn−h,h(F )(n-Mantn−h,0(ρ1)⊗ n-Mant0,h(ρ2))⊗ | · |−h/2WF

in Groth(GLn(F )×WF ).
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Proof. Both (i) and (ii) follow from a reinterpretation of [HT01, Thm VII.1.3, VII.1.5] in our language.
We elaborate on this point.

Let J := D×F,1/n. According to [Har05, Thm 4.3.11], in his notation,

Ψn(ρ) :=
∑
i

(−1)iHomJ(Ψi
c,n, ρ)

coincides with [π][Ln,F (π)] if ρ = JL−1
n (π) for a supercuspidal representation π. On the other hand,

Ψn(ρ) is identified with Mantn,0(ρ) for any ρ ∈ Irrl(J) by adapting [Man04, Thm 8.7] to our case.
Indeed, in the identity of that theorem, the right hand side is nothing but Mantn,0(ρ) whereas the left
hand side is easily seen to be the same as Ψn(ρ) since the special fibers of the relevant Rapoport-Zink
spaces are zero dimensional. Let us compare

ΨF,l,n(ρ) =
∑
i

(−1)n−1−iΨi
F,l,n(ρ)

of [HT01, p.87-88] with Ψn(ρ) above. Note that ΨF,l,n(ρ) (resp. Ψn(ρ)) is defined via the Lubin-Tate
deformation spaces (resp. the Rapoport-Zink spaces). Note that the Rapoport-Zink space of each
fixed level is non-canonically isomorphic to Z-copies of the Lubin-Tate space of the same level and
that one of the copies is canonically isomorphic to the Lubin-Tate space. ([Str05, 2.3], cf. [Har05,

p.49].) From this fact, it is not difficult to prove that Ψi
F,l,n(ρ)

∼→ HomJ(Ψi
c,n, ρ). In other words,

ΨF,l,n(ρ) = (−1)n−1Ψn(ρ) = (−1)n−1Mantn,0(ρ) = n-Mantn,0(ρ)

in Groth(GLn(F )×WF ). Therefore [HT01, Thm VII.1.3, VII.1.5] imply our first two assertions. Note
that rl(π) in their notation is isomorphic to Ln,F (π) in view of the relation of rl with recn,F on page
237 of [HT01].

It remains to prove the third assertion. This result can be derived from [Har05, Prop 4.3.14, 4.3.17]
(where p is allowed to ramify in F ), which is already implicit in [HT01]. For simplicity of notation,
we derive it from [Man08, Cor 5] (in case p is unramified in F ), which implies in our case that

Mantn−h,h(ρ1 ⊗ ρ2) = Ind
GLn(F )
Pn−h,h(F )(Mantn−h,0(ρ1)⊗Mant0,h(ρ2)).

Here Ind is the non-normalized parabolic induction. From the above formula it is straightforward to
deduce the assertion (iii) in view of Lemma 2.1 and the fact that (cf. [HT01, Lem II.2.9])

n-Mantn−h,0(ρ1 ⊗ |Nm|1/2) = n-Mantn−h,0(ρ1)⊗ | det |1/2 ⊗ | · |−1/2
WF

where Nm : D×F,1/(n−h) → F× denotes the reduced norm map.

�

We define a morphism Redn−h,h as the composition

Groth(GLn(F ))
JGLn
P

op
n−h,h

⊗δ1/2
Pn−h,h

−→ Groth(GLn−h,h(F ))
LJn−h⊗id−→ Groth(Jn−h,h(F ))

where JGLn
P op
n−h,h

is the normalized Jacquet module and LJn−h : Groth(GLn−h(F )→ Groth(Jn−h,0(F ))

is the map defined by Badulescu ([Bad07]), which extends the inverse of the usual Jacquet-Langlands
correspondence JLn−h. Define

n-Redn−h,h := Redn−h,h ⊗ δ̄−1/2
Pn−h,h

.

Equivalently, n-Redn−h,h = (LJn−h ⊗ id) ◦ JGLn
P op
n−h,h

. It is easy to see that Mantn−h,h ◦ Redn−h,h =

e(Jn−h,h) · n-Mantn−h,h ◦ n-Redn−h,h for 0 ≤ h ≤ n.

Proposition 2.3. For any π ∈ Irrl(GLn(F )), the following holds in Groth(GLn(F )×WF ).

n−1∑
h=0

n-Mantn−h,h(n-Redn−h,h(π)) = [π][Ln,F (π)] (2.3)
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Proof. It is enough to check the proposition when π is the full parabolic induction from (essentially)
square integrable representations of Levi subgroups (including GLn(F ) itself), since such representa-
tions π generate Groth(GLn(F )) as a Z-module ([Zel80, Cor 7.5]). By using Lemma 2.1 and Propo-
sition 2.2, the left hand side of (2.3) can be computed in terms of Jacquet module and parabolic
induction with help of the Bernstein-Zelevinsky classification. The computational detail is essentially
the same as in the proof of [HT01, Thm VII.1.7]. �

3. Endoscopy of unitary similitude groups

3.1. Setting. We use the following notation.

• ~n = (ni)i∈[1,r] where ni, r ∈ Z>0 and [1, r] := {1, 2, . . . , r}.
• GL~n :=

∏
i∈[1,r]GLni and i~n : GL~n ↪→ GLN (N =

∑
i ni) is the embedding

(A1, . . . , Ar) 7→


A1 0 · · · 0
0 A2 · · · 0
... · · · · · ·

...
0 · · · 0 Ar

 .

Define det : GL~n → GL1 by det(g) := det(i~n(g)).
• Φn and In are the matrices in GLn with entries (Φn)ij = (−1)i+1δi,n+1−j and (In)ij = δi,j .

Put Φ~n := i~n(Φn1
, . . . ,Φnr ).

• tg denotes the transpose when g is a matrix.
• P~n is the upper triangular parabolic subgroup of GLn containing i~n(GL~n) as a Levi subgroup.
• ε : Z→ {0, 1} is the unique map such that ε(n) ≡ n mod 2.
• F = EF+ where F+ (resp. E) is a totally real (resp. imaginary quadratic) extension of Q.
• SplF/F+,Q is the set of all rational primes p such that every place of F+ above p splits in F .

• UnrF/Q (resp. RamF/Q) is the set of all primes p which are unramified (resp. ramified) in F .
• τ : F ↪→ C is a Q-algebra embedding and τE := τ |E .
• c denotes the complex conjugation on C or any CM field.
• ΦC := HomQ(F,C), Φ+

C := HomE,τE (F,C) and Φ−C := cΦ+
C .

• w? is a fixed element in WQ\WE .
• $ : A×E/E× → C× is any Hecke character such that $|A×/Q× equals the composite of ArtQ

and the natural surjective character WQ � Gal(E/Q)
∼→ {±1}. Using the Artin map ArtE ,

we view $ also as a character WE → C×.
• RamQ($) is the set of all primes p such that $ is ramified at some place above p.

Define a Q-group G~n by

G~n(R) := {(λ, g) ∈ GL1(R)×GL~n(F ⊗Q R) : gΦ~n
tgc = λΦ~n} (3.1)

for any Q-algebra R, where gi ∈ GL~n(F ⊗Q R). Note that G~n is quasi-split over Q. Also define

G~n := RE/Q(G~n ×Q E)

and let θ denote the action on G~n induced by (id, c) on G~n ×Q E. We can identify the dual groups as
follows.

Ĝ~n ' C× ×
∏
σ∈Φ+

C

GL~n(C) and Ĝ~n ' C× × C× ×
∏
σ∈ΦC

GL~n(C). (3.2)

The L-group LG~n := Ĝ~n oWQ is defined by the relation that w(λ, gσ)w−1 = (λ′, g′σ) where

(λ′, g′σ) = (λ, gw−1σ) or

λ ∏
σ∈Φ+

C

det gσ, Φ~n
tg−1
cw−1σΦ−1

~n


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according as w ∈ WE or w /∈ WE , respectively. Similarly, LG~n := Ĝ~n o WQ is requiring that
w(λ+, λ−, gσ)w−1 equal

(λ+, λ−, gw−1σ) or

λ− ∏
σ∈Φ−C

det gσ, λ+

∏
σ∈Φ+

C

det gσ, Φ~n
tg−1
cw−1σΦ−1

~n


according as w ∈WE or w /∈WE , respectively. Consider the map BC~n : LG~n → LG~n given by

(λ, (gσ,i)σ∈Φ+
C

)o w 7→ (λ, λ, (gσ,i)σ∈Φ+
C
, (gcσ,i)σ∈Φ−C

)o w.

Note that (G~n,
LG~n, 1, BC~n) is an endoscopic datum for (G~n, θ, 1) in the context of twisted endoscopy

([KS99, §2.1]).

Note that (3.1) may be used to equip G~n with a Z-scheme structure by allowing R to be a Z-algebra,
and the same is true for G~n. For each prime p, put K~n

p := G~n(Zp) and K~np := G~n(OE⊗ZZp) = G~n(Zp).
If p ∈ SplF/F+,Q then K~n

p (resp. K~np ) is a special subgroup of G~n(Qp) (resp. G~n(Qp)). In case

p ∈ UnrF/Q, K~n
p (resp. K~np ) is a hyperspecial subgroup of G~n(Qp) (resp. G~n(Qp)). In that case we

define unramified Hecke algebras H ur(G~n(Qp)) and H ur(G~n(Qp)) using K~n
p and K~np (§1.1).

Let us fix Haar measures. For every prime p, choose measures µG~n,p on G~n(Qp) and µG,p on G~n(Qp)
such that µG~n,p(K

~n
p ) = 1 and µG~n,p(K~np ) = 1. Choose Haar measures µAG~n,∞ on AG~n,∞ ' R

×
>0 and

µAG~n,∞
on AG~n,∞ ' (R×>0)r+1 using the standard measure dx/x on R×>0. Finally choose Haar measures

µG~n,∞ and µG~n,∞ such that the quotient measures (
∏
v µG~n,v)/µAG~n,∞ and (

∏
v µG~n,v)/µAG~n,∞

are

the Tamagawa measures ([Ono66, §2]) on G~n(A)/AG~n,∞ and G~n(A)/AG~n,∞, respectively.

Lemma 3.1. Let r be the number of components in ~n. Then

τ(G~n) = 2r or 2r−1 and τ(G~n) = 1.

Proof. For any reductive group G0 over Q,

τ(G0) = |π0(Z(Ĝ0)Gal(Q/Q))|/| ker1(Q, G0)| (3.3)

([Kot88, p.629]). It is easy to see that τ(G~n) = 1. Indeed, Z(Ĝ~n)Gal(Q/Q) is a product of copies of C×
and ker1(Q,G~n) is trivial by Shapiro’s lemma and Hilbert 90.

Recall from [Kot84, (4.2.2)] that | ker1(Q, G~n)| = | ker1(Q, Z(Ĝ~n))|. Using the description of Ĝ~n
in (3.2) we identify Z(Ĝ~n) with C× ×

∏
σ,i C× where σ runs over Φ+

C and i over {1, . . . , r}. It is

easy to see that Z(Ĝ~n)Gal(Q/Q) is identified with the set of (λ, (gi)) where λ ∈ C×, gi ∈ {±1} and

λ(
∏
i g
ni
i )[F+:Q] = 1. Therefore

|π0(Z(Ĝ~n)Gal(Q/Q))| =
{

2r, 2|[F+ : Q] or ∀i, 2|ni
2r−1, otherwise

On the other hand, ker1(E,G~n) is trivial by Shapiro’s lemma and Hilbert 90, which implies that

ker1(E,Z(Ĝ~n)) is also trivial. So we have an injection

ker1(Q, Z(Ĝ~n)) ↪→ H1(E/Q, Z(Ĝ~n)Gal(Q/E))

via the inverse of the inflation map for H1. Note that Z(Ĝ~n)Gal(Q/E) is isomorphic to C× × (C×)r.

The group Z1 of 1-cocycles consists of those (λ, (gi)) which satisfy λ2(
∏
i g
ni
i )[F+:Q] = 1. The group

B1 of 1-coundaries precisely contains (λ, (gi)) which has the form λ = (
∏
i a
ni
i )[F+:Q] and gi = a−2

i for
some ai ∈ C× (1 ≤ i ≤ r). Both Z1 and B1 surject onto (C×)r via projection maps. Comparing the
numbers of fibers for these projection maps, we obtain

|H1(E/Q, Z(Ĝ~n)Gal(Q/E))| =
{

2, 2|[F+ : Q] or ∀i, 2|ni
1, otherwise

Therefore τ(G~n) equals 2r or 2r−1.
�
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Remark 3.2. Although we have not pursued the precise value of τ(G~n), it can be easily determined
in some cases. If 2|ni for all i, we can prove that ker1(Q, G~n) = 1 using the argument in the second
paragraph of [Kot92b, §7]. So τ(G~n) = 2r if every ni is even. In case [F+ : Q] is odd and some ni is
odd, the above proof shows that ker1(Q, G~n) = 1 and τ(G~n) = 2r−1.

3.2. Endoscopic triples and L-morphisms. Let Eell(Gn) be a set of representatives for isomor-
phism classes of endoscopic triples for Gn over Q ([Kot84, §7]). We can identify Eell(Gn) with the set
of triples

{(Gn, sn, ηn)} ∪ {(Gn1,n2
, sn1,n2

, ηn1,n2
: n1 + n2 = n, n1 ≥ n2 > 0},

where (n1, n2) may be excluded in some cases if both n1 and n2 are odd numbers. (This is to satisfy
the condition (7.4.3) of [Kot84]. As we will mainly work with odd n, we will not be concerned with

the possible exclusion of such (n1, n2).) Here sn = 1 ∈ Ĝn, sn1,n2
= (1, (In1

,−In2
)) ∈ Ĝn1,n2

and

ηn : Ĝn → Ĝn is the identity map whereas ηn1,n2
is the embedding

(λ, (gσ,1, gσ,2)) 7→
(
λ,

(
gσ,1 0
0 gσ,2

))
The above description of Eell(Gn) can be verified as proposition 4.6.1 of [Rog90], which deals with the
case of unitary groups.

We can extend ηn1,n2
to an L-morphism η̃n1,n2

by2

w ∈WE 7→
(
$(w)−N(n1,n2),

(
$(w)ε(n−n1) · In1 0

0 $(w)ε(n−n2) · In2

))
o w

w? 7→
(
an1,n2

,Φn1,n2
Φ−1
n

)
o w?

where N(n1, n2) := [F+ : Q](n1ε(n− n1) + n2ε(n− n2))/2 ∈ Z. The constant an1,n2 is chosen to be a

square root of the number (−1)−N(n1,n2) det(Φn1,n2
Φn). It is readily checked that η̃n1,n2

is indeed an
L-morphism.

Let ζ̃n1,n2
: LGn1,n2

→ LGn, be the map defined on Ĝn1,n2
by

(λ+, λ−, (gσ,1, gσ,2)) 7→
(
λ+, λ−,

(
gσ,1 0
0 gσ,2

))
and sending w ∈WE and w? respectively to(

$(w)−N(n1,n2), $(w)−N(n1,n2),

(
$(w)ε(n−n1) · In1

0
0 $(w)ε(n−n2) · In2

))
o w(

an1,n2
, an1,n2

,Φn1,n2
Φ−1
n

)
o w?

We have the following commutative diagram of L-morphisms.

LGn1,n2

η̃n1,n2 //

BCn1,n2

��

LGn

BCn

��
LGn1,n2

ζ̃n1,n2

// LGn

(3.4)

3.3. Constant terms for GL~n. We record a well-known lemma, which will be applied later to
explicit endoscopic transfer. For simplicity we state the lemma only for general linear groups. In §3.3
only, we use the following notation. Let L be a nonarchimedean field of characteristic 0. For r > 1,
fix ~n = (n1, . . . , nr) such that

∑
i ni = n. Let G := GLn and M := GL~n. (Later we will also consider

a group G which is a finite product of general linear groups. The lemma below obviously extends to
this case.) Let P be any conjugate of P~n containing M . Denote by N the unipotent radical of P . For
each f ∈ C∞c (G(L)), define the constant term along P by

fP (m) := δ
1/2
P (m)

∫
N(L)

∫
G(OL)

f(kmnk−1) dk dn, m ∈M(L). (3.5)

2We chose to write n − n1 and n − n2 rather than n2 and n1 so that the formula readily generalizes if one is to
define η̃~n for arbitrary ~n = (n1, . . . , nr) such that

∑r
i=1 ni = n. cf. [Rog92, §1].



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 15

Let ĩ~n : LM ↪→ LG be the L-morphism which trivially extends i~n : M̂ ↪→ Ĝ.

Lemma 3.3. The following are true.

(i) For any semisimple m ∈M(L) which is regular in G(L),

OM(L)
m (fP ) = DG/M (m)1/2OG(L)

m (f). (3.6)

(ii) For any π ∈ Irr(M(L)), trπ(fP ) = tr n-indGM (π)(f).
(iii) If f ∈ H ur(G(L)) then fP is the image of f under the map H ur(G(L)) → H ur(M(L))

which is dual to ĩ~n.

Proof. The first assertion is Lemma 9 of [vD72] and the second assertion is the first formula on page
237 thereof. The last assertion is an easy consequence of the Satake transform for general linear groups
(cf. [AC89, p.32-33]). �

This lemma is a special case of the Langlands-Shelstad transfer, with respect to the L-morphism
ĩ~n. Indeed, it is easy to verify that DG/M (m)1/2 coincides with the transfer factor of [LS87] up to
constant.

3.4. Explicit transfer at finite places. We begin with a brief reminder of the Langlands-Shelstad
transfer in general. Let (H, s, η) be an endoscopic triple for a connected reductive Q-group G. Suppose
that there is an L-morphism η̃ : LH → LG. Langlands and Shelstad ([LS87], [LS90]) defined a
complex-valued function ∆v(·, ·)GH , called the (local) transfer factor, on a pair (γH , γ) where γH ∈
G~n(Qv) is a semisimple (Gn, G~n)-regular element and γ ∈ G(Qv) is such that the stable conjugacy
classes of γH and γ are matching. Such a pair (γH , γ) will be called a matching pair for convenience.
The local transfer factor is well-defined up to constant. Moreover, it depends not only on (H, s, η) but
also on η̃. Langlands and Shelstad conjectured that for each function φv ∈ C∞c (G(Qv)), there exists
φHv ∈ C∞c (H(Qv)) satisfying an identity about the transfer of orbital integrals ([LS90, 2.1], [Kot86,
Conj 5.5]). We will refer to φHv as a ∆v-matching function for φv or simply a ∆v-transfer of φv. In
the unramified situation, Langlands ([Lan83, III.3]) proposed a more precise conjecture about the
transfer, called the fundamental lemma. (See also [Hal95, §2], which states the fundamental lemma
for unramified Hecke algebras and reduces its proof to the case of unit elements.)

Before going further, we point out that the Langlands-Shelstad conjecture on the existence of ∆v-
transfer is proved as well as the fundamental lemma (for unit elements) in all cases, due to Waldspurger,
Laumon-Ngô and Ngô ([LN08], [Wal97], [Wal06], [Ngo]).

Remark 3.4. Actually Walspurger and Ngô prove the fundamental lemma (for any Qp-group G0) over
Qp only if p is large enough (with respect to the rank of G0). But the results of Hales (in particular,
[Hal95, Thm 6.1]) can be used to prove the fundamental lemma for all primes p, by induction on the
rank of G0. Although the paper of Hales is somewhat sketchy, its main results are reproved by section
9 of [Mor10] which is more detailed.

However, one can avoid the use of the fundamental lemma for small primes p, if one wishes, without
weakening our main results. Let PN be the set of all primes p < N for a sufficiently large N . Impose an
additional assumption that PN ⊂ SplF/F+,Q throughout §5 and §6. The point is that if p ∈ SplF/F+,Q,

the fundamental lemma for G(Qp) is known without appealing to Hales, as G(Qp) is a product of
general linear groups. In §7 we can remove the additional assumption, by adding a condition on
E ∈ E(F ) in the proof of Theorem 7.5 that every p ∈ PN splits in E.

Let us return to the situation of §3.1 and §3.2. Let G~n ∈ Eell(G). Let v be a finite place of Q.

Below we will give a particular normalization of the transfer factor ∆v(·, ·)GnG~n , which is a complex-

valued function on a pair (γH , γ) where γH ∈ G~n(Qv) is a semisimple (Gn, G~n)-regular element and
γ ∈ G(Qv) is such that the stable conjugacy classes of γH and γ are matching. We will also define

a map η̃∗n1,n2
, which gives the ∆v(·, ·)GnG~n -transfer (or simply ∆v-transfer). Moreover, we present an

explicit representation-theoretic transfer η̃n1,n2,∗, which is tied to η̃∗n1,n2
via character identity.

For later use in Case 2 and Case 3, we record a natural isomorphism for v ∈ SplF/F+,Q. Fix

an isomorphism ιv : Qv ' C. Let V+
v be the set of places x of F such that the composite map

F
x
↪→ Qv

ιv' C belongs to Φ+
C . (This is the same definition as in the paragraph below (4.1).) Suppose



16 SUG WOO SHIN

either ~n = (n) or ~n = (n1, n2). The group G~n(Qv) is a subgroup of Q×v × GL~n(F ⊗Q Qv) and the
projection map onto Q×v ×

∏
x∈V+

v
GL~n(Fx) induces an isomorphism

G~n(Qv) ' Q×v ×
∏
x∈V+

v

GL~n(Fx). (3.7)

Using the above isomorphism, fix an embedding Gn1,n2 ↪→ Gn via in1,n2 . Set Qn1,n2 := Q×v ×∏
x∈V+

v
Pn1,n2 the parabolic subgroup of Gn, containing Gn1,n2 as a Levi subgroup.

Case 1. v ∈ UnrF/Q and v /∈ Ram($).
In this case, η̃n1,n2

induces a C-algebra map of unramified Hecke algebras

η̃∗ : H ur(Gn(Qv))→H ur(Gn1,n2
(Qv))

and a transfer of unramified representations

η̃∗ : Irrur(Gn1,n2(Qv))→ Irrur(Gn(Qv)).

By the proof of the fundamental lemma ([Ngo]) and an earlier work of Hales ([Hal95]), ∆v(·, ·) can be
normalized so that

φn1,n2
v := η̃∗(φv)

is a ∆v-transfer of φv for any φv ∈ H ur(G(Qv)). Denote this normalization by ∆0
v(·, ·). Then for

every π ∈ Irrur(Gn1,n2
(Qv)), we have

trπ(η̃∗(φv)) = tr η̃∗(π)(φv). (3.8)

Case 2. v ∈ SplE/Q.

Let φv ∈ C∞c (Gn(Qv)). Let u := x|E for any x ∈ V+
v . Define a character χ+

$,u : Gn1,n2
(Qv)→ C×

by

χ+
$,u(λ, (gx,1, gx,2)) := $u

λ−N(n1,n2)
∏
x∈V+

v

∏
1≤i≤2

NFx/Eu(det(gx,i))
ε(n−ni)

 .

(We view λ as an element of E×u via Q×v ' E×u .) Denote by φ
Qn1,n2
v the constant term along Qn1,n2

(§3.3). Define

φn1,n2
v := φ

Qn1,n2
v · χ+

$,u.

For any (Gn, Gn1,n2
)-regular semisimple g ∈ Gn1,n2

(Qv), define

∆0
v(g, g) := |DGn/Gn1,n2

(g)|1/2 · χ+
$,u(g).

(Recall that we fix an embedding of Gn1,n2
into Gn as a Levi subgroup.) Note that the above formula

pins down the value of ∆0
v(·, ·) on every matching pair. It is not hard to show that ∆0

v(·, ·) is equal,
up to constant, to the Langlands-Shelstad transfer factor with respect to η̃. We sketch the argument.

Let η̃′ : LGn1,n2 ↪→ LGn be an L-morphism (canonical up to Ĝn-conjugacy) corresponding to the
fixed Levi embedding Gn1,n2 ↪→ Gn via [Bor79, §3]. We may arrange that η̃′ and η̃ are identical on

Ĝn1,n2
by conjugating η̃′ by an element of Ĝn, so that η̃ = aη̃′ for a ∈ H1(WQv , Z(Ĝn1,n2

)). Let

χa : Gn1,n2
(Qv) → C× denote the character corresponding to a. (As Z(Ĝn1,n2

) is the dual torus
of the maximal abelian quotient of Gn1,n2

, the cohomology class a determines χa via [Bor79, §9].)
Let ∆′v(g, g) denote the transfer factor with respect to η̃′. The following facts (which are true after
normalization up to constant) are standard and deduced directly3 from the definition of transfer factors
([LS87, §3]).

• ∆′v(g, g) = |DGn/Gn1,n2
(g)|1/2.

• ∆0
v(g, g) = ∆′v(g, g) · χa(g).

3The value |DGn/Gn1,n2
(g)|1/2 (resp. χa(g)) comes from the factor ∆IV (resp. ∆III2 ) of [LS87]. In the unramified

situation, we remark that the first identity in the bullet list is a special case of [Hal93, Lem 9.2] and that the second
identity appears in the proof of [Hal95, Lem 3.3].
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Finally, one checks that χa = χ+
$,u by explicitly working out the duality for the torus Z(Ĝn1,n2

).
For any πv ∈ Irr(Gn1,n2

), define

η̃∗(πv) := n-indGnQn1,n2

(
πv ⊗ χ+

$,u

)
It is easily deduced from Lemma 3.3 that the following identities hold for any g and πv as above. In
particular φn1,n2

v is a ∆0
v-transfer of φv.

Og(φ
n1,n2
v ) = ∆v(g, g) ·Og(φv) (3.9)

trπv(φ
n1,n2
v ) = tr η̃∗(πv)(φv). (3.10)

Case 3. v ∈ SplF/F+,Q and v /∈ SplE/Q
We retain the same notation as in Case 2, but write v for the unique place of E above v by abuse of

notation. Things are very similar to Case 2 except that the character χ+
$,v, defined below, is slightly

different from χ+
$,u of Case 2.

χ+
$,v(λ, (gx,1, gx,2)) := $v

 ∏
x∈V+

v

∏
1≤i≤2

NFx/Ev (det(gx,i))
ε(n−ni)


φn1,n2
v (g) := φ

Qn1,n2
v (g) · χ+

$,v(g)

∆0
v(g, g) := |DGn/Gn1,n2

(g)|1/2 · χ+
$,v(g)

η̃∗(πv) := n-indGnQn1,n2

(
πv ⊗ χ+

$,v

)
The same argument as in Case 2 shows that ∆0

v(·, ·) is the Langlands-Shelstad transfer factor with
respect to η̃n1,n2

(up to constant). As in Case 2, it is easy to check that the same identities as in (3.9)
and (3.10) hold. So φn1,n2

v is a ∆0
v-transfer of φv.

Remark 3.5. There are overlaps between Case 1 and Case 2 and between Case 1 and Case 3, namely
when v ∈ UnrF/Q ∩ SplF/F+,Q, v /∈ RamQ($), φv ∈H ur(Gn(Qv)) and πv ∈ Irrur(Gn(Qv)). However
it is not hard to see that the definitions are consistent: Consider such v, φv and πv. Then φn1,n2

v

in Case 2 or Case 3 is the same as in Case 1. This follows from the fact that constant terms are
compatible with Satake transform (cf. [AC89, p.33]). By the same fact we check the consistency of
the definition of ∆0

v(g, g) and η̃∗(πv).

3.5. Transfer of pseudo-coefficients at infinity. Here we review Shelstad’s results on real en-
doscopy ([She82]) for discrete series representations, based on the summary of Kottwitz ([Kot90, §7]).
We will freely use the Langlands correspondence for real reductive groups ([Lan88]). Let G be an
R-inner form of Gn. Set (H, s, η) := (G~n, s~n, η~n) ∈ Eell(Gn), which is also an endoscopic triple for G.

Let ξ be an irreducible algebraic representation of GC. Define χξ : AG,∞ → C× to be the charac-

ter obtained by restricting ξ to AG,∞. Define Irr(G(R), χ−1
ξ ) to be the set of π ∈ Irr(G(R)) whose

restriction to AG,∞ is χ−1
ξ . Let Πunit(G(R), ξ∨) denote the set of π ∈ Irr(G(R)) which are unitary

(modulo AG,∞) and have the same infinitesimal character and central character as ξ∨. Denote by

Irrtemp(G(R), χ−1
ξ ) (resp. Πdisc(G(R), ξ∨)) the subset of Irr(G(R), χ−1

ξ ) (resp. Πunit(G(R), ξ∨)) con-

sisting of those representations which are tempered (resp. square-integrable) modulo AG,∞. Choose
any maximal compact subgroups K∞ ⊂ G(R) and K∞ ⊂ G(R) which are admissible in the sense of
[Art88b, §1]. Define an integer

q(G) :=
1

2
dim(G(R)/K∞AG,∞). (3.11)

Fix real elliptic maximal tori T ⊂ G and TH ⊂ H along with an R-isomorphism j : TH
∼→ T . Also

fix a Borel subgroup B of G over C such that B ⊃ TC. Let ϕξ : WR → LG be the discrete L-parameter
for ξ which corresponds to the L-packet Πdisc(G(R), ξ∨). Let Ω (resp. ΩH) denote the complex Weyl
group for T in G (resp. TH in H) and ΩR the real Weyl group for T .
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For each π ∈ Πdisc(G(R), ξ∨), there exists φπ ∈ C∞c (G(R), χξ) such that for any π′ ∈ Irrtemp(G(R), χ−1
ξ ),

trπ′(φπ) =

{
1, if π′ ' π
0, otherwise

Such a function φπ is called a pseudo-coefficient for π. Whenever we write the expression φπ in the
future, let us agree that a choice of a pseudo-coefficient for π is implicit.

The members π of Πdisc(G(R), ξ∨) are parametrized by ωπ ∈ Ω/ΩR so that each π = π(ϕξ, ω
−1
π B) is

characterized by the character formula of [Kot90, p.183], which is due to Harish-Chandra. We want to
describe the transfer of φπ to H(R) as a linear combination of pseudo-coefficients for discrete series of
H(R). Shelstad defined the transfer factor ∆j,B (depending on η̃) on elliptic regular elements, which
is enough for our purpose. (Note that pseudo-coefficients have trivial orbital integrals on non-elliptic
semisimple elements and that the case of elliptic singular elements is covered by [LS90, 2.4].)

Remark 3.6. (A similar remark appears in [Shi10, Rem 5.5].) In principle, we have to be careful
about the different conventions for transfer factors when we refer to [Kot90] and work of Langlands
and Shelstad at the same time. The convention in [Kot90] differs from that of Langlands and Shelstad
by s 7→ s−1, as explained on page 178 of that article. Fortunately there is no danger for us to confuse
the two conventions, as s = s−1 holds for every endoscopic triple in Eell(Gn).

For any discrete L-parameter ϕH for H(R) and its associated L-packet Π(ϕH), let

φϕH :=
1

|Π(ϕH)|
∑

πH∈Π(ϕH)

φπH . (3.12)

(In [Kot90, §7], φϕH was denoted by h(ϕH).) Define

φHπ := (−1)q(G)
∑

η̃ϕH∼ϕξ

〈aω∗(ϕH)ωπ , s〉det(ω∗(ϕH)) · φϕH (3.13)

where the sum runs over equivalence classes of ϕH such that η̃ϕH is equivalent to ϕξ. We remind the
reader that we adopted notations of [Kot90]. (In that article, see page 185 for ω∗(ϕH) and page 175
for aω∗(ϕH)ωπ .)

Lemma 3.7. Let π = π(ϕξ, ω
−1
π B).

(i) For any discrete L-parameter ϕH for H(R),∑
πH∈Π(ϕH)

trπH(φHπ ) =

{
(−1)q(G)〈aω∗(ϕH)ωπ , s〉det(ω∗(ϕH)), if η̃ϕH ∼ ϕξ

0, otherwise

(ii) φHπ is a ∆j,B-transfer of φπ.

Remark 3.8. Compare with [Clo, Thm 3.4], which proves a similar result with a somewhat different
approach. It seems that our proof is general enough to work for other groups with little change.

Proof. Note that (i) follows immediately from the definition of φHπ .
Let us prove (ii). It suffices to prove that for any elliptic regular γH ∈ H(R) and γ := j(γH),

SOγH (φHπ ) = ∆j,B(γH , γ0)
∑
γ∼stγ0

〈inv(γ0, γ), s〉 ·Oγ(φπ) (3.14)

where inv(γ0, γ) is defined in [Kot86, 6.7] and the sum runs over the set of γ ∈ G(R) (up to G(R)-
conjugacy) which are stably conjugate to γ0. We import notations and facts from pages 183-186 of
[Kot90]. By the third formula of page 186 and the formula for ∆j,B of page 184,

SOγH (φϕH ) = (−1)q(H)vol−1
∑

ωH∈ΩH

χωH(BH)(γ
−1
H ) ·∆ωH(BH)(γ

−1
H )−1

= (−1)q(G)vol−1
∑

ωH∈ΩH

∆j,ωHω∗(B)(γH , γ0) · χωHω∗(B)(γ
−1
0 ) ·∆ωHω∗(B)(γ

−1
0 )−1
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where we wrote ω∗ for ω∗(ϕH). Since ∆j,ωHω∗(B) = det(ω∗)∆j,B , we see that SOγH (φHπ ) equals
(recalling from [Kot90, p.185] that there is a bijection between Ω∗ and the set of ϕH)

(−1)q(G)vol−1
∑
ω∗∈Ω∗

∑
ωH∈ΩH

〈aω∗ωπ , s〉 ·∆j,B(γH , γ0) · χωHω∗(B)(γ
−1
0 ) ·∆ωHω∗(B)(γ

−1
0 )−1.

Using the equality 〈aω∗ωπ , s〉 = 〈aωHω∗ωπ , s〉 and the bijection ΩH × Ω∗ → Ω mapping (ωH , ω∗) to
ωHω∗, we can simplify the above expression as

(−1)q(G)vol−1∆j,B(γH , γ0)
∑
ω∈Ω

〈aωωπ , s〉 · χω(B)(γ
−1
0 ) ·∆ω(B)(γ

−1
0 )−1.

On the other hand, using the computation of orbital integrals in [Kot92a, p.659],∑
γ∼stγ0

〈inv(γ0, γ), s〉Oγ(φπ) =
∑

ω∈Ω/ΩR

〈aω, s〉Oωγ0(φπ) =
∑

ω∈Ω/ΩR

〈aω, s〉vol−1 · trπ((ωγ0)−1)

Using the formula of [Kot90, p.183] for trπ((ωγ0)−1), the last expression can be written as

(−1)q(G)vol−1
∑

ω∈Ω/ΩR

〈aω, s〉
∑
w0∈ΩR

χω0ω
−1
π (B)(ω

−1γ−1
0 ) ·∆ω0ω

−1
π (B)(ω

−1γ−1
0 )−1. (3.15)

Since 〈aω, s〉 = 〈aωω0 , s〉 and the last summand is equal to χωω0ω
−1
π (B)(γ

−1
0 ) · ∆ωω0ω

−1
π (B)(γ

−1
0 )−1,

(3.15) is the same as

(−1)q(G)vol−1
∑
ω∈Ω

〈aωωπ , s〉 · χω(B)(γ
−1
0 ) ·∆ω(B)(γ

−1
0 )−1.

Hence (3.14) is proved.
�

Remark 3.9. Note that each ϕH such that η̃ϕH ∼ ϕξ corresponds to an L-packet of the form
Πdisc(H(R), ξ(ϕH)∨) where ξ(ϕH) is a suitable irreducible algebraic representation of H. The function
φϕH is often called an Euler-Poincaré function in the following sense: for each πH ∈ Π(H(R), χ−1

ξ(ϕH)),

the trace trπH(φϕH ) computes the Euler-Poincare characteristic of the relative Lie algebra cohomology
of πH ⊗ ξ(ϕH). The existence of an Euler-Poincaré function was proved by Clozel-Delorme ([CD90]).
Its explicit realization as (3.12) was used by several authors ([Kot92a, Lem 3.2], cf. [Art89, (3.1)]).
The twisted analogue is obtained by Labesse ([Lab91]). (cf. §4.3.)

In view of Remark 3.9, we will sometimes write φH,ξ(ϕH) for φϕH .

3.6. Explicit computation of real endoscopic signs. We wish to make the discussion of the
last subsection explicit in case G = G(U(1, n − 1) × U(0, n) × · · ·U(0, n)), which is an inner form of
Gn ×Q R. A precise definition of G is given below. As in §3.5, we use the notation of [Kot90, §7]
without recalling here. Note that a similar computation as ours was obtained earlier by Clozel ([Clo]).

For each σ ∈ Φ+
C let

Jσ :=

(
1 0
0 −In−1

)
if σ = τ and Jσ = In if σ 6= τ.

and define an R-group G and its maximal R-elliptic torus T (via the obvious diagonal embedding) by

G(A) := {(λ, (gσ)) ∈ A× ×Mn(C⊗R A)Φ+
C | ∀σ, gσJσ

tgcσ = λJσ}
T (A) := {(λ, (tσ,i)) ∈ A× × ((C⊗R A)n)Φ+

C | ∀σ, i, tσ,it
c
σ,i = λ}

(3.16)

for any R-algebra A, where σ ∈ Φ+
C and 1 ≤ i ≤ n.

Let n1, n2 ∈ Z>0 be such that n1 > n2 and n1+n2 = n. The group (H, s, η) := (Gn1,n2
, sn1,n2

, ηn1,n2
)

(defined in §3.2) is an endoscopic triple for G, equipped with η̃n1,n2
: LH → LG. For our purpose, we

may identify H with the R-group given by

H(A) := {(λ, (hσ)) ∈ A× ×Mn1,n2(C⊗R A)Φ+
C | ∀σ, hσJ

′
σ
thcσ = λJ ′σ}

for R-algebras A, where J ′σ is a suitable diagonal matrix with entries +1 and −1 such that H is

quasi-split. Let TH := T , which obviously embeds into H diagonally. Take j : TH
∼→ T to be the
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identity. There is an obvious isomorphism (induced by the map z1 ⊗ z2 7→ z1z2 from C⊗R C to C, in
view of (3.16))

G(C) ' GL1(C)×GLn(C)Φ+
C (3.17)

and similarly for H, with GLn replaced by GLn1,n2
. Let B ⊂ GC and BH ⊂ HC be the Borel

subgroups consisting of upper triangular matrices. Note that B ⊃ TC and BH ⊃ (TH)C.
Let SN denote the symmetric group in N variables. There are natural identifications

Ω = SΦ+
C

n , ΩH = (Sn1
× Sn2

)Φ+
C , ΩR = Sn−1 × S

Φ+
C \{τ}

n

so that any ω = (ωσ) ∈ Ω acts on T as (λ, (tσ,i)) ∈ T 7→ (λ, (tσ,ωσ(i))), and similarly for ΩH acting on
TH . Of course ΩH is identified with a subgroup of Ω via j. The component Sn−1 of ΩR is viewed as
the group which permutes the sub-indices for (tτ,2, tτ,3, . . . , tτ,n). The set Ω∗ is a subset of (ωσ) ∈ Ω
such that ωσ(1) < · · · < ωσ(n1) and ωσ(n1 + 1) < · · · < ωσ(n) for every σ ∈ Φ+

C . The multiplication
induces a bijection ΩH × Ω∗ → Ω.

Let ξ be an irreducible algebraic representation of GC. To ξ there is a way to attach a0(ξ) ∈ Z
and ~a(ξ)σ ∈ (Z)n for each σ ∈ Φ+

C by the following condition: ξ|GL1
is x 7→ xa0(ξ) and ~a(ξ)σ =

(a(ξ)σ,1, . . . , a(ξ)σ,n) is the highest weight for the restriction of ξ to the σ-component GLn, with
respect to (3.17), where a(ξ)σ,1 ≥ · · · ≥ a(ξ)σ,n. (This is different from the convention of [HT01,
p.97-98] in that the inequalities are reversed.) Define w(ξ) ∈ Z and α(ξ)σ,i ∈ 1

2Z by

w(ξ) := −2a0(ξ)−
∑
σ,i

a(ξ)σ,i, α(ξ)σ,i = −a(ξ)σ,n+1−i +
n+ 1− 2i

2
. (3.18)

View $∞ as a character C× → C× by identifying E⊗QR ' C via τE . Note that $∞(z) = (z/z)δ/2

for an odd number δ ∈ Z, as $∞ extends the sign character on R×. Let (γ(ξ)σ,i) be any permutation
of (α(ξ)σ,i) by an element of Ω such that

γ(ξ)σ,1 > · · · > γ(ξ)σ,n1
, γ(ξ)σ,n1+1 > · · · > γ(ξ)σ,n

and put

β(ξ)σ,i =

{
γ(ξ)σ,i − ε(n− n1) · δ2 , if 1 ≤ i ≤ n1,
γ(ξ)σ,i − ε(n− n2) · δ2 , if n1 < i ≤ n.

Consider a discrete L-parameter ϕH : WR → LH sending z ∈WC to(
(zz)−w(ξ)/2(z/z)(N(n1,n2)δ−

∑
σ,i a(ξ)σ,i)/2,

(
(z/z)β(ξ)σ,i

)
σ∈Φ+

C ,1≤i≤n

)
o z

where ((z/z)β(ξ)σ,i)1≤i≤n for each σ embeds into the diagonal of GLn1,n2
(C) in an obvious way. So

ϕξ := η̃ ◦ ϕH sends z ∈WC to(zz)−w(ξ)/2(z/z)−
∑
σ,i a(ξ)σ,i/2,


(z/z)γ(ξ)σ,1 0 · · · 0

0 (z/z)γ(ξ)σ,2 0
...

... 0
. . . 0

0 · · · 0 (z/z)γ(ξ)σ,n


σ∈Φ+

C

 o z.

It is not hard to check that ϕξ is (up to equivalence) the discrete L-parameter for Πdisc(G(R), ξ∨),
which justifies our notation for ϕξ. (Use the characterizing properties of ϕξ in §4.3.)

The element ω∗ = ω∗(ϕH) ∈ Ω∗ is easy to describe in terms of γ(ξ)σ,i’s. It is the unique element
of Ω∗ such that

γ(ξ)σ,ω∗(1) > · · · > γ(ξ)σ,ω∗(n), ∀σ ∈ Φ+
C . (3.19)

This description of ω∗ easily follows from the discussion of [Kot90, p.184-185].
Recall that π ∈ Πdisc(G(R), ξ∨) are parametrized by ωπ ∈ Ω/ΩR. (We will confuse ωπ with any of

its representatives in Ω.) Note that |Ω/ΩR| = n. We may write

Πdisc(G(R), ξ∨) = {π1, . . . , πn}
where πi is characterized as follows: if we write ωπi = (ωπi,σ)σ∈Φ+

C
then ωπi,τ is an element of the

permutation group Sn that takes 1 to i. (The last condition determines ωπi as an element of Ω/ΩR.)
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We will consider h : RC/RGm → G factoring through T . Suppose that on R-points h : C× → T (R)
is given by (compare with (5.1))

z 7→ (z, (z, z, . . . , z︸ ︷︷ ︸
n−1

)σ=τ , (z, . . . , z︸ ︷︷ ︸
n

)σ 6=τ ).

We have a natural identification T̂Gal(C/R) = C× × ({±1}n)Φ+
C so that µh ∈ X∗(T̂Gal(C/R)) (defined

on page 167 of [Kot90]) sends each element (λ, (tσ,i)) of T̂ to λtτ,1. In particular,

〈µh, sn1,n2〉 = 1. (3.20)

Recall from [Kot90, p.175] that for each ω ∈ Ω, the character aω ∈ X∗(T̂Gal(C/R)) is defined by
aω := ωµh − µh. Hence

aω(λ, (tσ,i)) = t−1
τ,1tτ,ω(1).

The following computation is immediate.

〈aω∗ωπi , sn1,n2〉 =

{
1, if 1 ≤ i ≤ n1,
−1, if n1 < i ≤ n. (3.21)

4. Twisted trace formula and base change

In section 4 we review the twisted trace formula and the base change for the groups G~n and G~n.
The twisted trace formula is due to Arthur and various results on base change are due to Clozel and
Labesse, who also studied the case of unitary groups in more detail. Our strategy basically follows
theirs with minor differences for unitary similitude groups. Throughout §4 we assume that

RamF/Q ∪ RamQ($) ⊂ SplF/F+,Q. (4.1)

For each prime p, fix a field isomorphism ιp : Qp
∼→ C. Also fix an embedding ι : Q ↪→ C, which

gives an embedding ι−1
p ι : Q ↪→ Qp for each p. Choose τ : F ↪→ C and define Φ+

C and Φ−C as in the

last section. For each prime p ∈ SplF/F+,Q, define Φp := HomQ(F,Qp), Φ+
p := ι−1

p Φ+
C , Φ−p := ι−1

p Φ−C .

Let Vp be the set of places of F above p. Let V+
p be the image of Φ+

p under the natural map Φp → Vp.
Then Vp = V+

p

∐
cV+
p .

Let # : RF/QGL~n 7→ RF/QGL~n denote the map g 7→ Φ~n
tg−cΦ−1

~n . Define

G+
~n := (RE/QGL1 ×RF/QGL~n)o {1, θ} (4.2)

where θ(λ, g)θ−1 = (λc, λcg#). Denote by G0
~n and G0

~nθ the cosets of {1} and {θ} in G+
~n so that

G+
~n = G0

~n

∐
G0
~nθ. Recall that G~n was defined in the last section. There is a natural Q-isomorphism

G~n
∼→ G0

~n which may be described on the R-points (for any Q-algebra R) of the underlying groups as

(E ⊗Q R)× ×GL~n(F ⊗Q E ⊗Q R)→ (E ⊗Q R)× ×GL~n(F ⊗Q R) (4.3)

induced by the linear map f ⊗ e 7→ fe from F ⊗Q E to F . The isomorphism G~n
∼→ G0

~n extends to

G~n oGal(E/Q)
∼→ G+

~n so that c ∈ Gal(E/Q) maps to θ, where Gal(E/Q) acts on G~n in the obvious
way. So we will use G~n, G~nθ interchangeably with G0

~n, G0
~nθ by abuse of notation.

From now on, we often write G for G~n, G for G~n, Φ for Φ~n and BC for BC~n until the end of this
section, unless we specify otherwise. We caution the reader that from §5, the symbol G denotes an
inner form of Gn.

4.1. θ-stable representations. Let v be a place of Q. We say that (Πv, V ) ∈ Irr(G(Qv)) is θ-stable
if (Πv, V ) ' (Πv ◦ θ, V ) as representations of G(Qv). In that case an easy application of Schur’s

lemma enables us to choose AΠv : V
∼→ V which induces Πv

∼→ Πv ◦ θ and satisfies A2
Πv

= id. The
last condition pins down AΠv up to sign. We will say that such AΠv is normalized. In §4.2 and §4.3,
a specific normalization A0

Πv
will be introduced.

Let S be a finite set of places of Q. Similarly ΠS ∈ Irr(G(AS)) is called θ-stable if ΠS ' ΠS ◦ θ, in

which case we denote by AΠS an intertwining operator such that A2
ΠS = id. Denote by Irrθ-st(G(Qv))

(resp. Irrθ-st(G(AS))) the subset of Irr(G(Qv)) (resp. Irr(G(AS))) consisting of θ-stable representa-
tions.
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Given a θ-stable representation (Πv, V ) and AΠv : Πv
∼→ Πv ◦ θ, we can produce a representation

(Π+
v , V ) of G+(Qv) by setting Π+

v (g) := Πv(g) and Π+
v (θ) := AΠv . Conversely, a representation Π+

v

of G+(Qv) yields Πv := Π+
v |G(Qv) ∈ Irrθ-st(G(Qv)) and a normalized operator AΠv := Π+

v (θ).

We may write Π ∈ Irr(G(A)) as Π = ψ ⊗ Π1 for a continuous character ψ : A×E/E× → C× and
Π1 ∈ Irr(GL~n(AF )), corresponding to the isomorphism G(A) ' GL1(AE)×GL~n(AF ). Denote by ψΠ1

the central character of Π1. Corresponding to ~n = (n1, . . . , nr), write ψΠ1 = ψ1 ⊗ · · · ⊗ ψr. It is easy
to verify that Π is θ-stable if and only if

• (Π1)∨ ' Π1 ◦ c and
•
∏r
i=1 ψi|A×E = ψc/ψ.

4.2. Local base change and BC-matching functions at finite places. For each finite place v,
we say that fv ∈ C∞c (G~n(Qv)) and φv ∈ C∞c (G~n(Qv)) are BC-matching functions, or φv is a BC-
transfer of fv, if they are “associée” in the sense of [Lab99, 3.2]. (This is non-standard terminology.)
Similarly we will define in §4.3 the notion of BC-matching for a pair of functions f∞ on G~n(R) and
φ∞ on G~n(R) which are compactly supported modulo AG,∞. The notion of BC-matching functions
obviously extends to the adelic case.

We are going to explain case-by-case how to find a BC-transfer φv of each fv and how to define the
local base change map BC~n. The BC-transfer and BC~n are closely related via character identities.
We will define normalized intertwining operators A0

Πv
for θ-stable representations Πv in each case.

Case 1. v ∈ UnrF/Q and v /∈ RamQ($).
Let BC∗~n : H ur(G(Qv))→H ur(G(Qv)) be the dual map of the L-morphism BC~n defined in §3.1.

Define a map BC~n : Irrur(G(Qv))→ Irrur,θ-st(G(Qv)) which is uniquely characterized by the following
identity: for each πv ∈ Irrur(G(Qv)) and fv ∈H ur(G(Qv)),

χBC~n(πv)(fv) = χπv (BC∗~n(fv)). (4.4)

It is a routine check that BC~n(πv) is θ-stable, but it is not always true that BC~n is surjective onto

Irrur,θ-st(G(Qv)). (The reason for the latter is essentially the same as in [Min, Rem 4.3], which treats
unitary groups.) If v ∈ UnrF/Q ∩ SplE/Q, the injectivity of BC~n is easily checked. (For instance,

use formula (4.8) for BC~n.) However BC~n is not injective in general.4 When Πv ∈ Irrur,θ-st(G(Qv)),
we define A0

Πv
: Πv

∼→ Πv ◦ θ as the one acting on ΠKvv as +1 (rather than −1). (The hyperspecial
subgroup Kv defined in §3.1 is clearly θ-stable.) If Πv = BC(πv) then (4.4) implies

tr (Πv(fv)A
0
Πv ) = χΠv (fv) = χπv (BC∗~n(fv)).

Suppose a finite set of places S contains RamF/Q∪RamQ($)∪{∞}. For each ΠS ∈ Irrur,θ-st(G(AS)),

denote by A0
ΠS : ΠS ∼→ ΠS ◦ θ the unique intertwining operator which acts on (ΠS)K

S

as +1. If

ΠS = BC~n(πS) then (4.4) implies that

tr (ΠS(fS)A0
ΠS ) = χπS (BC∗~n(fS)). (4.5)

Case 2. v ∈ SplF/F+,Q (v ∈ SplE/Q or v /∈ SplE/Q).
There are natural isomorphisms

G(Qv) ' Q×v ×
∏
x∈V+

v

GL~n(Fx) (4.6)

G(Qv) ' E×v ×
∏
x∈V+

v

GL~n(Fx)×
∏
x∈V−v

GL~n(Fx). (4.7)

If v /∈ SplE/Q then θ acts on G(Qv) as (λ, g+, g−) 7→ (λc, λcg#
− , λ

cg#
+ ). If v ∈ SplE/Q then write

λ = (λ+, λ−) under E×v ' E×u ×E×uc where u = x|E for any x ∈ V+
v . Then θ sends (λ+, λ−, g+, g−) to

(λ−, λ+, λ−g
#
− , λ+g

#
+ ).

4Suppose that v is not split in E and that the multiplier map G(Qv)→ Q×v is surjective. Then π � π⊗χEv/Qv but

BC~n(π) ' BC~n(π ⊗ χEv/Qv ), where χEv/Qv is the quadratic character of Q×v with kernel E×v , viewed as a character

of G(Qv) via the multiplier map.
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We define BC~n : Irr(G(Qv)) → Irrθ-st(G(Qv)). Write πv ∈ Irr(G(Qv)) as πv,0 ⊗ πv,+ on the
underlying vector space W0 ⊗W . Define BC~n(πv) on W0 ⊗W ⊗W by

πv,0 ⊗ πv,0ψπv,+ ⊗ πv,+ ⊗ π
#
v,+, if v ∈ SplE/Q (4.8)

(πv,0 ◦NEv/Qv )ψcπv,+ ⊗ πv,+ ⊗ π
#
v,+, if v /∈ SplE/Q (4.9)

where π#
v,+(g) := πv,+(g#). In particular π#

v,+ ' π∨v,+ ◦ c. Define A0
BC(πv) : BC(πv)

∼→ BC(πv) ◦ θ by
w0 ⊗ w+ ⊗ w− 7→ w0 ⊗ w− ⊗ w+.

More generally consider Πv = Πv,0 ⊗Πv,+ ⊗Πv,− ∈ Irr(G(Qv)), according to (4.7). If v ∈ SplE/Q,

write Πv,0 = Πv,0,+ ⊗Πv,0,− in view of E×v ' E×u × E×uc . We see that Πv is θ-stable if and only if

Πv,0,+ = Πv,0,−ψΠv,− , Πv,+ ' Π#
v,− if v ∈ SplE/Q (4.10)

Πv,0 = Πc
v,0ψ

c
Πv,+

ψΠv,− , Πv,+ ' Π#
v,−, if v /∈ SplE/Q. (4.11)

For a θ-stable Πv, choose β : Πv,+
∼→ Π#

v,−. The same map on the underlying vector spaces induces

β# : Π#
v,+

∼→ Πv,−. Define A0
Πv

by w0 ⊗ w+ ⊗ w− 7→ w0 ⊗ (β#)−1(w−) ⊗ β(w+). It is easy to check

that A0
Πv

is an isomorphism from Πv to Πv ◦ θ and that (A0
Πv

)2 = id.
Consider fv ∈ C∞c (G~n(Qv)) of the form fv = fv,0 · fv,+ · fv,− with respect to the decomposition

(4.7). If v /∈ SplE/Q, define φv = BC∗(fv) by

φv(λλ
c, g) =

∫
E×v /Q×v ×

∏
x∈V+

v
GL~n(Fx)

fv,0(αc−1λ)fv,+(αc−1λ−cgh−1)fv,−(h#) dαdh

and φv(λ0, g) = 0 if λ0 /∈ NEv/Qv (E×v ). If v splits in E, define φv by the same formula except that
the integrand is replaced by

fv,0(αc−1λ)fv,+(αc−1λ−1
− gh−1)fv,−(h#).

The Haar measure used above is chosen to be compatible with the Haar measures on G(Qv) and
G(Qv) fixed in §3.1. More concretely, the quotient measure on E×v /Q×v is given by the Haar measures
on E×v and Q×v for which O×Ev and Z×v have volume 1, respectively. The measure on each GL~n(Fx) is
such that GL~n(OFx) has volume 1.

It is shown by an elementary calculation exactly analogous to the proof of [Rog90, Prop 4.13.2.(a)]
(but our case is a little more tedious as it is necessary to take care of similitude), that φv and fv are
BC-matching functions and that

trπv(φv) = trπv(BC
∗(fv)) = tr (BC(πv)(fv)A

0
BC(πv)) (4.12)

for every πv ∈ Irr(G(Qv)). If v splits in E, it is straightforward to check that BC is injective and that
BC∗ is surjective.

Remark 4.1. The above discussion is consistent in the following sense. Suppose v ∈ UnrF/Q∩SplF/F+,Q
and v /∈ RamQ($). For every πv ∈ Irrur(G(Qv)), BC~n(πv) is isomorphic in Case 1 and Case 2. If
Πv ∈ Irrur(G(Qv)) is θ-stable, it is easily verified that the two definitions of A0

Πv
coincide. Furthermore,

for each fv ∈ H ur(G(Qv)) there is no ambiguity about φv since the two definitions of φv in Case 1
and Case 2 coincide.

4.3. Base change of discrete series at infinity. Recall our convention throughout §4 that we write
G = G~n and G = G~n unless stated otherwise. Let ξ be an irreducible algebraic representation of GC.
Consider the natural isomorphism G(C) = G(C⊗Q E) ' G(C)×G(C), induced by C⊗Q E

∼→ C×C
mapping z ⊗ e to (zτ(e), zτ c(e)). Define a representation Ξ of GC by Ξ := ξ ⊗ ξ. We can extend Ξ to
a representation Ξ+ of G+(C) by defining Ξ+(θ) as v1 ⊗ v2 7→ v2 ⊗ v1 on the underlying vector space
for ξ ⊗ ξ.

We say that Π∞ ∈ Irrθ-st(G(R)) is θ-discrete (cf. [AC89, p.17]) if Π∞ is tempered and not a
subquotient of any parabolic induction from a θ-stable tempered representation of a proper θ-stable
Levi subgroup of G(R). For a maximal torus T of G contained in K∞, define d(GR) := D(T,G;R) in
the notation of [Lab99, 1.8]. The value of d(GR) is independent of the choice of T.

Denote by AGθ the split component of the centralizer of θ in AG. So AGθ is a Q-torus contained
in AG. Set AGθ,∞ := AGθ(R)0. Note that AGθ,∞ = AG,∞ via the inclusion G(R) ↪→ G(R). Let
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C∞c (G(R), χξ) denote the space of smooth functions G(R) → C which are bi-K∞-finite, compactly

supported modulo AG,∞ and transforms under AG,∞ by χξ. Let Irr(G(R), χ−1
ξ ) denote the subset of

Irr(G(R)) whose central character is the same as χ−1
ξ on AG,∞.

There exists a function fLef
Ξ ∈ C∞c (G(R), χξ) ([Lab91, Prop 12], cf. [CL99, Thm A.1.1]), which

is a twisted analogue of the Euler-Poincaré function in Remark 3.9, characterized by the following
property: for each Π+

∞ ∈ Irr(G+(R)) whose restriction to AG,∞ is χ−1
ξ ,

tr Π+
∞(fLef

Ξ ) =
∑
k

(−1)ktr (θ|Hk(Lie (G(R)/AG,∞),K∞,Π+
∞ ⊗ Ξ+) (4.13)

where Π+
∞(fLef

Ξ ) :=
∫
G(R)/AG,∞

fLef
Ξ (g)Π+

∞(gθ)dg. If the infinitesimal characters of Π∞ and Ξ do not

coincide, then the right hand side of (4.13) is zero since the cohomology vanishes in all degrees. (cf.
[Wal88, Prop 9.4.6].) Computing the right hand side of (4.13) as in [Lab, Lem 4.10], we can prove
that there exists a unique irreducible θ-stable generic unitary representation ΠΞ ∈ Irr(G(R), χ−1

ξ )

such that tr Π+
Ξ (fLef

Ξ ) 6= 0 for any extension Π+
Ξ of ΠΞ. We remark that an alternative proof of the

existence of the function fLef
Ξ may be given by the results of Delorme and Mezo ([DM08, Thm 3]).

By the computation as in the proof of [Clo91, Prop 3.5], we have

tr Π+
Ξ (fLef

Ξ ) = ±2n[F+:Q] (4.14)

where the sign depends on the choice of an extension Π+
Ξ of ΠΞ. Let A0

ΠΞ
: ΠΞ

∼→ ΠΞ ◦ θ denote the

operator Π+
Ξ (θ) where Π+

Ξ is chosen so that the sign in (4.14) is positive. Set

fG,Ξ := fLef
Ξ /d(GR) = fLef

Ξ /2n[F+:Q]−1.

(A direct computation with Galois cohomology shows d(GR) = 2n[F+:Q]−1.) The function fG,Ξ is a
stabilizing function in the sense of [Lab99, Def 3.8.2] and a cuspidal function in the sense of [Art88b,
p.538] by [CL99, Thm A.1.1].

Remark 4.2. There is a direct product decomposition G(A) = G(A)1 × AGθ,∞ ([Art86, §1]). Put

G(R)1 := G(R)∩G(A)1 and f1
G,Ξ := fG,Ξ|G(R)1 . Note that the inclusion induces G(R)1 ∼→ G(R)/AG,∞

and that Π+
∞(fLef

Ξ ) in (4.13) is the same as Π+
∞(fLef

Ξ |G(R)1) :=
∫
G(R)1 f

Lef
Ξ (g)Π+

∞(gθ)dg. Hence

tr (ΠΞ(f1
G,Ξ) ◦A0

ΠΞ
) = 2 (4.15)

where the trace is computed with respect to the action of G(R)1. We also see that tr (Π+
∞(f1

G,Ξ)) = 0

for any Π+
∞ ∈ Irr(G+(R)) such that Π∞ is generic and non-isomorphic to ΠΞ as a representation of

G(R)1. (Here we need not assume that Π∞ ∈ Irr(G(R), χ−1
ξ ).)

We claim that ΠΞ is the base change of the L-packet Πdisc(G(R), ξ∨) in the following sense. Let
ϕξ : WR → LG be the L-parameter (unique up to equivalence) corresponding to Πdisc(G(R), ξ∨)
([Lan88, §3]). Let ϕΞ := ϕξ|WC . Then it is easy to see that ΠΞ is the unique generic representation
corresponding to ϕΞ via the local Langlands classification for G(C) (cf. [Kna94]). The fact that ϕξ is
a discrete L-parameter implies that ΠΞ is θ-discrete. Conversely, ϕξ is uniquely characterized by ΠΞ

and χξ in the sense that there is a unique ϕξ (up to equivalence) such that

• ϕξ|WC corresponds to ΠΞ by the local Langlands correspondence and

• WR
ϕξ→ LG → LAG corresponds to a character of AG(R) which restricts to χ−1

ξ on AG,∞.

(The L-morphism LG→ LAG is induced by the canonical injection AG ↪→ G.)

Recall the notation φG,ξ = φϕξ from §3.5. We are about to explain that fG,Ξ and φG,ξ are BC-
matching functions. Let δ ∈ G(R) be any θ-semisimple element (i.e. δθ is semisimple in G+(R)) and
γ ∈ G(R) be the norm of δ ([Lab99, 2.4]). For such δ and γ, a direct computation shows that

tr Ξ+(δθ) = tr ξ(γ). (4.16)

Indeed, write δ = (δ1, δ2) ∈ G(C) ' G(C)×G(C) so that γ = δ1δ2. Let A1 := Ξ(δ1), A2 := Ξ(δ2) and
C := Ξ+(θ) so that A1, A2 ∈ End(ξ) and C ∈ End(ξ⊗ ξ). Recall that C is given by v1⊗ v2 7→ v2⊗ v1.
Then (4.16) boils down to the identity tr (A1 ⊗A2) ◦C = trA1A2, which is an elementary exercise in
linear algebra.
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Let Iδθ (resp. Iγ) denote the neutral component of the centralizer of δθ in G(R) (resp. γ in G(R)).

The R-groups Iδθ and Iγ are inner forms of each other ([Lab99, Lem 2.4.4]). Let Iδθ (resp. Iγ)

denote an inner form of Iδθ (resp. Iγ) which is compact modulo center. Then Iδθ ' Iγ . Choose

compatible measures µIδθ , µIγ , µIδθ and µIγ on Iδθ, Iγ , Iδθ and Iγ , respectively. We fixed a Haar

measure µAG,∞ on AG,∞ in §3.1. Thus we obtain quotient measures µIδθ/µAG,∞ and µIγ/µAG,∞ . We
can compute stable orbital integrals as in [CL99, Thm A.1.1]. (They consider analogues of d(GR)φG,ξ

and d(GR)fG,Ξ, in case ξ and Ξ are trivial. For the computation of SO
G(R)
γ (φG,ξ), one may also use

[Kot92a, Lem 3.1].) Since our normalization of Haar measures is different from that of [CL99], we
need to include the volume factors in the values of stable orbital integrals.

SOG(R)
γ (φG,ξ) = µIγ/µAG,∞(Iγ(R)/AG,∞)−1tr ξ(γ)

SO
G(R)
δθ (fG,Ξ) = µIδθ/µAG,∞(Iδθ(R)/AG,∞)−1tr Ξ+(δθ)

Here we write SO
G(R)
γ (φG,ξ) and SO

G(R)
δθ (fG,Ξ) for Φ1

G(R)(γ, φG,ξ) and Φ1
G(R)(δ, fG,Ξθ), respectively, in

the notation of [CL99]. Observe that for any δ and γ as above, SO
G(R)
δθ (fG,Ξ) and SO

G(R)
γ (φG,ξ) have

the same value. Hence the functions fG,Ξ and φG,ξ are BC-matching in the sense of §4.2.

4.4. Transfer for ζ̃n1,n2
and compatibility of transfers. Fix n1 and n2 with n1 + n2 = n, n1 ≥

n2 > 0. Recall that ζ̃n1,n2
: LGn1,n2

→ LGn was defined in §3.2. Often ζ̃n1,n2
will be written as ζ̃ in this

subsection. We would like to give an explicit recipe for the transfer of functions and representations

with respect to ζ̃n1,n2
. Since Gn1,n2

and Gn are essentially products of general linear groups, it is
easy to work explicitly. Recall that we have given a Q-isomorphism G~n ' RE/QGL1 ×RF/QGL~n for
~n = (n) and ~n = (n1, n2). For each place v of Q,

G~n(Qv) ' E×v ×GL~n(Fv).

Let Qn1,n2 := RE/QGL1 × RF/QPn1,n2 , a parabolic subgroup of Gn. Let χ$ : Gn1,n2(A) → C× be a
character such that

(λ, g1, g2) ∈ A×E ×GLn1(AF )×GLn2(AF ) 7→ $

(
λ−N(n1,n2)

2∏
i=1

NF/E(det(gi))
ε(n−ni)

)
.

For each fv ∈ C∞c (Gn(Qv)) and ΠM,v ∈ Irr(Gn1,n2
(Qv)), define ζ̃∗(fv) ∈ C∞c (Gn1,n2

(Qv)) and

ζ̃∗(ΠM,v) ∈ Irr(Gn(Qv)) by

ζ̃∗(fv) := f
Qn1,n2
v · χ$,v, ζ̃∗(ΠM,v) := n-indGnQn1,n2

(ΠM,v ⊗ χ$,v).

(Here det is the product of the component for E×v with the determinant of the component for

GLn1,n2(Fv).) If fv ∈H ur(Gn(Qv)) then ζ̃∗(fv) is no other than the image of the unramified Hecke

algebra morphism which is dual to ζ̃. Lemma 3.3 implies that for every v,

tr ΠM,v

(
ζ̃∗(fv)

)
= tr

(
ζ̃∗(ΠM,v)

)
(fv). (4.17)

Now we check whether the transfers for η̃n1,n2
, ζ̃n1,n2

, BCn1,n2
and BCn are compatible, case by

case.
Case 1. v ∈ UnrF/Q and v /∈ RamQ($).

We have two commutative diagrams as follows. The first one is the dual of the diagram (3.4), thus
commutative. Then the commutativity of the second one is easy to deduce from the character relation
(3.8), (4.5) and (4.17).

H ur(Gn(Qv))
ζ̃∗ //

BC∗n
��

H ur(Gn1,n2(Qv))

BC∗n1,n2

��

Irrur(Gn(Qv)) Irrur(Gn1,n2(Qv))
ζ̃∗oo

H ur(Gn(Qv))
η̃∗

// H ur(Gn1,n2(Qv)) Irrur(Gn(Qv))

BCn

OO

Irrur(Gn1,n2(Qv))
η̃∗

oo

BCn1,n2

OO
(4.18)
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Case 2. v ∈ SplF/F+,Q. (v ∈ SplE/Q or v /∈ SplE/Q)
Here we have similar diagrams as in Case 1. All the maps are previously defined and we are

interested in the commutativity. Note that we prefer to use Grothendieck groups rather than the sets

of isomorphism classes since parabolic induction (involved in ζ̃∗ and η̃∗) can be reducible.

C∞c (Gn(Qv))
ζ̃∗ //

BC∗n
��

C∞c (Gn1,n2
(Qv))

BC∗n1,n2

��

Groth(Gn(Qv)) Groth(Gn1,n2
(Qv))

ζ̃∗oo

C∞c (Gn(Qv))
η̃∗

// C∞c (Gn1,n2
(Qv)) Groth(Gn(Qv))

BCn

OO

Groth(Gn1,n2
(Qv))

η̃∗

oo

BCn1,n2

OO
(4.19)

It follows from the definition of maps without difficulty that the second diagram is commutative.
We claim that the first diagram is commutative (not as functions but) as invariant distributions, in
the following sense: for every fv ∈ C∞c (Gn(Qv)) and πv ∈ Irr(Gn1,n2

(Qv)),

trπv

(
BC∗n1,n2

(ζ̃∗(fv))
)

= trπv (η̃∗(BC∗n(fv))) . (4.20)

To prove this, using earlier character identities, we may instead show that

tr
(
BC(πv)(ζ̃

∗(fv)) ◦A0
BC(πv)

)
= tr

(
BC(η̃∗(πv))(fv) ◦A0

BC(η̃∗(πv))

)
.

This follows from Theorem 2 of [Clo84], noting that A0
BC(πv) gives rise to A0

BC(η̃∗(πv)) as in §6.2 of

that article.

Remark 4.3. Again, Case 1 and Case 2 are compatible if v ∈ UnrF/Q ∩ SplF/F+,Q, v /∈ RamQ($) and
representations are unramified.

Remark 4.4. When v =∞, there is the following analogue of (4.18) and (4.19) on the representation
side. Let ϕH,∞ be a discrete L-parameter of Gn1,n2(R) and ϕ∞ be the L-parameter of Gn(R) given
by ϕ∞ = η̃ϕH,∞. Write BC(ϕH,∞) (resp. BC(ϕ∞)) for the image of base change, namely the
representation of Gn1,n2

(C) (resp. Gn(C)) corresponding to ϕH,∞|WC (resp. ϕ∞|WC). Then we have

ζ̃∗(BC(ϕH,∞)) = BC(ϕ∞). This is a simple consequence of the fact that (3.4) is commutative. As
for test functions, we do not need an exact analogue of (4.18) or (4.19). (We have a loose analogue.)
The discussion of the current remark remains valid if Gn is replaced with any inner form.

4.5. Simplification of the twisted trace formula. The twisted trace formula by Arthur ([Art88a],
[Art88b]) is unconditional thanks to work of Kottwitz and Rogawski ([KR00]) and recent work of De-
lorme and Mezo ([DM08]). (The two issues were the trace Paley-Wiener theorem over archimedean
fields for non-connected groups and whether the distributions in the invariant trace formula are sup-
ported on characters. cf. [Art88a, p.330].) Let f ∈ C∞c (G(A), χξ). The function fθ on Gθ(A) is
simply defined as the right translation of f by θ. The twisted trace formula for Gθ is an equality
between

IGθspec(fθ) = IGθgeom(fθ) (4.21)

where each side is defined in section 3 and 4 of [Art88b]. Recall from Remark 4.2 that there is a
natural isomorphism G(A) ' G(A)1 × AGθ,∞. Let f1 denote the restriction of f to G(A)1. Actually
both sides of (4.21) can be evaluated in terms of f1, as remarked on [Art88b, p.504].

Let ξ and Ξ be as in §4.3. Define STGe (φ) for φ ∈ C∞c (G(A), χξ) by

STGe (φ) :=
∑
γ

τ(G) · SOG(A)
γ (φ) (4.22)

where γ runs over a set of representatives for Q-elliptic semisimple stable conjugacy classes in G(Q).
Fix a finite set S ⊂ SplF/F+,Q containing RamF/Q ∪ RamQ($). (See (4.1).) From here until the

end of §4, we assume that φS ∈ H ur(G(AS)) (resp. φSfin
∈ C∞c (G(ASfin

))) is a BC-transfer of fS

(resp. fSfin
) according to Case 1 (resp. Case 2) of §4.2. The functions

φ := φS · φSfin
· φG,ξ and f := fS · fSfin

· fG,Ξ
are BC-matching functions.
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Proposition 4.5. Suppose that [F+ : Q] ≥ 2. Then

IGθgeom(fθ) =
∑
δ

vol(Iδθ(Q)AGθ,∞\Iδθ(A))O
G(A)
δθ (f)

where δ runs over a set of representatives for θ-elliptic θ-conjugacy classes in G(Q). (Here Iδθ :=
ZG(δθ)0.)

Remark 4.6. In case F+ = Q, the right hand side has to include more terms. See [Mor10, Prop 8.2.3].

Proof. We know that f is cuspidal at∞ and that O
G(A)
δθ (f) = 0 if δ is not θ-elliptic in G(R) by [CL99,

Thm A.1.1]. This is a twisted analogue of the first condition of [Art88b, Cor 7.4].
To prove the proposition, it suffices to show that IGθM (δθ, fθ) = 0 for every proper Levi subset

M ⊂ Gθ and semisimple element δ ∈ M(Q). Once we have done this, we can use the argument in
the proof of Theorem 7.1.(b) and Corollary 7.4 of [Art88b] to finish the proof, even though f is not
necessarily cuspidal at any other place than ∞. (The assumption that f is cuspidal at two places was
imposed by Arthur to guarantee that IGθM (δθ, fθ) = 0.)

Since fG,Ξ is a cuspidal function, the splitting formula ([Art88a, Prop 9.1]) implies that

IGθM (δθ, fθ) =
∑
L

dGθM (L,G)ÎLM(δθ, (f∞θ)L)IGθM (δθ, fG,Ξθ)

in Arthur’s notation, where the sum is taken over the Levi subsets L of Gθ containing M. (Note that

IGθM (δθ, fG,Ξθ) = ÎGθM (δθ, fG,Ξθ). cf. [Art88a, Cor 8.3]) The point is that IGθM (δθ, fG,Ξθ) = 0 unless M
is a cuspidal Levi subset of Gθ, as shown in the proof of [Mor10, Prop 8.2.3]. So it suffices to prove
that Gθ does not have any proper cuspidal Levi subset. By the very definition of proper cuspidal
Levi subsets ([Mor10, §8.2]), we can reduce the proof to showing that G has no proper cuspidal Q-
Levi subgroups in the sense of [Mor10, Def 3.1.1]. Recall that a Levi subgroup M ⊂ G is cuspidal
if MR has no maximal tori which are anisotropic modulo (AM )R. Suppose that M  G. Let G1

denote the kernel of the multiplier map G→ Gm. Consider the Levi subgroup M1 := M ∩G1 of G1.
For notational convenience we prove that M1 is not cuspidal, as the same proof will show M is not
cuspidal. The fact that M1  G1 implies that M1 contains a direct factor of the form D = RF/QGLa
for some a ∈ Z>0. But the center of D ×Q R contains a split torus of rank [F+ : Q] > 1 whereas AD
is a rank 1 torus. So M1 cannot be cuspidal. �

Corollary 4.7. ([Lab, Thm 4.13], cf. [Lab99, Thm 4.3.4])
Let τ(G) be the Tamagawa number of G (cf. Lemma 3.1). Suppose that [F+ : Q] ≥ 2. Then

IGθgeom(fθ) = τ(G)−1 · STGe (φ).

Proof. We use the notation of [Lab99]. (The only unfortunate difference is that his use of the symbols
f and φ is opposite to ours.) By théorème 4.3.4 of Labesse,

TGθe (fθ) =
τ(G)JZ(θ)

τ(G)d(G,G)
· STGe (φ).

Comparing the definition of TGθe ([Lab99, §4.1]) with the formula of Proposition 4.5, we see that
TGθe (fθ) equals JZ(θ) · IGθgeom(fθ). By Lemma 3.1, τ(G) = 1. Since H1(R,G) is trivial, d(G,G) = 1
(which is defined on [Lab99, p.45]). So the proof is complete. �

In view of (4.2), fix a minimal Levi subgroup

M0 := RE/QGL1 ×RF/Q(i(1,...,1)(GL1 × · · · ×GL1︸ ︷︷ ︸∑
i ni

))

of G = G~n. Let M be a Q-Levi subgroup of G containing M0. (We do not assume that M is θ-stable.)
Choose a parabolic subgroup Q containing M as a Levi subgroup. The group WGθ(aM )reg defined on
[Art88b, p.517] acts on the set of parabolic subgroups which have M as a Levi component. For each
s ∈ WGθ(aM )reg, let Qs denote s(Q). Choose a representative w ∈ Gθ(Q) of s. Note that Φ−1θ acts
on G by (λ, g) 7→ (λc, λc tg−c). So Φ−1θ preserves any M containing M0. In particular, Φ−1θ defines
an element of WGθ(aM )reg for each M .
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Consider the regular representation RM,disc of M(A) on L2
disc(M(Q)AM,∞\M(A)). Noting that

s acts on M , let RM,disc(s) denote the action φ 7→ φ ◦ s on the underlying space for RM,disc. Let

x 7→ ρQ(s, 0, x) denote the representation n-indGQ(RM,disc) of G(A). Arthur defined the operators
ρQ(s, 0, xθ) (for x ∈ G(A)) and

ρQ(s, 0, f1θ) : n-indGQ(RM,disc)→ n-indGQs(RM,disc)

on page 516 of [Art88b]. These operators are G(A)1-equivariant if the G(A)1-action on the target
is twisted by θ. The decomposition RM,disc = ⊕ΠMΠM into irreducible subrepresentations yields a
decomposition of operators

ρQ(s, 0, f1θ) = ⊕ΠMρQ(s, 0, f1θ; ΠM ).

If ΠM is such that ΠM ' Πs
M then ρQ(s, 0, f1θ; ΠM ) can be seen as a composition of the following

operations

n-indGQ(ΠM )
ρQ(s,0,θ;ΠM ) // n-indGQs(ΠM )θ

n-indG
Qs (ΠM )(f1)

// n-indGQs(ΠM )θ (4.23)

where the first arrow is described as follows. Let V (ΠM ) be the underlying vector space for ΠM .
Then ρQ(s, 0, θ; ΠM ) is an isomorphism sending ψ : G(A) → V (ΠM ) to ψ′ which is defined by

ψ′(g) = RM,disc(s)(ψ(w−1gθ)). This map does not depend on the choice of w. Here n-indGQs(ΠM )θ

denotes the representation n-indGQs(ΠM )◦θ. It is easy to see from Arthur’s description of ρQ(s, 0, f1θ)
that the following also holds.

ρQ(s, 0, f1θ; ΠM ) = ρQ(s, 0, θ; ΠM ) ◦ n-indGQ(ΠM )θ(f1) (4.24)

The intertwining operator MQ|Qs(0) sends

n-indGQs(ΠM )θ → n-indGQ(ΠM )θ. (4.25)

As ΠM is unitary, n-indGQ(ΠM )θ is irreducible for any choice of Q ⊃ M and MQ|Qs(0) is an isomor-
phism. (cf. [MW89, p.607,(3)])

Proposition 4.8.

IGθspec(fθ) =
∑
M

|WM |
|WG|

|det(Φ−1θ − 1)aGθ
M
|−1
∑
ΠM

tr
(
MQ|QΦ−1θ (0)ρQ(Φ−1θ, 0, f1θ; ΠM )

)
where M runs over the Levi subgroups of G containing M0 and ΠM runs over the irreducible Φ−1θ-
stable subrepresentations of RM,disc. (By the multiplicity one theorem for general linear groups, each
isomorphism class of ΠM contributes to RM,disc only once.)

Remark 4.9. It is easy to check that n-indGQ(ΠM ) is θ-stable if ΠM is Φ−1θ-stable.

Remark 4.10. Let r be the number of (nonzero) components in ~n, where G = G~n. If M = G, the term
|det(Φ−1θ − 1)aGθ

M
| in Proposition 4.8 is equal to 2r. The same term equals 2r+1 if M is a maximal

proper Levi subgroup of G.

Proof. By Theorem 7.1.(a) (cf. p.516-517) of [Art88b],

IGθspec(fθ) =
∑
M

|WM |
|WG|

∑
s

|det(s− 1)aGθ
M
|−1
∑
ΠM

tr
(
MQ|Qs(0)ρQ(s, 0, f1θ; ΠM )

)
where M is as above, s runs over WGθ(aM )reg, and ΠM runs over the irreducible subrepresentations
of RM,disc. The Weyl set WGθ(aM )reg is defined on page 517 of [Art88b] by the condition

|det(s− 1)aGθ
M
| 6= 0. (4.26)

and a description of its elements will be recalled as the proof proceeds. It is easy to see from Arthur’s
description of ρQ(s, 0, f1θ) that only those ΠM such that ΠM ' Πs

M contribute to the sum. The proof
is complete if we show that

tr (MQ|Qs(0)ρQ(s, 0, f1
G,Ξθ; ΠM,∞)) = 0 (4.27)
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for any s 6= Φ−1θ (which may occur only when M 6= G). By (4.24), the left side may be rewritten as

tr (MQ|Qs(0) ◦ ρQ(s, 0, θ; ΠM,∞) ◦ (n-indG~nQ (ΠM,∞))θ(f1
G,Ξ)).

Put Π := n-indG~nQ (ΠM,∞). Let A : Π → Πθ denote the operator MQ|Qs(0)ρQ(s, 0, θ; ΠM,∞). As
noted earlier, Π is irreducible and A is an isomorphism. Hence A ◦ A is a scalar operator on Π. Let
AΠθ : Πθ ∼→ Π be a normalized intertwining operator (which can also be viewed as Π

∼→ Πθ). To
prove (4.27), we may instead show

tr (Πθ(f1
G,Ξ)AΠθ ) = 0. (4.28)

We claim that if ΠM ' Πs
M for s 6= Φ−1θ then the infinitesimal character of Π is not regular. For

convenience of notation, we prove the claim when G = Gn as the proof is identical in the more general
case G = G~n. In this case M is isomorphic to Gm1,...,mr with

∑r
i=1mi = n (mi > 0). There is an

R-vector space
aGθM ' R⊕ R⊕ · · · ⊕ R︸ ︷︷ ︸

r

which is a quotient of Hom(X∗(AM ),R) by Hom(X∗(AGθ),R). An element s ∈ WGθ(aM )reg can be
represented by s = w(Φ−1θ) where Φ−1θ acts as multiplication by −1 on aGθM and w acts as an element
of the symmetric group Sr which naturally acts on aGθM by permutation. By the assumption s 6= Φ−1θ,
w is nontrivial. Write

ΠM,∞ =
⊗
σ∈ΦC

(ΠM,σ,1 ⊗ · · · ⊗ΠM,σ,r)

and w = c1 · · · ck (k ≥ 1) where ci are mutually disjoint nontrivial cycles in Sr. The condition
(4.26) implies that every ci is an odd cycle. By rearranging mi’s if necessary, let c1 be the cycle
1→ 2→ · · · → a→ 1 for an odd number a ≥ 3. Then ΠM ' Πs

M implies that

ΠM,1,σ ' Πθ
M,2,σc ' ΠM,3,σ ' Πθ

M,4,σc · · · .
This proves the claim since the isomorphism ΠM,1,σ ' ΠM,3,σ indicates that the infinitesimal character
of Π is not regular.

By the claim, if s 6= Φ−1θ and ΠM ' Πs
M then the infinitesimal character of Πθ is not equal to

that of any irreducible finite dimensional representation of G~n. In view of Remark 4.2 and the remark
below (4.13), we conclude that (4.28) holds.

�

Lemma 4.11. Suppose that M and ΠM are as in Proposition 4.8. Set

A′n-indG
Q(ΠM ) := MQ|QΦ−1θ (0) ◦ ρQ(Φ−1θ, 0, θ; ΠM ),

which is an operator from n-indGQ(ΠM ) to n-indGQ(ΠM )θ. (cf. Remark 4.9.) Then A′
n-indG

Q(ΠM )
is

normalized, i.e. A′
n-indG

Q(ΠM )
◦A′

n-indG
Q(ΠM )

= id.

Remark 4.12. If M = G, things are simpler. Let us write Π for n-indGQ(ΠM ) = ΠM . It is easy to see

that A′Π is given by RM,disc(Φ−1θ), from the paragraph between (4.23) and (4.24).

Remark 4.13. The sign of an analogous intertwining operator in the case of unitary groups is precisely
computed in [CHLb] (especially §4.4) by a different method replying on the so-called Whittaker
normalization.

Proof. For simplicity we write s = Φ−1θ and Π = n-indGQ(ΠM ). We know A′Π is an isomorphism since

ρQ(s, 0, θ; ΠM )2 = id and MQ|Qs(0) is an isomorphism. (See the paragraph above Proposition 4.8.)
For ease of reference, we use [Art05] and its notation. Recall that MQ|Qs(λ) for λ ∈ a∗Q,C is defined

by a precise global analogue of the first displayed formula of page 135. (Also see page 128 of that
article.) If λ lies in a certain chamber then the integral formula for MQ|Qs(λ) absolutely converges
([Art05, Lem 7.1]), and MQ|Qs(λ) is defined by analytic continuation in general. It is a standard fact
that the functional equation MQ|Qs(λ)MQs|Q(−λ) = id holds for any λ ∈ a∗Q,C (page 129). So the
lemma is proved if we show

MQ|Qs(λ) ◦ ρQ(s, 0, θ; ΠM ) = ρQ(s, 0, θ; ΠM ) ◦MQs|Q(−λ)
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for λ = 0. It suffices to check this equality in the range of absolute convergence. Now this is an
easy exercise using our earlier explicit description of ρQ(s, 0, θ; ΠM ) and the integral formula for
MQ|Qs(λ). �

Recall that AG,∞ = AGθ,∞ ⊂ AG,∞. Let aG,∞ : G(A) � AG,∞ denote the natural surjection.
Define χ̃ξ : G(A)→ C× by χ̃ξ := χξ ◦ aG,∞. In the notation of the above lemma, set

n-indGQ(ΠM )ξ := n-indGQ(ΠM )⊗ χ̃−1
ξ . (4.29)

If ΠM is Φ−1θ-stable then n-indGQ(ΠM )ξ is θ-stable. Observe that A′
n-indG

Q(ΠM )ξ
:= A′

n-indG
Q(ΠM )

serves

as a normalized intertwining operator for n-indGQ(ΠM )ξ. The following is easily deduced from Lemma
4.11.

Corollary 4.14. The second summand in Proposition 4.8 is computed as

tr
(
MQ|QΦ−1θ (0)ρQ(Φ−1θ, 0, f1θ; ΠM )

)
= tr

(
n-indGQ(ΠM )ξ(f) ◦A′n-indG

Q(ΠM )ξ

)
.

5. Shimura varieties and Igusa varieties

Throughout §5 and §6, we fix a prime l and an isomorphism ιl : Ql
∼→ C.

5.1. PEL datum for Shimura varieties. Consider a quintuple (F, ∗, V, 〈·, ·〉, h), called a PEL da-
tum, given as follows.

• F is a CM field with an involution ∗ = c.
• V = Fn is an F -vector space.
• 〈·, ·〉 : V × V → Q is a nondegenerate Hermitian pairing such that 〈fv1, v2〉 = 〈v1, f

cv2〉 for
all f ∈ F , v1, v2 ∈ V .

• h : C → EndF (V ) ⊗Q R is an R-algebra homomorphism such that the bilinear pairing
(v1, v2) 7→ 〈v1, h(i)v2〉 is symmetric and positive definite.

Define a Q-group G by

G(R) = {(λ, g) ∈ R× × EndF⊗QR(V ⊗Q R) | 〈gv1, gv2〉 = λ(g)〈v1, v2〉 for all v1, v2 ∈ V ⊗Q R}

for any Q-algebra R. We see that the group Gn defined in §3 is a quasi-split Q-inner form of G.
Fix an embedding τ : F ↪→ C. Suppose that F contains an imaginary quadratic field E so that

F = EF+, where F+ := F c=1. Define Φ+
C as in §3.1. Until the end of §6 we further assume that

(i) n ∈ Z≥3 is odd,
(ii) [F+ : Q] ≥ 2,
(iii) RamF/Q ⊂ SplF/F+,Q (cf. (4.1)),

(iv) GQv is quasi-split at every finite place v, and
(v) For σ ∈ Φ+

C , (pσ, qσ) is (1, n− 1) if σ = τ and (0, n) otherwise. (See §3.1 for Φ+
C .)

We list a few (but not all) implications of the above assumptions to guide readers. The assumptions
(ii) and (v) imply that G is anisotropic modulo center over Q and the reflex field for the PEL datum
is F (viewed as a subfield of C via τ). The assumption (iii) ensures that the local (quadratic) base
change is unconditional at every finite place, if ramification is suitably controlled, as it may be defined
in an elementary manner as in §4.2. (In general the local base change should involve local L-packets
and has not been established yet.) By (iv) there is an isomorphism G×Q A∞ ' Gn×Q A∞, which we
fix.

The following lemma is standard. (cf. [HT01, Lem I.7.1].) All the necessary results in Galois
cohomology that go into its proof are found in [Clo91, §2]. The point is that when n is odd, there
is no cohomological obstruction for finding a global unitary (similitude) group with prescribed local
isomorphism classes.

Lemma 5.1. As above, let F = EF+ be a CM field. For any τ : F ↪→ C, there exists a PEL datum
(F, ∗, V, 〈, ·, ·, 〉, h) such that the associated group G satisfies (iv) and (v) above.
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More explicitly, we will choose h such that under the natural R-algebra isomorphism EndF (V )R '∏
σ∈Φ+

C
Mn(C), the map h sends

z 7→

((
zIpσ 0

0 z̄Iqσ

)
σ∈Φ+

C

)
(5.1)

for some pσ, qσ ∈ Z≥0 such that pσ + qσ = n. There is a standard way to associate a C-morphism
µh : Gm → G ([Kot92b, Lem 4.1.(2)]). Under the natural isomorphism GC ' GL1 ×

∏
σ∈Φ+

C
GLn, we

may describe µh as

z 7→
(
z,

(
zIpσ 0

0 Iqσ

))
.

Fix a prime p ∈ SplE/Q such that p 6= l. Also fix a place w of F above p. (In fact the case p = l

is considered once, only in establishing Proposition 5.3.(v) where we refer to Harris-Taylor for the

proof.) Choose ιp : Qp
∼→ C such that ι−1

p τ : F ↪→ Qp induces w. We will keep τ , p, w and ιp fixed

until the end of §6.1. Define V+
p as in the beginning of §4. For convenience, write V+

p = {w1, . . . , wr}
where w1 = w. Define Φwi := HomQp(Fwi ,Qp). Using ι−1

p ι : Q ↪→ Qp we get

WFw ↪→ Gal(Qp/Fw) ↪→ Gal(Q/F ).

Write µ = µιp for the Qp-morphism µh ×C,ι−1
p
Qp. Let µ0 : Gm → Gm denote the identity map.

For each wi define µwi : Gm → (RFwi/QpGLn)×Qp Qp '
∏
σ∈Φwi

(GLn)Qp by

z 7→

(
z,

(
zIpσ 0

0 Iqσ

)
σ∈Φwi

)

so that µ = (µ0, (µwi)1≤i≤r). We have pσ = 1 if σ is induced by ι−1
p τ and pσ = 0 otherwise.

Let us describe the finite set B(GQp ,−µ). Using the isomorphism

GQp ' GL1 ×
∏

1≤i≤r

RFwi/QpGLn, (5.2)

we identify

B(GQp ,−µ) = B(GL1,−µp,0)×
∏

1≤i≤r

B(RFwi/QpGLn,−µwi)

and write b ∈ B(GQp ,−µ) as (b0, (bwi)). In view of [Shi09, Ex 4.3], there is a bijection

{h ∈ Z : 0 ≤ h ≤ n− 1} 1−1←→ B(GQp ,−µ) (5.3)

where h corresponds to b(h) = (b0, (bwi)) which is given by b0 = b1,0, bw = bn−h,h and bwi = b0,n for
i > 1 in the notation of §2.4. When b = b(h),

Jb(Qp) ' Q×p × (D×Fw,1/(n−h) ×GLh(Fw))×
∏
i>1

GLn(Fwi). (5.4)

Recall from §3.1 that we defined the groups Kv ⊂ Gn(Qv) (v 6= ∞) and the measures µGn,v on
Gn(Qv) for every v as well as µAGn,∞ on AGn,∞ = AG,∞. For each v ∈ UnrF/Q, define a hyperspecial

subgroup Uhs
v of G(Qv) to be the image of Kv under the isomorphism G(Qv) ' G~n(Qv) which was

fixed earlier. We transport µGn,v to a Haar measure µG,v on G(Qv) for each v 6= ∞ via the last
isomorphism. To fix a Haar measure on Jb(Qp), denote by Mb (cf. §5.5) the quasi-split inner form
of Jb over Qp. We may identify Mb(Qp) with Q×p ×GLn−h,h(Fw)×

∏
i>1GLn(Fwi). Choose a Haar

measure on Mb(Qp) so that Z×p ×GLn−h,h(OFw)×
∏
i>1GLn(OFwi ) has volume 1. The measure on

Jb(Qp) is chosen to be compatible with the one on Mb(Qp) in the sense of [Kot88, p.631]. Also choose
a Haar measure µG,∞ so that

∏
v µG,v/µAG,∞ is the Tamagawa measure.
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5.2. Shimura varieties and Igusa varieties. For each open compact subgroup U ⊂ G(A∞), con-
sider the following moduli problem. connected locally noetherian

F -schemes
with a geometric point

 −→ (Sets)

(S, s) 7→ {(A, λ, i, η̄)}/ ∼
where the quadruples on the right consist of

• A is an abelian scheme over S
• λ : A→ A∨ is a polarization
• i : F ↪→ End(A)⊗Z Q such that λ ◦ i(f) = i(f c)∨ ◦ λ, ∀f ∈ F .

• η̄ is a π1(S, s)-invariant U -orbit of isomorphisms of F ⊗Q A∞-modules η : V ⊗Q A∞
∼→ V As

which take the pairing 〈·, ·〉 to the λ-Weil pairing up to (A∞)×-multiples. (See [Kot92b, §5]
for more explanation.)

• An equality of polynomials detOS (f |LieA) = detE(f |V 1) holds for all f ∈ F , in the sense
of [Kot92b, §5].

• Two quadruples (A1, λ1, i1, η̄1) and (A2, λ2, i2, η̄2) are equivalent if there is an isogeny A1 →
A2 taking λ1, i1, η̄1 to γλ2, i2, η̄2 for some γ ∈ Q×.

Note that for each S and two geometric points s and s′ of S, the values of (S, s) and (S, s′) under
the above functor are canonically identified. So we can remove the reference to geometric points.
And then the above functor can be extended to a functor on the category of all F -schemes in an
obvious way. If U is sufficiently small, this functor is representable by a quasi-projective variety over
F ([Kot92b, p.391]), which we denote by ShU .

Recall that we fixed p and w in §5.1 such that p ∈ SplE/Q and w|p. For each i (including i = 1), let

Λi be a Uhs
p -stabilized OFwi -lattice in V ⊗F Fwi . It can be assumed that Λi is self-dual with respect

to 〈·, ·〉. For ~m = (m1, . . . ,mr), define

Up(~m) := Up × Z×p ×
∏
i

ker(GLOFwi
(Λi)→ GLOFwi

(Λi/m
mi
Fwi

Λi)) ⊂ G(A∞)

where mFwi is the maximal ideal of OFwi . We can construct an integral model of ShUp(~m) over OFw ,

via the following analogue of the moduli problem in [HT01, p.108-109]. (The (A, i)-compatibility
condition there corresponds to our determinant condition.) connected locally noetherian

OFw -schemes
with a geometric point

 −→ (Sets)

(S, s) 7→ {(A, λ, i, η̄p, {αi}ri=1)}/ ∼
where the tuples on the right consist of

• A is an abelian scheme over S.
• λ : A→ A∨ is a prime-to-p polarization.
• i : OF ↪→ End(A)⊗Z Z(p) such that λ ◦ i(f) = i(f c)∨ ◦ λ, ∀f ∈ OF .

• η̄ is a π1(S, s)-invariant Up-orbit of isomorphisms of F ⊗Q A∞,p-modules η : V ⊗Q A∞,p
∼→

V pAs which take the pairing 〈·, ·〉 to the λ-Weil pairing up to (A∞,p)×-multiples.
• (Determinant condition) An equality of polynomials detOS (f |LieA) = detE(f |V 1) holds

for all f ∈ OF , in the sense of [Kot92b, §5].
• α1 : w−m1Λ1/Λ1 → A[wm1 ] is a Drinfeld wm1 -structure

• for i > 1, αi : (w−mii Λi/Λi)
∼→ A[wmii ] is an isomorphism of S-schemes with OFwi -actions.

• Two tuples (A1, λ1, i1, η̄
p
1 , {αi,1}ri=1) and (A2, λ2, i2, η̄

p
2 , {αi,2}ri=1) are equivalent if there is a

prime-to-p isogeny A1 → A2 taking λ1, i1, η̄
p
1 , αi,1 to γλ2, i2, η̄

p
2 , αi,2 for some γ ∈ Z×(p).

Because of our assumption on (pτ , qτ ) and the determinant condition, if p is locally nilpotent in
S then A[w∞] (resp. A[w∞i ] for i > 1) is a Barsotti-Tate group of dimension 1 (resp. 0) if A is as
above. (cf. [HT01, p.108].) This moduli problem is representable by a quasi-projective scheme over
OFw (using the argument of [Kot92b, p.391]), which will be denoted by ShUp,~m. In fact, ShUp,~m is
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projective and flat over OF,w for all ~m and smooth if m1 = 0. The smoothness and flatness is proved
exactly as in [HT01, Lem III.4.1]. The projectivity follows from [Lan08, Thm 5.3.3.1, Rem 5.3.3.2].

The special fiber ShUp,~0 := ShUp,~0 ×OFw k(w) admits a Newton-polygon stratification into k(w)-

varieties Sh
(h)

Up,~0 where the integer h runs over 0 ≤ h ≤ n − 1. The stratification can be described as

in [HT01, p.111] or [Man05, p.580]. (Roughly speaking, Sh
(h)

Up,~0 is the locus where the Barsotti-Tate

OFw -module A[w∞] has étale height h in the sense of [HT01, p.59].) To compare the index sets for
strata in two different references, note that each 0 ≤ h ≤ n− 1 bijectively corresponds to an element

b ∈ B(GQp ,−µ) under the bijection described in (5.3). When b corresponds to h, we write Sh
(b)

Up,~0 for

Sh
(h)

Up,~0.

We may consider Igusa varieties in the sense of [Man05]. On page 576 of that paper the so-called
unramified hypothesis was imposed, which is equivalent to assuming that p is unramified in F in our
situation. The unramified hypothesis ensures that Shimura varieties have smooth integral models over
OFw when no level structure is imposed at p. However the results of that paper carry over to our case
(where p may be ramified in F ): we substitute ShUp,~0 and ShUp,~0 for XUp(0) and XUp(0) in Mantovan’s

paper. (The same applies to the Newton-polygon strata). As remarked above, ShUp,~0 is smooth over

OFw . We use the results of Drinfeld as in [HT01, Ch II] instead of the Grothendieck-Messing theory.
It is worth emphasizing that we can work without the unramified hypothesis since we are in the special
case where p splits in E and the condition (v) of §5.1 is satisfied.

Let us briefly recall the definition of Igusa varieties. Choose any Barsotti-Tate group Σb over Fp
whose associated isocrystal with G-structure corresponds to b in the sense of [Shi09, §4] (cf. [RR96,
3.3-3.5]). Since any two isogenous one-dimensional Barsotti-Tate groups over Fp with OFw -actions are
isomorphic, for each b there is a unique choice of Σb up to isomorphism (with additional structure). As
a consequence, each central leaf CΣb = CΣb,Up defined in [Man05, §3] coincides with the corresponding

stratum Sh
(b)

Up,~0. We write Igb,Up,m for the Igusa variety Jb,m (which depends on Up) defined in [Man05,

§4]. In general Igusa varieties depend on the choice of Σb, but Igb,Up,m only depends on b in our case
(up to isomorphism) since Σb is unique up to isomorphism. By [Man05, Prop 4], Igb,Up,m are finite

étale Galois coverings of Sh
(b)

Up,~0 and smooth over Fp.
An important point for us is that theorem 22 of [Man05] (also see [Man, Thm 1]), stated as

Proposition 5.2 below, works in our case. (We need to make a small change that the Rapoport-Zink

spaces should be viewed over the base OF̂ur
w

rather than Ẑur
p .) This should not be surprising since

Proposition 5.2 is a close analogue (but formulated in a different language) of [HT01, Thm IV.2.9]
which works even when p is ramified in F .5

Even though the unramified hypothesis mentioned above is imposed in [Shi09] and [Shi10], the
results of those papers also carry over to our situation without the hypothesis. Again, this is possible
as the conditions (iii) and (v) in §5.1 are satisfied. In fact, the only place where the unramified
hypothesis is necessary is the proof of [Shi09, Lem 11.1]. In that proof, in our setting without the
unramified hypothesis, we know that dim(LieA[w∞i ]) is 1 if i = 1 and 0 if i > 1. Then we can argue
as in the proof of [HT01, Lem V.4.1] (in which p may be ramified in F ) to prove Lemma 11.1 of
[Shi09]. (If the dimensions of the Lie algebras were arbitrary, the argument does not work.) Careful
readers may check that the rest of arguments in [Shi09] and [Shi10] goes through and the results of
those papers remain true in our situation.

Let ξ be an irreducible algebraic representation of G over Ql. Such a ξ gives rise to a lisse l-adic
sheaf on each ShU as well as on each Igb,Up,m. Let Lξ denote those l-adic sheaves by abuse of notation.
We write Igb and Sh for the projective systems of varieties {Igb,Up,m} and {ShU}, respectively, where
m runs over Z>0 and Up (resp. U) over sufficiently small open compact subgroups of G(A∞,p) (resp.
G(A∞)). Define

Hk(Sh,Lξ) := lim−→
U

Hk(ShU ×F F ,Lξ), Hk
c (Igb,Lξ) := lim−→

Up,m

Hk
c (Igb,Up,m,Lξ).

5In our case, it is appropriate to say that Proposition 5.2 is essentially due to Harris and Taylor. The beauty of
Mantovan’s work lies in its nice reformulation and generalization of their result.
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which are admissible representations of G(A∞)×Gal(F/F ) and G(A∞,p)×Jb(Qp), respectively. Define

H(Sh,Lξ) :=
∑
k

(−1)kHk(Sh,Lξ), Hc(Igb,Lξ) :=
∑
k

(−1)kHk
c (Igb,Lξ).

which belong to Groth(G(A∞) ×Gal(F/F )) and Groth(G(A∞,p) × Jb(Qp)), respectively. The space
Hk(Sh,Lξ) is a semisimple G(A∞)-module and admits a decomposition (cf. [HT01, p.103])

Hk(Sh,Lξ) =
⊕
π∞

π∞ ⊗Rkξ,l(π∞) (5.5)

where π∞ runs over Irr(G(A∞)) and Rkξ,l(π
∞) is a continuous finite dimensional representation of

Gal(F/F ). Define Rξ,l(π
∞) :=

∑
k(−1)kRkξ,l(π

∞), viewed in Groth(Gal(F/F )).

Let S be a finite set of places of Q containing p and∞. Set Sfin := S\{∞}. Let R ∈ Groth(G(AS)×
G′) where G′ is a topological group. A typical situation is R = H(Sh,Lξ) with G′ = G(ASfin

) ×
Gal(F/F ) or R = H(Igb,Lξ) with G′ = G(ASfin\{p})× Jb(Qp). Write R =

∑
πS⊗ρ n(πS ⊗ ρ) · [πS ][ρ]

where n(πS ⊗ ρ) ∈ Z, and πS and ρ run over Irrl(G(AS)) and Irrl(G
′), respectively. For a given πS ,

define R[πS ] ∈ Groth(G(AS)×G′) and R{πS} ∈ Groth(G′) by

R[πS ] :=
∑
ρ

n(πS ⊗ ρ) · [πS ][ρ], R{πS} :=
∑
ρ

n(πS ⊗ ρ) · [ρ]

where ρ runs over Irrl(G
′). This way we define H(Sh,Lξ)[π

S ], H(Sh,Lξ){πS}, H(Igb,Lξ)[π
S ] and

H(Igb,Lξ){πS}.
Define a functor Mantb,µ : Groth(Jb(Qp)) → Groth(G(Qp) ×WFw) using the notation of [Man05]

by (cf. §2.2)

Mantb,µ(ρ) :=
∑
i,j≥0

(−1)i+j lim−→
Up⊂G(Qp)

ExtiJb(Qp)-smooth(Hj
c (Mrig

b,µ,Up
), ρ))(−D).

Here D is the dimension of Mrig
b,µ,Up

, (−D) denotes a Tate twist, and the limit is taken over open

compact subgroups Up of G(Qp). The following proposition is the theorem 22 of [Man05] ([Man, Thm
1]), which holds in our case as explained above.

Proposition 5.2. With the notation as above, there is an equality in Groth(G(A∞)×WFw)

H(Sh,Lξ) =
∑

b∈B(GQp ,−µ)

Mantb,µ(Hc(Igb,Lξ)).

The Rapoport-Zink spaces Mrig
b,µ,Up

admit product decompositions into Rapoport-Zink spaces of

EL-types, corresponding to the decompositions (5.2), b = (b0, (bwi)) and µ = (µ0, (µwi)). (cf. [Far04,
2.3.7.1, Ex. 2.3.21].) This induces a corresponding decomposition of Mantb,µ. Namely, if we write
each ρ ∈ Irr(Jb(Qp)) as ρ0 ⊗ (⊗iρwi) according to (5.4), then

Mantb,µ(ρ) = Mantb0,µ0
(ρ0)⊗

(
⊗i Mantbwi ,µwi (ρwi)

)
. (5.6)

To the irreducible representation ξ, there is a way to attach a0(ξ) ∈ Z, ~a(ξ)σ ∈ Zn and w(ξ) ∈ Z
for each σ ∈ Φ+

C as in (3.18) and the paragraph preceding (3.18). The following proposition is an
analogue of [HT01, Prop III.2.1], except the last assertion comes from [HT01, Lem III.4.2] (for which
we allow p = l). The proof of Harris and Taylor works in our case and will be omitted.

Proposition 5.3. Recall that we fixed τ : F ↪→ C and ιl : Ql
∼→ C. Let U∞ be the centralizer of h in

G(R).

(i) The following holds where π∞ runs over Πunit(G(R), ιlξ
∨). We denote the (discrete) auto-

morphic multiplicity by m(·).

dimRkξ,l(π
∞) = | ker1(Q, G)|

∑
π

m(ιl(π
∞)⊗ π∞) dimHk(LieG(R), U∞, π∞ ⊗ ιlξ)

(ii) Let y be a prime of F not dividing l. For any σ ∈ WFy , each eigenvalue α of Rkξ,l(π
∞)(σ)

satisfies α ∈ Q and |α|2 ∈ |k(y)|Z under any embedding Q ↪→ C.
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(iii) For almost all primes y of F , for all eigenvalues α of Rkξ,l and for all embeddings Q ↪→ C,

we have |α|2 = |k(y)|k+w(ξ).
(iv) Rkξ,l(π

∞) is potentially semistable at every y|l.
(v) Suppose that a prime q splits in E and that q ∈ {p, l}. Write πq = πq,0 ⊗ (⊗v∈V+

q
πv) and

let y ∈ V+
q be the place determined by ι−1

q τ : F ↪→ Qq. If πq,0 and πy are unramified, then

Rkξ,l(π
∞) is crystalline at y if q = l and unramified at y if q = p.

5.3. Stable trace formula for Igusa varieties. Recall that the Haar measures on G(A∞), Jb(Qp)
and G~n(A)/AG~n,∞ are fixed (§3.1, §5.1), where G~n denotes elliptic endoscopic groups for G. The goal
of this subsection is to state the stable trace formula for Igusa varieties, which was the main result of
[Shi10].

We need to pin down transfer factors. For each G~n, fix ∆0
v(·, ·)

Gn
G~n

as in §3.4 at each v 6=∞, where

we take ∆0
v ≡ 1 for every v 6=∞ if ~n = (n). Choose the transfer factor ∆v(·, ·)GG~n (v 6=∞) so that

∆v(·, ·)GG~n = ∆0
v(·, ·)

Gn
G~n

(5.7)

via the isomorphism G×Q A∞ ' Gn ×Q A∞ that was fixed in §5.2. We choose the unique ∆∞(·, ·)GG~n
such that the product formula ∏

v

∆v(γH , γ)GG~n = 1

holds ([LS87, (6.4)]) for any matching pair (γH , γ) with γ ∈ G(Q), i.e. for any semisimple γ ∈ G(Q)
and any (G,H)-regular semisimple γH ∈ G~n(A) with matching stable conjugacy classes.

Fix (j, B) as in §4.3, once and for all. Recall that ∆j,B was defined in §3.5. Let e~n(∆∞) ∈ C×
denote the constant such that

∆∞(γH , γ)GG~n = e~n(∆∞)∆j,B(γH , γ) (5.8)

for any matching pair (γH , γ) ∈ G~n(R) × G(R). Note that e~n(∆∞) = 1 for ~n = (n). We claim that
for each ~n = (n1, n2),

e~n(∆∞) ∈ (C×)1, (5.9)

namely that |e~n(∆∞)| = 1. The argument is as follows. It is not hard to see from the definition (§3.4)
that for every v 6= ∞, ∆v(γH , γ)GG~n is equal to ∆IV,v(γH , γ) up to (C×)1, the latter being the ratio
of Weyl discriminants at v defined in [LS87, §3.6]. By the product formula (5.7), the same is true for
v = ∞. On the other hand, ∆j,B(γH , γ) is also equal to ∆IV,∞(γH , γ) up to (C×)1, as can be seen
from the definition of [Kot90, p.184]. (Note that χG,H in that article is a unitary character in our
case.) Hence the claim is proved.

Remark 5.4. Although a more careful analysis of transfer factors would show that e~n(∆∞) ∈ {±1},
we have not attempted to do it here. Instead, we prove the same fact with an ad hoc argument later
in the proof of Theorem 6.1. There e~n(∆∞) shows up in the coefficient of a spectral identity, which
must be a real number, hence +1 or −1.

Let φ∞,p · φ′p ∈ C∞c (G(A∞,p) × Jb(Qp)) be a complex-valued function. Assume that φ∞,p · φ′p is
an acceptable function ([Shi09, Def 6.2]). For each elliptic endoscopic group G~n for G, we recall the
construction of the function φ~nIg on G~n(A). We may assume that φ∞,p has the form φ∞,p =

∏
v 6=p,∞ φv

as the general case follows via finite linear combination.
For each place v 6= p,∞, let φ~nIg,v ∈ C∞c (G~n(Qv)) be a ∆v(·, ·)GG~n-transfer of φv (§3.4). Set H := G~n

in order to make the notation compatible with some references. Put

φ~nIg,p := hHp (5.10)

where hHp is the function constructed from φ′p in §6.3 of [Shi10], with the convention of §8.1 of that

paper. (The construction of hHp is briefly recalled in (5.32).) Set

φ~nIg,∞ := e~n(∆∞) · (−1)q(G)〈µh, s〉
∑
ϕH

det(ω∗(ϕH)) · φϕH (5.11)

in the notation of §3.5, where ϕH runs over the equivalence classes of L-parameters such that η̃ϕH ∼
φξ. Observe that φ~nIg,∞ is the function h∞ of [Kot90, p.186] multiplied by e~n(∆∞).
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The latter constant is multiplied to make up for the difference between ∆∞ and ∆j,B .
The following stable trace formula is proved in [Shi10, Thm 7.2]. It is worth noting that the proof

uses the fundamental lemma in an essential way.

Proposition 5.5. If φ∞,p · φ′p ∈ C∞c (G(A∞,p)× Jb(Qp)) is acceptable,

tr (φ∞,p × φ′p|ιlHc(Igb,Lξ)) = | ker1(Q, G)|
∑
G~n

ι(G,G~n)STG~ne (φ~nIg) (5.12)

where the sum runs over the set Eell(G) of elliptic endoscopic triples (G~n, s~n, η~n).

Let us explain the constants ι(G,G~n). By definition ι(G,G~n) = τ(G)τ(G~n)−1|Out(G~n, s~n, η~n)|−1.
Recalling that n is odd, |Out(G~n, s~n, η~n)| equals 1 for any ~n = (n) or (n1, n2). (It equals 2 if n were
even and ~n = (n/2, n/2). cf. [Rog90, Prop 4.6.1] in the case of unitary groups.) Now it is easy to
compute, by using (3.3),

ι(G,G~n) =

{
1, if ~n = (n)

1/2, if ~n = (n1, n2)

5.4. Stable trace formula for L2-automorphic spectrum of G~n(A). Keep the convention from
the last subsection. In particular we use the same Haar measures and the same transfer factors as in
§5.3.

Denote by RG,ιlξ the regular representation of G(A) on the space L2(G(Q)\G(A), χ−1
ιlξ

) consisting

of those functions G(Q)\G(A) → C which transform under AG,∞ by χ−1
ιlξ

and are square integrable

modulo AG,∞. Let π0
∞ ∈ Πdisc(G(R), ξ∨). For any φ∞ ∈ C∞c (G(A∞)), let (φ~n)∞ be a ∆(·, ·)GG~n-

transfer of φ∞. Denote by φ~nπ0
∞

the product of e~n(∆∞) with φ~nπ0
∞

given by (3.13). Then φ~nπ0
∞

is a

∆(·, ·)GG~n -transfer of φπ0
∞

. (We have to multiply e~n(∆∞) due to the difference of transfer factors. See
formula (5.8).) The following proposition is an analogue of Proposition 5.5, which is derived from
the trace formula for compact quotients by stabilizing geometric terms after Langlands and Kottwitz
([Lan83], [Kot86]; especially theorem 9.6 of the latter). Note that Proposition 5.6 is unconditional, as
is Proposition 5.5. Although the stabilization of Langlands and Kottwitz relies on the fundamental
lemma and the transfer conjecture, these were settled by a recent proof of Ngô ([Ngo]), building on
work of Waldspurger and others.

Proposition 5.6. The following equality holds, where the first sum is taken over the set of isomor-
phism classes of π ∈ Irr(G(A)) and the second is over the set Eell(G) of elliptic endoscopic triples
(G~n, s~n, η~n).

trRG,ιlξ
(
φ∞ · φπ0

∞

)
=
∑
π

m(π) · trπ(φ∞ · φπ0
∞

) =
∑
G~n

ι(G,G~n)STG~ne ((φ~n)∞ · φ~nπ0
∞

) (5.13)

Remark 5.7. The number | ker1(Q, G)| shows up in the formula (5.12) but not in (5.13). This comes
from the fact that our moduli varieties ShU over F are | ker1(Q, G)|-copies of the usual canonical
models of Shimura varieties. See [Kot92b, §8] for explanation.

Remark 5.8. Proposition 5.6 will not be used in this paper until the proof of Corollary 6.5.

5.5. Definition of n-Redb~n. In §5.5 we will freely use notation and terminology from [Shi10], especially
section 6 there.

For each (H, s, η) = (G~n, s~n, η~n) in Eell(G), recall that there is a finite set Eeff
p (Jb, G;H) consisting

of (isomorphism classes of) triples (MH , sH , ηH). Such (MH , sH , ηH) is a G-endoscopic triple for Jb.
The Qp-group MH is equipped with a Qp-morphism νMH

: D → MH and a finite set I(MH , H)
consisting of certain Qp-embeddings MH ↪→ H whose images are Levi subgroups of H. We will use

the normalization of transfer factors ∆(·, ·)Mb

MH
and ∆(·, ·)JbMH

as in [Shi10, Eqn (8.6)]. The constant
cMH

∈ {±1}, assigned to each (MH , sH , ηH), may be evaluated as in section 8.1 of the same paper.
As the numbers cMH

intervene in the definition (5.32) of φ~nIg,p, they will be included in the definition

of n-Redb~n (thus also Redb~n), which is motivated by Lemma 5.10 below.
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Define n-Redb~n to be the composition of the following maps.

Groth(H(Qp)) −→
⊕

(MH ,sH ,ηH)

Groth(MH(Qp))
⊕η̃H,∗−→ Groth(Mb(Qp))

LJ
Mb
Jb−→ Groth(Jb(Qp)) (5.14)

The first map is the direct sum of the maps from Groth(H(Qp)) to Groth(MH(Qp)) for all (MH , sH , ηH) ∈
Eeff
p (Jb, G;H), where the map for each (MH , sH , ηH) is given by ⊕i cMH

· JHP (iνMH )op as i runs over

I(MH , H). In fact, I(MH , H) is always a singleton in our case, so we will simply write PMH
for

P (iνMH
). (See Case 1 and 2 below.) As for η̃H,∗, an explicit definition is given below case by case.

This map η̃H,∗ should be seen as the functorial transfer with respect to the L-morphism η̃H . Not-

ing that Mb(Qp) is a product of general linear groups, LJMb

Jb
is the “Jacquet-Langlands” map on

Grothendieck groups defined by [Bad07] (cf. §2.4).

Define Redb~n by

Redb~n(πH,p) := n-Redb~n(πH,p)⊗ δ̄1/2
P (νb)

.

Case 1. ~n = (n), i.e. (H, s, η) = (Gn, 1, id).
In this case Eeff

p (Jb, G;H) has a unique isomorphism class represented by (MH , sH , ηH) = (Mb, 1, id).
So we may take η̃H = id and η̃H,∗ = id. In that case cMH

= ep(Jb) ([Shi10, Rem 6.4]). There are
isomorphisms

G(Qp) ' Q×p × GLn(Fw) ×
∏
i>1GLn(Fwi)

Mb(Qp) ' Q×p × GLn−h(Fw)×GLh(Fw) ×
∏
i>1GLn(Fwi).

(5.15)

An analogous decomposition for Jb(Qp) was given in (5.4). The set I(MH , H) contains a unique
element, which may be represented by the Levi embedding iMb

: Mb ↪→ G which is the obvious
block diagonal embedding on the Fw-component with respect to (5.15). (The G(Qp)-conjugacy class
of iMb

is canonical.) Let h ∈ [0, n − 1] be the integer corresponding to b as in (5.3). We see that
ep(Jb) = (−1)n−h−1 in view of (5.4). If πp = πp,0 ⊗ (⊗iπwi) ∈ Irrl(G(Qp)) then it is clear that

n-Redbn(πp) = (−1)n−h−1πp,0 ⊗ n-Redn−h,h(πw)⊗ (⊗i>1πwi). (5.16)

where n-Redn−h,h is defined in §2.4. An analogue of (5.16) holds for Redbn(πp) if n-Redn−h,h is

replaced by Redn−h,h on the right hand side.

Case 2. ~n = (n1, n2). i.e. (H, s, η) = (Gn1,n2
, sn1,n2

, ηn1,n2
).

In this case we have the following isomorphisms over Qp.

G ' GL1 ×
∏
i≥1RFwi/QpGLn

H ' GL1 ×
∏
i≥1RFwi/QpGLn1,n2

Mb ' GL1 × RFw/QpGLn−h,h ×
∏
i>1RFwi/QpGLn

Jb ' GL1 × RFw/Qp

(
D×Fw,1/(n−h) ×GLh

)
×

∏
i>1RFwi/QpGLn

(5.17)

Consider the following two groups which will be viewed as Levi subgroups of H via the natural block
diagonal embeddings, which are to be denoted by iMH,1

and iMH,2
.

MH,1 = GL1 × RFw/QpGLn−h,h−n2,n2
×
∏
i>1RFwi/QpGLn1,n2

(if h ≥ n2)

MH,2 = GL1 × RFw/QpGLn−h,h−n1,n1
×
∏
i>1RFwi/QpGLn1,n2

(if h ≥ n1)
(5.18)

The dual groups are described as follows. The L-groups are given by an obvious action of WQp on the

dual groups. Namely WQp permutes the index sets Hom(Fwi ,Qp).

Ĝ = C× ×
∏
i≥1GLn(C)Hom(Fwi ,Qp)

Ĥ = C× ×
∏
i≥1GLn1,n2

(C)Hom(Fwi ,Qp)

M̂b = C× × GLn−h,h(C)Hom(Fw,Qp) ×
∏
i>1GLn(C)Hom(Fwi ,Qp)

M̂H,1 = C× × GLn−h,h−n2,n2
(C)Hom(Fw,Qp) ×

∏
i>1GLn1,n2

(C)Hom(Fwi ,Qp)

M̂H,2 = C× × GLn−h,h−n1,n1
(C)Hom(Fw,Qp) ×

∏
i>1GLn1,n2

(C)Hom(Fwi ,Qp)

(5.19)
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We give the maps ηH,j : M̂H,j → M̂b (j = 1, 2) so that ηH,j is the identity on C× and the obvious
block diagonal embedding on the Fwi-component (i ≥ 1). Extend ηH,1 to η̃H,1 : LMH,1 → LMb by
sending z ∈WQp to(

$(z)−N(n1,n2), ($(z)ε(n−n1), $(z)ε(n−n1), $(z)ε(n−n2)), ($(z)ε(n−n1), $(z)ε(n−n2))
)
o z.

Similarly define η̃H,2 : LMH,2 → LMb, which maps z ∈WQp to(
$(z)−N(n1,n2), ($(z)ε(n−n2), $(z)ε(n−n2), $(z)ε(n−n1)), ($(z)ε(n−n1), $(z)ε(n−n2))

)
o z.

With respect to (5.19), let

sMH,1
:= (1, (1, 1,−1), (1, 1)) ∈ Z(M̂H,1), sMH,2

:= (1, (−1,−1, 1), (1, 1)) ∈ Z(M̂H,2).

Recall that the sets Eef(Mb, G;H) and Eeff(Jb, G;H) are defined in [Shi10, §6.2]. Certainly (MH,j , sMH,j
, ηH,j)

(j = 1, 2) belong to Eef(Mb, G;H). (In general Eef(Mb, G;H) has other elements, but they do not
concern us since they are not contained in Eeff(Jb, G;H).) Using the fact that Jb has D×Fw,1/(n−h) ×
GLh(Fw) in its product decomposition, it is easy to check that

Eeff(Jb, G;H) =

 ∅, if h < n2,
{(MH,1, sMH,1

, ηH,1)}, if n2 ≤ h < n1,
{(MH,j , sMH,j

, ηH,j), j = 1, 2}, if h ≥ n1.
(5.20)

(In order that (MH , sMH
, ηH) lies in Eeff(Jb, G;H), the element sMH

should transfer to Ĵb = M̂b via
ηH so that it is either +1 or −1 in the GLn−h(C) block of the Fw-component, since DFw,1/(n−h) is a
division algebra.) From now on, whenever we consider (MH,j , sMH,j

, ηH,j), we assume the condition

on h of (5.20) so that the triple belongs to Eeff(Jb, G;H).

Let l̃MH,j
: LMH,j → LH (j = 1, 2) be the obvious embedding, except that l̃MH,2

on the Fw-
component is given by

(A1, A2, A3) ∈ GLn−h,h−n1,n1
7→
(
A3,

(
A1 0
0 A2

))
∈ GLn1,n2

.

Then one can directly check that l̃Mb
: LMb → LG can be chosen to be a Ĝ-conjugate of the obvious

embedding so that the following commutes.

LMb

l̃Mb // LG

LMH,j

η̃H

OO

l̃MH,j // LH

η̃

OO (5.21)

For each j ∈ {1, 2}, the set I(MH,j , H) has a single element, which may be represented by the Levi
embedding iMH,j

: MH,j ↪→ H. The parabolic subgroup PMH,j
⊂ H is generated by MH,j and upper

triangular matrices of GLn1,n2 at the Fw-component.
We are about to define η̃H,j,∗ : Groth(MH,j(Qp)) → Groth(Mb(Qp)) and give a relevant trace

identity, in a way similar to Case 2 of §3.4. Let u := w|E . Define a unitary character χ+
u,j : MH,j(Qp)→

C× such that

χ+
u,j(λ) = $u(λ)−N(n1,n2),

χ+
u,j(gw,1, gw,2, gw,3) =

 $u

(
NFw/Eu

(
det((gw,1gw,2)ε(n−n1)g

ε(n−n2)
w,3 )

))
, j = 1,

$u

(
NFw/Eu

(
det((gw,1gw,2)ε(n−n2)g

ε(n−n1)
w,2 )

))
, j = 2,

χ+
u,j(gwi,1, gwi,2) = 1,

(5.22)

where (λ, (gw,1, gw,2, gw,3), (gwi,1, gwi,2)) denotes an element of MH,j(Qp) with respect to (5.18). For
each φ∗p ∈ C∞c (Mb(Qp)) and πMH,j

∈ Irrl(MH,j(Qp)), define

φMH,j
p := (φ∗p)

Qj · χ+
u,j , and η̃H,j,∗(πMH,j

) := n-indMb

Qj
(πMH,j

⊗ χ+
u,j) (5.23)
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where Qj is any parabolic subgroup of Mb which has MH,j as a Levi subgroup. As in §3.4, we can

normalize ∆p(·, ·)Mb

MH,j
with respect to η̃H,j so that φ

MH,j
p is a ∆p(·, ·)Mb

MH,j
-transfer of φ∗p. Note that

η̃H,j,∗ is independent of the choice of Qj . We have the following identity analogous to (3.10). The
first equality holds by definition and the second by Lemma 3.3.(ii).

trπMH,j

(
φMH,j
p

)
= tr (πMH ,j ⊗ χ+

u,j)((φ
∗
p)
Qj ) = tr

(
η̃H,j,∗(πMH,j

)
) (
φ∗p
)

(5.24)

The next job is to compute cMH,j
∈ {±1}. We use the result and notation from [Shi10, §8.1]. Note

that our sn1,n2
is the element s ∈ Z(Ĥ) of that article. We may take the decomposition s = s1s2 with

s1 ∈ Z(Ĥ)Gal(Qp/Qp) and s2 = 1. It is easy to compute νb as in [Shi09, Ex 4.3]. From this we see that

ν̂
MH,j

b : Z(M̂H,j)
Gal(Qp/Qp) → C× can be described as

C×× ((C×)3)Hom(Fw,Qp)×
∏
i>1((C×)2)Hom(Fwi ,Qp) −→ C×

(z, (zw,1, zw,2, zw,3), (zwi,1, zwi,2)) 7→
{
zzw,1, if j = 1,
zzw,2, if j = 2.

(5.25)

(Note that the number of copies of C× may be smaller in (5.25). Namely in case h = n − nj for
j ∈ {1, 2}, (5.25) is correct after erasing the corresponding copy of C× from the Fw-component.) Now
[Shi10, Eqn (8.7)] tells us that

cMH,j
= ep(Jb)µ1(s2)〈ν̂MH,j

b , s1〉−1 =

{
ep(Jb), if j = 1,
−ep(Jb), if j = 2.

(5.26)

Of course we know that ep(Jb) = (−1)n−h−1.

Recall the definition of n-Redbn1,n2
from (5.14). In the current case, we see from (5.20) and (5.26)

that n-Redbn1,n2
is equal to

0, h < n2,

ep(Jb) · LJMb

Jb
◦ η̃MH,1,∗ ◦ JHP op

MH,1

, n2 ≤ h < n1,

ep(Jb)
∑2
j=1(−1)j−1LJMb

Jb
◦ η̃MH,j ,∗ ◦ JHP op

MH,j

, h ≥ n1.

(5.27)

We set up notation for Lemma 5.9. Let πH,p be any representation of Irrl(H(Qp)) and set πM,p :=
πH,p ⊗ χ+

$,u, where χ+
$,u is defined in Case 2 of §3.4.6 Put πp := η̃∗(πH,p), or equivalently

πp := n-indGH(πM,p).

Here H is viewed as a Levi subgroup of G (over Qp). Write

πM,p = πp,0 ⊗
⊗
i≥1

(πM,wi,1 ⊗ πM,wi,2) , πp = πp,0 ⊗
⊗
i≥1

πwi

where πp,0 ∈ Irrl(Q×p ), πM,wi,j ∈ Irrl(GLnj (Fwi)) and πwi ∈ Groth(GLn(Fwi)). (As a parabolic
induction, πwi may be reducible.) Let us write the following Jacquet modules as finite sums of
irreducible representations.

J
GLn1

P op
n−h,h−n2

(πM,w,1) =
∑
k

αk,1 ⊗ αk,2, J
GLn2

P op
n−h,h−n1

(πM,w,2) =
∑
k

βk,1 ⊗ βk,2. (5.28)

Define X1(h, πH,p), X2(h, πH,p) ∈ Groth(D×Fw,1/(n−h) ×GLh(Fw)) as follows.

X1(h, πH,p) =

{ ∑
k LJn−h(αk,1)⊗ n-ind(αk,2 ⊗ πM,w,2), if h ≥ n2,

0, if h < n2,

X2(h, πH,p) =

{ ∑
k LJn−h(βk,1)⊗ n-ind(βk,2 ⊗ πM,w,1), if h ≥ n1,

0, if h < n1.

6There is no Levi subgroup M in this subsection. The notation πM,p is justified by the fact that BC(πM,p) should

appear as the p-component of ΠM of §6.1. (The same holds for BC(πH,p) and ΠH .) The use of M in the subscript
is intended to reflect the fact that πp is parabolically induced from πM,p. (In contrast, πp is viewed as an endoscopic

transfer of πH,p.)
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It is immediately checked that (5.29) below provides an equivalent definition for X1(h, πH,p) when
h ≥ n2 and X2(h, πH,p) when h ≥ n1.

X1(h, πH,p) = n-indGLhGLh−n2,n2

(
n-Redn−h,h−n2(πM,w,1)⊗ πM,w,2

)
X2(h, πH,p) = n-indGLhGLh−n1,n1

(
n-Redn−h,h−n1(πM,w,2)⊗ πM,w,1

)
(5.29)

Lemma 5.9. Put ourselves in Case 2 as above. The following hold in Groth(Jb(Qp)).
(i) n-Redbn(πp) = ep(Jb) · πp,0 ⊗ (X1(h, πH,p) +X2(h, πH,p))⊗ (⊗i>1πwi).

(ii) n-Redbn1,n2
(πH,p) = ep(Jb) · πp,0 ⊗ (X1(h, πH,p)−X2(h, πH,p))⊗ (⊗i>1πwi).

Proof. We will present a proof when h ≥ n1. The same proof works in the other cases if the terms
involving h− n1 (resp. h− n1 and h− n2) are disregarded in case n2 ≤ h < n1 (resp. h < n2).

The proof of (i) goes as follows. Recall from (5.16) that

n-Redbn(πp) = ep(Jb) · πp,0 ⊗X ⊗ (⊗i>1πwi)

where X ∈ Groth(D×Fw,1/(n−h) ×GLh(Fw)) is described as

X = n-Redn−h,h(πw) = LJn−h

(
JGLn
P op
n−h,h

(n-ind(πM,w,1 ⊗ πM,w,2))
)

= LJn−h

(
n-indGLhGLh−n2,n2

(
J
GLn1

P op
n−h,h−n2

(πM,w,1)

)
+ n-indGLhGLh−n1,n1

(
J
GLn2

P op
n−h,h−n1

(πM,w,2)

)
+ Y

)
The last identity is implied by the geometrical lemma ([BZ77, p.448]), where Y is a certain linear
combination of irreducible representations of GLn−h(Fw) × GLh(Fw) of which each GLn−h(Fw)-
component is a full parabolic induction from a proper Levi subgroup. It follows from [Bad07, Prop
3.3] that LJn−h(Y ) = 0. Therefore X = X1(h, πH,p) +X2(h, πH,p) and the proof of (i) is complete.

To demonstrate (ii), we use the identity

η̃MH,j ,∗ ◦ JHP op
MH,j

(πH,p) = n-indMb

MH
◦ JHP op

MH,j

(πM,p) (5.30)

which is verified from the definition of η̃MH,j ,∗. By (5.27) and (5.30),

n-Redbn1,n2
(πH,p) = ep(Jb)

2∑
j=1

(−1)j−1LJMb

Jb
◦ n-indMb

MH
◦ JHP op

H
(πM,p)

= ep(Jb) · πp,0 ⊗X ⊗

(⊗
i>1

(n-ind(πM,wi,1 ⊗ πM,wi,2))

)
where X ∈ Groth(D×Fw,1/(n−h) ×GLh(Fw)) is given by

LJn−h ◦
(

n-indhh−n2,n2
◦ JGLn1,n2

P op
n−h,h−n2,n2

− n-indhn1,h−n1
◦ JGLn1,n2

P op
n1,n−h,h−n1

)
(πM,w,1 ⊗ πM,w,2). (5.31)

Plugging in (5.28), we obtain

X =
∑
k

LJ(αk,1)⊗ n-ind(αk,2 ⊗ πM,w,2))−
∑
k

LJ(βk,1)⊗ n-ind(πM,w,1 ⊗ βk,2)

which is nothing but X1(h, πH,p)−X2(h, πH,p).
�

5.6. n-Redb~n and φ~nIg,p. The following lemma shows that the construction of φ~nIg,p is “dual” to the

representation-theoretic operation Redb~n. Lemma 5.10 is a key input in the analysis of the p-part of
representations in the proof of Theorem 6.1.

Lemma 5.10. Let (H, s, η) = (G~n, s~n, η~n) ∈ Eell(G). For any πH,p ∈ Groth(H(Qp)),

trπH,p(φ
~n
Ig,p) = tr (Redb~n(πH,p))(φ

′
p).

(Here test functions are Ql-valued.)
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Proof. We freely use the results and notation of [Shi10, §6.3]. Recall that by definition (see the formula
above Lemma 6.6 of [Shi10])

φ~nIg,p =
∑

(MH ,sH ,ηH)

cMH
· φ̃MH

p (5.32)

as functions on H(Qp), where the sum is taken over Eeff
p (Jb, G;H). As we noted earlier, I(MH , H) is

a singleton, so we chose to write φ̃MH
p rather than φ̃MH ,i

p with i ∈ I(MH , H). By [Shi10, Lem 3.8],

trπH,p(φ̃
MH
p ) = tr

(
JHP op

MH

(πH,p)
)

(φMH
p ). (5.33)

Here φMH
p ∈ C∞c (MH(Qp)) is a ∆p(·, ·)JbMH

-transfer of φ0
p := φ′p · δ̄

1/2
P (νb)

∈ C∞c (Jb(Qp)). The normal-

ization of [Shi10, (8.6)] is adopted for transfer factors, namely

∆p(γMH
, δ)JbMH

= ep(Jb) ·∆p(γMH
, γ0)Mb

MH
(5.34)

if δ and γ0 are transfers of γMH
∈MH(Qp).

We claim that the transfer from φ0
p to φMH

p factors through as

φ0
p ∈ C∞c (Jb(Qp))  φ∗p ∈ C∞c (Mb(Qp))  φMH

p ∈ C∞c (MH(Qp))

in the sense that if φ∗p is a transfer of φ0
p via ∆p(·, ·)JbMb

≡ ep(Jb) then φMH
p is a ∆p(·, ·)Mb

MH
-transfer

of φ∗p. To prove the claim, we check the transfer identity for orbital integrals on regular semisimple

elements. Since φMH
p is a ∆p(·, ·)JbMH

-transfer of φ0
p,

OMH(Qp)
γMH

(φMH
p ) = ∆p(γMH

, δ)JbMH
·OJb(Qp)

δ (φ0
p) (5.35)

for any (Jb,MH)-regular γMH
and its transfer δ. (Recall that a stable conjugacy class is the same as

a conjugacy class in the groups Jb(Qp) and MH(Qp) as well as Mb(Qp).) On the other hand, as φ∗p

is a transfer of φ0
p, Lemma 2.18.(i) of [Shi10] tells us that O

Mb(Qp)
γ0 (φ∗p) = ep(Jb) ·O

Jb(Qp)
δ (φ0

p) if there

exists δ ∈ Jb(Qp) matching γ0 and O
Mb(Qp)
γ0 (φ∗p) = 0 if else. Together with (5.34) and (5.35), the last

fact implies that φMH
p is a ∆p(·, ·)Mb

MH
-transfer of φ∗p as claimed.

It follows from (5.24), Lemma 3.3 and [Shi10, Lem 2.18.(ii)] that for πMH ,p ∈ Irr(MH(Qp)),

trπMH ,p(φ
MH
p ) = tr (η̃H,∗(πMH ,p)) (φ∗p) = tr (LJ (η̃H,∗(πMH ,p))) (φ0

p)

= tr
(
LJ(η̃H,∗(πMH ,p))⊗ δ̄

1/2
P (νb)

)
(φ′p).

(5.36)

(When H = Gn, the first identity holds trivially since η̃H,∗ = id and we may take φMH
p = φ∗p.) The

identities (5.32), (5.33) and (5.36) complete the proof.
�

6. Computation of cohomology

We keep the notation and assumptions from §5. The prime p, the place w of F and the isomorphism
ιp are fixed in §6.1 (they have been fixed soon after Lemma 5.1), but allowed to vary in §6.2 under
certain constraints.

6.1. Cohomology of Igusa varieties. The main goal of this subsection is to compute part of the
cohomology of Igusa varieties after quadratic base change. The main ingredients are the stable trace
formula for Igusa varieties and the twisted trace formula.

Choose the character $ : WE → C× (introduced in §3.1) such that RamQ($) ⊂ SplF/F+,Q. (This
is possible by Lemma 7.1 that will be proved later but does not depend on this section. Recall that
the last condition on $ is assumed throughout §4.) Let Ξ be the algebraic representation of (Gn)C
given by ιlξ as in §4.3. (Put ιlξ in place of ξ there.) Let Π = ψ⊗Π1 be an automorphic representation
of Gn(A) ' GL1(AE)×GLn(AF ). Assume that

• Π ' Π ◦ θ,
• Π∞ is generic and Ξ-cohomological (in particular, the central characters of Π and Ξ∨ coincide

on AGnθ,∞),
• RamQ(Π) ⊂ SplF/F+,Q
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where RamQ(Π) denotes the set of finite primes p where Π is ramified. By Ξ-cohomological we mean
that there exists k such that Hk(LieGn(R),K′∞,Π∞ ⊗ Ξ) 6= 0, where K′∞ is as in §4.3. In particular
Π∞ is isomorphic to ΠΞ as in §4.3.

Recall that RamF/Q is contained in SplF/F+,Q by our previous assumption in §5.1. Let Sfin be a
finite set of places of Q such that

RamF/Q ∪ RamQ(Π) ∪ RamQ($) ∪ {p} ⊂ Sfin ⊂ SplF/F+,Q (6.1)

and put S := Sfin ∪ {∞}.
We will consider two cases for Π.

Case ST. (“stable”)
Assume that Π is cuspidal.

Case END. (“endoscopic”)
Let m1,m2 ∈ Z>0 be such that m1 > m2 and m1 +m2 = n. (Recall that n ∈ Z≥3 is odd.) Let Πi

(i = 1, 2) be a cuspidal automorphic representation of GLmi(AF ) and Ξi be an irreducible algebraic
representation of GLmi(F ⊗Q C). We will set ψH := ψ ⊗$N(m1,m2) and

ΠH := ψH ⊗Π1 ⊗Π2, Π := ζ̃m1,m2,∗(ΠH),

ΠM,i := Πi ⊗ ($ ◦NF/E ◦ det)ε(n−mi), ΠM := ψ ⊗ΠM,1 ⊗ΠM,2.

In addition to the previous assumptions on Π, suppose that (for i = 1, 2)

(i) Π∨i ' Πi ◦ c,
(ii) ψΠ1

ψΠ2
= ψcH/ψH ,

(iii) Πi,∞ is cohomological for an irreducible algebraic representation Ξi and

By (i) and (ii), ΠH is a θ-stable cuspidal representation ofGm1,m2
(A). Denote by πH,p ∈ Irrl(Gm1,m2

(Qp))
the unique representation (up to isomorphism) such that BC(ιlπH,p) ' ΠH,p. Denote by ϕH the dis-
crete parameter for Gm1,m2(R) such that BC(ϕH) ' ΠH,∞ (with the notation BC(ϕH) as in Remark
4.4).

Observe that Π ' n-indGnGm1,m2
(ΠM ). (The last parabolic induction is irreducible; for general linear

groups, any parabolic induction of a unitary representation is irreducible.) Let Π0
M denote the twist

of ΠM by a character of AGm1,m2
,∞ (via the canonical surjection Gm1,m2

(A)→ AGm1,m2
,∞) such that

Π0
M is trivial on AGm1,m2

,∞. Then it is easy to see that

Π ' n-indGnGm1,m2
(Π0

M )⊗ χ̃−1
ιlξ
. (6.2)

Let us define certain parameters in (Case END). For i ∈ {1, 2}, let biσ,1 ≥ · · · ≥ biσ,mi (σ ∈
HomQ(F,C)) be the integers parametrizing the highest weight attached to Ξi and put

βiσ,j := −biσ,mi+1−j +
mi + 1− 2j

2
, γiσ,j := βiσ,j + ε(n−mi) ·

δ

2
(6.3)

where δ is the odd integer such that $∞(z) = (z/z)δ/2. (The numbers γiσ,j should be thought of as

parameters for ΠM,i.) Recall that we defined α(ιlξ)σ,j (σ ∈ Φ+
C , 1 ≤ j ≤ n) from ιlξ in (3.18). For

any σ and j < n, we have α(ιlξ)σ,j > α(ιlξ)σ,j+1. Since Π∞ ' n-ind(ΠM,∞), it is easy to see that for
each σ ∈ Φ+

C ,

{α(ιlξ)σ,j : 1 ≤ j ≤ n} = {γ1
σ,j : 1 ≤ j ≤ m1}

∐
{γ2
σ,j : 1 ≤ j ≤ m2}.

Thus there is a unique partition {1, . . . , n} = W 1
σ

∐
W 2
σ with the following property for each i ∈ {1, 2}:

α(ιlξ)σ,k = γiσ,j for some j ∈ [1,mi] if and only if k ∈W i
σ.

We are done with describing the two cases for Π. Let us set up more notations before stating the
main result of §6.1. For any R ∈ Groth(G(AS)×G′) (over Ql), where G′ = G(ASfin

)×Gal(F/F ) or
G′ = G(ASfin\{p})× Jb(Qp). Define

R{ΠS} :=
∑
πS

R{πS} and R[ΠS ] :=
∑
πS

R[πS ] (6.4)
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where each sum runs over πS ∈ Irrur
l (G(AS)) such that BC(ιlπ

S) ' ΠS . (The right hand sides of (6.4)
are defined as in §5.2.) An easy observation is that H(Sh,Lξ){ΠS} and Hc(Igb,Lξ){ΠS} are virtual
admissible representations of the corresponding G′. Let BCT : Groth(G(AT )) → Groth(Gn(AT ))
denote the Z-linear extension of the base change map defined in §4.2, where T ⊂ SplF/F+,Q is a

finite set. (A priori BCT is defined on virtual C-representations but also defined on virtual Ql-
representations via ιl : Ql ' C.)

Theorem 6.1. Define an integer CG := | ker1(Q, G)| · τ(G). Denote by πp ∈ Irrl(G(Qp)) a represen-
tation such that BC(ιlπp) ' Πp. (Such a πp is unique up to isomorphism as p splits in E. cf. §4.2.)
For each b ∈ B(GQp ,−µ), the following equalities hold in Groth(Gn(ASfin\{p})× Jb(Qp)).

(i) (Case ST) There is a constant e0 ∈ {±1}, independent of b, such that

BCSfin\{p}(Hc(Igb,Lξ){ΠS}) = CG · e0 · [ι−1
l ΠSfin\{p}][Redbn(πp)]. (6.5)

(ii) (Case END) There are constants e1, e2 ∈ {±1}, independent of b, such that

BCSfin\{p}(Hc(Igb,Lξ){ΠS}) = CG

(
[ι−1
l ΠSfin\{p}]

[
1

2
(e1Redbn(πp) + e2Redbm1,m2

(πH,p))

])
. (6.6)

Remark 6.2. A priori the sign e0 depends on Π. The signs e1 and e2 depend not only on Π but also
on ΠH and other data, at least a priori. However it turns out that e0 and e1 always have the same
value, as we will see later in Corollary 6.5.(ii). As for e2, refer to Remark 6.3 in case m2 = 1.

Proof. In the first three paragraphs, we explain the choice of test functions to be used in the trace
formula. Choose (fn)S and fnSfin\{p} as any functions in H ur(Gn(AS)) and C∞c (Gn(ASfin\{p})), re-

spectively. Let φS := BC∗n((fn)S) (resp. φSfin\{p} := BC∗n(fnSfin\{p})) as in Case 1 (resp. Case 2)

of §4.2. Set φ∞,p := φSφSfin\{p}. Choose any φ′p ∈ C∞c (Jb(Qp)) such that φ∞,pφ′p is an acceptable
function. We construct other test functions from these.

For each elliptic endoscopic groups G~n for G, let (φ~nIg)S (resp. φ~nIg,Sfin\{p}) be the ∆(·, ·)GG~n -transfer

of φS (resp. φSfin\{p}) defined in §3.4. Define (fn1,n2)S := ζ̃∗((fn)S) and fn1,n2

Sfin\{p} = ζ̃∗(fnSfin\{p}) as

in Case 1 and Case 2 of §4.4. Recall from (4.18) and (4.19) that BC∗n1,n2
((fn1,n2)S) = (φn1,n2)S and

that BC∗n1,n2
(fn1,n2

Sfin\{p}) and φn1,n2

Ig,Sfin\{p} have the same trace against every admissible representation of

Gn1,n2
(ASfin\{p}).

Let φ~nIg,p (resp. φ~nIg,∞) be the function arising from φ′p (resp. ξ) in (5.10) (resp. (5.11)). Choose

f~np so that BC∗n(f~np ) = φ~nIg,p. (This is possible because BC∗n is surjective at p. See §4.2.) Define

f~n∞ := e~n(∆∞) · (−1)q(G)〈µh, s〉
∑
ϕ~n

det(ω∗(ϕ~n)) · fG~n,Ξ(ϕ~n) (6.7)

where the sum runs over ϕ~n : WR → LG~n (up to equivalence) such that η̃ϕ~n ∼ ϕξ. Observe that
q(G) = n− 1 (cf. (3.11)). Here Ξ(ϕ~n) denotes the algebraic representation of G~n arising from ξ(ϕ~n)
(defined in Remark 3.9) as in the beginning of §4.3. Recall that fG~n,Ξ(ϕ~n) was defined in §4.3. By §4.3

and the comparison of (5.11) and (6.7), it is verified that f~n∞ and φ~nIg,∞ are BC-matching functions.

Put f~n := (f~n)S · f~nSfin\{p} · f
~n
p · f~n∞.

Consider the formula of Proposition 5.5. By Corollary 4.7, the formula (4.21), Proposition 4.8 and
Corollary 4.14, we see that (recalling the notation A′(·) from Lemma 4.11)

tr (φ∞,pφ′p|ιlH(Igb,Lξ)) (6.8)

= CG

1

2

∑
Π′

tr (Π′ξ(f
n)A′Π′ξ

) +
1

2

∑
Gn1,n2

I
Gn1,n2

θ
spec (fn1,n2)

+
∑
M(Gn

|WM |
|WGn |

|det(Φ−1θ − 1)aGnθ
M
|−1
∑
Π′M

tr
(

n-indGnM (Π′M )ξ(f
n) ◦A′

n-indGn
M (Π′M )ξ

)
where the first sum runs over θ-stable (equivalently, Φ−1θ-stable) subrepresentations Π′ of RGn,disc,
the second over the groups Gn1,n2

coming from elliptic endoscopic groups Gn1,n2
for G (with n1 >
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n2 > 0), the third over proper Levi subgroups M of Gn containing M0 and the fourth over Φ−1θ-stable
subrepresentations Π′M of RM,disc. Keep in mind that Proposition 5.5 works on the condition that
φ∞,pφ′p is acceptable. So the same condition is imposed on (6.8). However, we claim that (6.8) holds
without such a condition.

Let us prove the claim. Fix test functions outside the p-component. Fix any φ′p, without assuming
φ∞,pφ′p is acceptable. As shown in [Shi09, Lem 6.3], there is a certain element frs in the center of

Jb(Qp) such that φ∞,p(φ′p)
(N) is acceptable for any N � 0, where (φ′p)

(N)(g) = φ′p(g(frs)N ). So (6.8)

is true if φ′p is replaced by (φ′p)
(N) (and if at the same time f~np and φ~nIg,p are constructed from (φ′p)

(N)

rather than φ′p), for any N � 0. In other words, by (4.12), Corollary 4.14 and Lemma 5.10, both

sides of (6.8) are finite linear combinations of the terms which have the form tr ρ((φ′p)
(N)) for some

ρ ∈ Irr(Jb(Qp)). Now the argument in the proof of [Shi09, Lem 6.4] shows that the equality (6.8)

holds for φ∞,p(φ′p)
(N) for every integer N , in particular for N = 0. Hence the claim is proved.

Now that (6.8) is known to be true without acceptability assumption, we may work with arbitrary
test functions φ∞,pφ′p. To proceed, we divide into two cases.

(Case ST). Choose a decomposition A′Π = A′(Π)SA
′
ΠSfin

A′Π∞ as a product of normalized intertwining

operators. Set

A′Π
A0

Π

:=
A′ΠS

A0
ΠS
·
A′ΠSfin

A0
ΠSfin

·
A′Π∞
A0

Π∞

∈ {±1}. (6.9)

(For the definition of the denominators on the right side, see §4.2 and §4.3. By definition A0
ΠSfin

=∏
v∈Sfin

A0
Πv

.) In the formula (4.14), any term involving fn1,n2 may be rewritten as the trace of an

induced representation against fn, by using (4.17). This fact together with Corollary 4.14 guarantees
that tr ΠS((fn)S) appears only in the first sum of (6.8), according to the multiplicity one result of
Jacquet and Shalika ([JS81a], [JS81b]; see [AC89, p.200] for summary), which implies that the string
of Satake parameters outside a finite set S of a cuspidal automorphic representation of GLn(AF )
unramified outside S does not occur as that of automorphic representations of GLn(AF ) which are
subquotients of induced representations from proper Levi subgroups of GLn(AF ). Thus the right side
of (6.8) has the following form

CG

1

2

A′Π
A0

Π

χΠS ((fn)S)tr (ΠS(fnS )A0
ΠS ) +

∑
(Π′)S�ΠS

χ(Π′)S ((fn)S)×
(

expression in
terms of f~nS

) (6.10)

where (Π′)S runs over a set of unramified representations of G(AS) not isomorphic to ΠS . (Note that
(Π′)S = ΠS implies that Π′ξ = Π′ ⊗ χ̃−1

ιlξ
is isomorphic to Π by the strong multiplicity one and the

fact that Π′ξ and Π transform by the same character on AGn,∞. Hence the first summand in (6.8) for

(Π′)S = ΠS equals tr (Π(fn)AΠ), which is the first term in (6.10).)
On the other hand, we can write tr (φ∞,pφ′p|ιlH(Igb,Lξ)) in the following form using (4.5).

tr ΠS((fn)S) tr
(
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

)
+

∑
(π′)S

trBC((π′)S)((fn)S) tr
(
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){(π′)S}

)
(6.11)

The above sum runs over (π′)S ∈ Irrur(G(AS)) such that BC((π′)S) � ΠS . If the test functions on S
are fixed, both (6.10) and (6.11) are finite sums (as (fn)S varies in H ur(Gn(AS))). We deduce from
linear independence of characters that

tr
(
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

)
=
CG
2

A′Π
A0

Π

· tr (ΠS(fnS )AΠ0
S
) (6.12)

Recall that Π∞ ' ΠΞ. In view of (4.15), the construction of fn∞ implies that

tr (Π∞(fn∞)A0
Π∞) = 2(−1)q(G). (6.13)

On the other hand, by Lemma 5.10 and (4.12),

tr (Πp(f
n
p )A0

Πp) = tr ιlπp(φ
n
Ig,p) = tr ιlRedbn(πp)(φ

′
p) (6.14)



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 45

Therefore if we set e0 := (−1)q(G)A′Π/A
0
Π, then tr

(
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

)
equals

CG · e0 · tr
(

ΠSfin\{p}(f
n
Sfin\{p})A

0
ΠSfin\{p}

)
· tr ιlRedbn(πp)(φ

′
p). (6.15)

Applying (4.12) to the places in Sfin\{p}, we finish the proof of the assertion (i). (Use the fact that
the twisted characters of non-isomorphic θ-stable representations are linearly independent. cf. [AC89,
Lem 6.3, p.52].) Obviously e0 is independent of b.

(Case END). We imitate the previous argument for (Case ST). By the multiplicity one principle for
Satake parameters by Jacquet and Shalika, (6.8) may be rewritten as

tr
(
φ∞,pφ′p|ιlH(Igb,Lξ)

)
=
CG
4

(X1 +X2 +X3), (6.16)

where X1 = tr

(
n-indGnGm1,m2

(Π0
M )ξ(f

n) ◦A′
n-indGn

Gm1,m2
(Π0
M )ξ

)
X2 = tr

(
ΠH(fm1,m2) ◦A′ΠH

)
andX3 is a linear combination of evaluation against fS of unramified Hecke characters of H ur(Gn(AS))
different from χΠS . Note that X1 comes from the last term in (6.8) in the case where the standard Levi
subgroups M of Gn is conjugate to Gm1,m2 . (There are |WGn |/|WM | such Levi subgroups.) The term
X2 appears in the second summation on the right side of (6.8), namely those terms in the expansion

of I
Gm1,m2θ
spec (fm1,m2) where the Levi subgroup of Gm1,m2

is Gm1,m2
itself. As there is no danger of

confusion, let us agree to write n-ind(Π0
M ) instead of n-indGnGm1,m2

(Π0
M ). Define the signs (+1 or −1)

A′n-ind(Π0
M )ξ

/A0
n-ind(Π0

M )ξ
and A′ΠH/A

0
ΠH

as in (6.9). Define e1 := (−1)q(G)A′
n-ind(Π0

M )ξ
/A0

n-ind(Π0
M )ξ

. Recall from (6.2) and (4.29) that there is

an isomorphism Π ' n-ind(Π0
M )ξ, under which we transport A′

n-ind(Π0
M )ξ

to A′Π. So we may rewrite

X1 as
X1 = e1(−1)q(G) · tr (Π(fn)A0

Π) = e1(−1)q(G) · χΠS ((fn)S) · tr (ΠS(fnS )A0
ΠS ) (6.17)

whereas (4.17) implies that

X2 =
A′ΠH
A0

ΠH

· χΠS ((fn)S) · tr (ΠSfin\{p}(f
n
Sfin\{p})A

0
ΠSfin\{p}

)

× tr (ΠH,p(f
m1,m2
p )A0

ΠH,p) · tr (ΠH,∞(fm1,m2
∞ )A0

ΠH,∞). (6.18)

By Lemma 5.10 and (4.12), we have the following analogue of (6.14).

tr (Πp(f
m1,m2
p )A0

Πp) = tr
(
ιlRedbm1,m2

(πH,p)
)

(φ′p) (6.19)

Moreover the expression (6.7) along with (4.15) implies that, since only ϕ~n = ϕH in the sum of
(6.7) contributes nontrivially (where ϕH was defined in §6.1),

tr (Π∞(fm1,m2
∞ )A0

Π∞) = 2e2 · (A′ΠH/A
0
ΠH ) (6.20)

if we set
e2 := (−1)q(G)em1,m2

(∆∞)〈µh, s〉det(ω∗(ϕH)) · (A′ΠH/A
0
ΠH ). (6.21)

By linear independence of unramified Hecke characters outside S, the identity (6.16) becomes, in
view of (6.13)-(6.21),

tr
(
φSfin\{p}φ

′
p|ιlH(Igb,Lξ){ΠS}

)
=
CG
2

(Y1 + Y2), where (6.22)

Y1 = e1 · tr
(

ΠSfin\{p}(f
n
Sfin\{p})AΠ0

Sfin\{p}

)
· tr

(
ιlRedbn(πp)

)
(φ′p)

Y2 = e2 · tr
(

ΠSfin\{p}(f
n
Sfin\{p})A

0
ΠSfin\{p}

)
· tr

(
ιlRedbm1,m2

(πH,p)
)

(φ′p).

In view of (4.12), the above identities imply the assertion (ii).
Clearly e1 belongs to {±1} by definition but we only know e2 ∈ (C×)1 a priori. The fact that

e2 ∈ {±1} can be proved as follows. Observe that the definition of e2 (as well as e1) does not depend
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on b. If Redbm1,m2
(πH,p) = 0 for all b ∈ B(GQp ,−µ), then (6.6) remains valid for all b with any choice

of e2, in particular we may choose e2 in {±1}. Otherwise there exists b such that Redbm1,m2
(πH,p) is

not trivial. We see from (6.6), which was proved a priori with C-coefficients, that e2 ∈ {±1} since the
multiplicities of representations on the left side of (6.6) are certainly integers.

�

Remark 6.3. Recall that the sign e2 is defined in (6.21). We remark on the dependence of e2 on the
Φ−1θ-stable representation ΠH ∈ Irr(Gm1,m2

(A)) when m2 = 1. Note that em1,m2
(∆∞) depends only

on the choice of transfer factors and not on ΠH . The same is true for 〈µh, s〉. In fact, according to
(3.20), 〈µh, s〉 = 1 with the convention of §3.6. Recall that ΠH = ψH ⊗Π1 ⊗Π2. Using the fact that
both ψH and Π2 are one-dimensional characters, it is easy to prove that AΠH/A

0
ΠH

depends only on
Π1, and not on ψH and Π2. Therefore if Π1 remains the same, it is only det(ω∗(ϕH)), a factor coming
from real endoscopy, which may vary on the right side of (6.21).

6.2. Galois representations in the cohomology of Shimura varieties. We remind the reader
that we keep assuming (i)-(v) of §5.1 and that Π is as in the beginning of §6.1. All results of this
subsection relies on these assumptions. (Some of them can be strengthened by the results of §7.)

In the last subsection we fixed p, w and S. Here we want to allow p, w and S to vary. (For each
p ∈ SplE/Q\{l}, we freely change the choice of ιp : Qp ' C to consider all the places w above p. Recall

from §5.1 how ιp was chosen.) Define Rl(Π) to be the set of π∞ = πS⊗πSfin
∈ Irrl(G(A∞)) such that

• Rkξ,l(π∞) 6= 0 for some k.

• πS is unramified,
• BC(ιlπ

S) ' ΠS and
• BC(ιlπSfin

) ' ΠSfin
.

Note that the definition of Rl(Π) does not involve the choice of the prime p. It is easy to see that the
definition of Rl(Π) is independent of S, as long as S satisfies (6.1). (We use the following fact about
πv ∈ Irrl(G(Qv)): Suppose Πv is unramified. If v ∈ UnrF/Q ∩ SplF/F+,Q then BC(ιlπv) ' Πv implies

that πv is also unramified.)

Define a representation R̃kl (Π) of Gal(F/F ) and R̃l(Π) ∈ Groth(Gal(F/F )) by

R̃kl (Π) :=
∑

π∞∈Rl(Π)

Rkξ,l(π
∞), R̃l(Π) :=

∑
k

(−1)kR̃kl (Π). (6.23)

Theorem 6.4. Let p ∈ SplE/Q be a prime different from l and w be any place dividing p. Let πp be

as in Theorem 6.1 and write πp = π0 ⊗ (⊗iπwi) as usual. Then the following holds in Groth(WFw).

(i) (Case ST)

R̃l(Π)|WFw
= CG · e0 ·

[
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ ι−1

l LFw,n(Π1
w)
]
.

(ii) (Case END)

R̃l(Π)|WFw
=

 CG · e1 ·
[
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ ι−1

l LFw,m1
(ΠM,1,w)| · |−m2/2

WFw

]
, if e1 = e2,

CG · e1 ·
[
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ ι−1

l LFw,m2
(ΠM,2,w)| · |−m1/2

WFw

]
, if e1 = −e2.

Proof. For the proof we may fix p and w|p as in the theorem. Choose ιp : Qp ' C such that ι−1
p τ

induces w. (Note that R̃kl (Π) for each k is defined independently of ιp.)
Consider (Case ST). Let us take the {ΠS}-parts of the identity in Proposition 5.2 and apply

BCSfin\{p}. In view of Theorem 6.1 the following holds in Groth(Gn(ASfin\{p})×G(Qp)×WFw),

∑
(π′)∞

[BC(π′Sfin\{p})][π
′
p][Rξ,l((π

′)∞)] = CG · [ι−1
l ΠSfin\{p}]

 ∑
b∈B(GQp ,−µ)

[Mantb,µ(Redbn(πp))]

 (6.24)

where the first sum runs over (π′)∞ ∈ Irrl(G(A∞)) such that (π′)S is unramified and BC(ιl(π
′)S) '

ΠS . Of course we are using the same πp as in Theorem 6.1. Observe that [Mantb,µ(Redbn(πp))] equals

n-Mant1,0(πp,0)⊗ n-Mantn−h,h(n-Redn−h,h(πw))⊗ (⊗i>1n-Mant0,n(πwi))
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by (2.2) and (5.6), if h = h(b). Proposition 2.3 implies that the right hand side of (6.24) is

CG · [ι−1
l ΠSfin\{p}][πp]

[
(π−1
p,0 ◦Art−1

Qp )|WFw
⊗ ι−1

l LFw,n(Π1
w)
]
. (6.25)

By comparing the left side of (6.24) with (6.25), we see that the summands in the left side of (6.24)
which do not satisfy BC(π′Sfin\{p}) ' ι

−1
l ΠSfin\{p} must be canceled out. Hence the first sum in (6.24)

can be replaced by a sum over (π′)∞ ∈ Rl(Π) without disturbing the equality.
In (Case END) a similar argument works, so we only indicate changes. The same identity as (6.24)

holds if we replace [Mantb,µ(Redbn(πp))] by[
1

2
Mantb,µ(e1Redbn(πp) + e2Redbm1,m2

(πH,p))

]
. (6.26)

Consider the case e1 = e2. By Lemma 5.9, the formula (6.26) equals

e1 · n-Mant1,0(πp,0)⊗ n-Mantn−h,h(X1(h, πH,p))⊗ (⊗i>1n-Mant0,n(πwi))

for h = h(b). By (5.29), n-Mantn−h,h(X1(h, πH,p)) vanishes if h < m2. If h ≥ m2, it equals

n-indGLhGLh−m2,m2

(
(n-Mantn−h,h−m2

(n-Redn−h,h−m2(ΠM,1,w))⊗ΠM,2,w)
)
⊗ | · |−m2/2

WFw

by Proposition 2.2.(iii). Proposition 2.3 implies that∑
0≤h≤n−1

n-Mantn−h,h(X1(h, πH,p)) = [ι−1
l Πw][ι−1

l LFw,n(ΠM,1,w)]⊗ | · |−m2/2
WFw

.

From this the conclusion easily follows in (Case END) with e1 = e2. The case e1 = −e2 is proved in
the same way.

�

Corollary 6.5. (cf. [HT01, Cor VI.2.7]) Recall the assumptions made at the start of §6.2. For each
π∞ ∈ Rl(Π) the following are true.

(i) Rkξ,l(π
∞) 6= 0 if and only if k = n− 1. Similarly R̃kl (Π) 6= 0 if and only if k = n− 1.

(ii) e0 = (−1)n−1 in (Case ST) and e1 = (−1)n−1 in (Case END).
(iii) Every π∞ ∈ Πunit(G(R), ιlξ

∨) is ιlξ-cohomological. If π∞ ∈ Πunit(G(R), ιlξ
∨) is such that

m(ιl(π
∞)⊗ π∞) > 0, then π∞ ∈ Πdisc(G(R), ιlξ

∨).
(iv) Write Πdisc(G(R), ιlξ

∨) = {π1
∞, . . . , π

n
∞} as in §3.6. Then

∑
π∞∈Rl(Π)

m(ιl(π
∞)⊗πi∞) =

 τ(G), for all i, in (Case ST),
τ(G), if i ≤ m1, e1 = e2, or i > m1, e1 = −e2, in (Case END),

0, if i > m1, e1 = e2, or i ≤ m1, e1 = −e2, in (Case END).

(Recall that τ(G) = τ(Gn) equals 1 or 2 by Lemma 3.1. In some cases we computed this
number in Remark 3.2.)

Remark 6.6. In the proofs of Corollary 6.5 and Corollary 6.7 we largely borrow argument from Harris
and Taylor, who attribute their result to Clozel. (Especially the second assertion of (iii) is due to
Clozel.) In doing so, it is worth remarking that the two conditions in [HT01, Cor VI.2.7, Cor VI.2.8]
are not necessary in our situation. For instance we do not assume that π∞ is generic at a finite
prime split in E. In the setting of Clozel and Harris-Taylor, the base change of π∞ is an automorphic
representation of a non quasi-split inner form of Gn and the genericity condition ensures that the
image of the base change transfers to a cuspidal automorphic representation of Gn. However, we
work directly with Gn and a cuspidal representation Π is given at the outset in (Case ST), so no such
assumption is necessary. (In (Case END), use the cuspidality of Πi.) We also note that we use the
strength of the stable trace formula and the twisted trace formula in order to prove (iv) of Corollary
6.5. The proof of its counterpart in corollary VI.2.7 of Harris-Taylor was simpler.

Proof. The first assertion of (i) follows from the second at once. To prove the second assertion of (i),
we argue exactly as in [HT01, p.207], appealing to our Theorem 6.4 instead of their corollary V.6.3.
(The part (iii) of Proposition 5.3 is also used.)

Note that (ii) is an immediate consequence of (i).
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Let us prove (iii). The first part of (iii) follows from [SR99, Thm 1.8] (which identifies every π∞ ∈
Πunit(G(R), ιlξ

∨) with a unitary representation studied in [VZ84]) and the computation of the Lie
algebra cohomology in [VZ84]. Observe that (i) and Proposition 5.3 imply that if m(ιl(π

∞)⊗π∞) > 0
then

Hk(LieG(R), U∞, π∞ ⊗ ιl(ξ)) 6= 0

if and only if k = n− 1. The second part of (iii) can be deduced from this and the results of [VZ84].
(See [HT01, p.207-208] for detailed argument.)

Finally we prove (iv). The argument goes in a similar way as in the proof of Theorem 6.1. Let
(fn)∞ = (fn)S · fnSfin

∈ C∞c (Gn(A∞)) be any function such that (fn)S ∈ H ur(Gn(AS)). Obtain

(fn1,n2)S , (φn)S , (φn1,n2)S , fn1,n2

Sfin
, φnSfin

and φn1,n2

Sfin
from (fn)∞, as in the beginning of the proof of

Theorem 6.1, except that Sfin\{p} should be now replaced by Sfin. Define

f~nπi∞ := e~n(∆∞) · (−1)q(G)
∑
ϕ~n

〈aω∗(ϕH)ωπi∞
, s〉det(ω∗(ϕ~n)) · fG~n,Ξ(ϕ~n) (6.27)

where the sum runs over ϕ~n such that η̃ϕ~n is equivalent to ϕιlξ. Then f~nπi∞
and φ~nπi∞

are BC-matching.

(See (3.13) and the last paragraph of §4.3. Refer to the paragraph above Proposition 5.6 for the
definition of φ~nπi∞

and for the reason why e~n(∆∞) appears.) Applying the results of §4.5 to Proposition

5.6, we see that

trRG,ιlξ
(
φ∞ · φπi∞

)
=
∑
π

m(π) · trπ(φ∞ · φπi∞) =
∑
G~n

ι(G,G~n)IG~nθspec((f~n)∞ · f~nπi∞). (6.28)

By construction of fnπi∞
,

tr (Π∞(fnπi∞)A0
Π∞) = 2(−1)q(G),

whereas
tr (Π∞(fn1,n2

πi∞
)A0

Π∞) = (−1)q(G)en1,n2(∆∞)〈aω∗(ϕH)ωπi∞
, s〉det(ω∗(ϕH)).

Let

e(i) :=
tr (Π∞(fm1,m2

πi∞
)A0

Π∞
)

tr (Π∞(fm1,m2
∞ )A0

Π∞
)

=
〈aω∗(ϕH)ωπi∞

, s〉
〈µh, s〉

where fm1,m2
∞ is as in §6.1. Using the convention of §3.6 we can compute that e(i) = 1 if i ≤ m1 and

e(i) = −1 if i > m1. (See (3.20) and (3.21).)
Arguing as in the proof of Theorem 6.1, we obtain in (Case ST)

trRG,ιlξ{ΠS}(φSfin
· φπ0

∞
) = τ(G) · e0 · tr (ΠSfin

(fnSfin
)A0

ΠSfin
). (6.29)

In (Case END),

trRG,ιlξ{ΠS}(φSfin
· φπ0

∞
) = τ(G) · (e1 + e(i) · e2) · tr (ΠSfin

(fnSfin
)A0

ΠSfin
). (6.30)

The formula (6.29) along with (iii) of the corollary implies that∑
π∞

m(ιl(π
∞)⊗ π∞) = τ(G)

where the sum runs over π∞ ∈ Irrl(G(A∞)) such that BC(ιlπ
S) ' ΠS , BC(ιlπSfin

) ' ΠSfin
and

Rξ,l(π
∞) 6= (0). This proves (iv) in (Case ST). Similarly, the assertion (iv) in (Case END) easily

follows from (6.30).
�

Recall that we defined integers a0(ιlξ) and a(ιlξ)σ,i for σ ∈ Φ+
C and 1 ≤ i ≤ n in the paragraph

preceding (3.18). Let κ : F ↪→ Ql be a Q-algebra embedding. For each integer k ∈ [1, n], set

jκ(k) := k − 1− a(ιlξ)ιlκ,k − a0(ιlξ).

(Note that jκ(k1) 6= jκ(k2) if k1 6= k2.) LetWκ (resp. W0
κ) be the set of jκ(k) (resp. k−1−a(ιlξ)ιlκ,k)

for those k ∈ [1, n] such that

• (Case ST) any k is allowed.
• (Case END) k ∈W 1

ιlκ
if e1 = e2; k ∈W 2

ιlκ
if e1 = −e2. (The sets W 1

ιlκ
and W 2

ιlκ
were defined

in §6.1.)
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Corollary 6.7. ([HT01, Cor VI.2.8]) Let κ = ι−1
l τ . Then

dim grwDDR,κ(R̃n−1
l (Π)) =

{
CG, if w ∈ Wκ,
0, if w /∈ Wκ.

Proof. The proof of [HT01, Cor VI.2.8] works almost verbatim in our case, if we use the results of
Corollary 6.5 instead of [HT01, Cor VI.2.7]. We only need to consistently work with the sum over
all π∞ ∈ Rl(Π), rather than with a single π∞. For instance, the last two identities of [HT01, p.209]
become in our case

dim grjκ(k)DDR,σ(R̃n−1
l (Π)) = | ker1(Q, G)|

∑
π∞∈Rl(Π)

m(ιl(π
∞)⊗ πk∞) = CG.

In the course of proof, we use an analogue of the part 6 of [HT01, Prop III.2.1], which is also true in
our case. Note that our jκ(k) is different from jk of Harris-Taylor since we have put {a(ιlξ)σ,i}1≤i≤n
in decreasing order.

�

Corollary 6.8. There exists a (true) continuous semisimple representation R′l(Π) of Gal(F/F ) on a

Ql-vector space which is

• (Case ST) n-dimensional,
• (Case END) m1-dimensional if e1 = e2; m2-dimensional if e1 = −e2,

such that for any place w of F satisfying w|Q ∈ SplE/Q and w|Q 6= l,

R′l(Π)|WFw
=


ι−1
l Ln,Fw(Π1

w), (Case ST),

ι−1
l (Lm1,Fw(ΠM,1,w)⊗ | · |−m2/2

WFw
), e1 = e2, (Case END),

ι−1
l (Lm2,Fw(ΠM,2,w)⊗ | · |−m1/2

WFw
), e1 = −e2, (Case END).

(6.31)

in Groth(WFw). In particular, R′l(Π) is independent of τ and ψ. Moreover, for every κ : F ↪→ Ql,

dim grwDDR,κ(R′l(Π)) =

{
1, if w ∈ W0

κ,
0, if w /∈ W0

κ.
(6.32)

Proof. Consider the semisimplification R̃ of (−1)n−1R̃n−1
l (Π). Then R̃ is a true representation of

Gal(F/F ) whose dimension is CG times the expected dimension of R′l(Π) in the corollary. We deduce

from Theorem 6.4 and the Cebotarev density theorem that R̃ is independent of the choice of τ . (A

priori the construction of R̃n−1
l (Π) depends on τ as the PEL datum does.) Thus an obvious analogue

of (6.32) for R̃ is true for every κ : F ↪→ Ql by Corollary 6.7. The proof of [HT01, Prop VII.1.8] (see

Remark 6.9 below) shows that there exists a semisimple representation R̃′l(Π) such that

R̃ = CG · R̃′l(Π).

Define

R′l(Π) := R̃′l(Π)⊗ recl,ιl(ψ)|Gal(F/F )

where recl,ιl(ψ
c) denotes the continuous l-adic character Gal(E/E) → GL1(Ql) corresponding to ψc

via class field theory. (See [HT01, p.20].) The identity (6.31) for each w follows from Theorem 6.4.
The last two assertions are easy to see. �

Remark 6.9. When importing argument from the proof of [HT01, Prop VII.1.8], the two conditions in
that proposition are not necessary for the same reason as in Remark 6.6. In the proof of proposition
VII.1.8, the use of corollaries VI.2.7 and VI.2.8 of Harris-Taylor can simply be replaced by the use of
their counterparts, namely Corollaries 6.5 and 6.7.

In (Case END), define

Wi
κ := {k − 1− biιlκ,k : 1 ≤ k ≤ mi}.
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Corollary 6.10. In (Case END), there exists a continuous semisimple representation

R′′l (Π) : Gal(F/F )→ GLmi(Ql),

where i = 1 if e1 = e2 and i = 2 if e1 = −e2, such that for any place w of F satisfying w|Q ∈ SplE/Q
and w|Q 6= l,

[R′′l (Π)|WFw
] = [ι−1

l Lmi,Fw(Πi,w)]

and for every κ : F ↪→ Ql,

dim grwDDR,κ(R′′l (Π)) =

{
1, if w ∈ Wi

κ,
0, if w /∈ Wi

κ.

Proof. Define R′′l (Π) := R′l(Π)⊗ recl,ιl
(
($ ◦NF/E)ε(n−mi) ⊗ | · |(n−mi)/2

)
, where | · | : A×F /F× → R×>0

is the modulus character. With this definition, the current corollary is easily deduced from the previous
one. As for the Hodge-Tate numbers, we use the fact that

Wi
κ = {w +

ε(n−mi) · δ − (n−mi)

2
: w ∈ W0

κ},

which is easily seen from the discussion in the paragraph preceding (6.2). �

Remark 6.11. We end this section with a remark on generalization. Regarding the results of this
section, it is natural to ask whether one can work with more general Π than those considered in (Case
ST) or (Case END). (We restricted ourselves to these two cases since they are enough for the purpose
of proving our main results in §7. We have not discovered a promising way to strengthen the results
in §7 by considering more general Π.)

The method of this paper mostly works if Π is induced from a cuspidal automorphic representation
ψ ⊗ (⊗ri=1Πi) of G~n(A) for ~n of any length r where each Πi is θ-stable. For instance, we can define

R̃l(Π) in the same manner and prove analogues of most results of §6.2, including Theorem 6.4. A
drawback is that we have less control over the sign factors such as e0, e1 and e2, which show up in
the twisted trace formula. (Compare with Corollary 6.5.(ii) and Lemma 7.3. It is expected that the
sign factors would be precisely computed by means of the Whittaker normalization of intertwining
operators as in [CHLb]. For instance, one would be able to compute the sign of the intertwining
operator of our Lemma 4.11.) Apart from that, there is no new difficulty other than complication in
book-keeping. We have pursued only the case r ≤ 2 mainly because that is enough for our application
to the construction of Galois representations.

We have not tried to deal with the case where Π is induced from a discrete but not cuspidal
representation of G~n(A). This case may present new difficulties and the computation would be more
complicated. We merely remark that Corollary 6.5.(i) is not expected to be true in that case.

7. Construction of Galois representations

In this section we establish some instances of the global Langlands correspondence and prove the
local-global compatibility as an application of our computation of the cohomology of Shimura varieties
in §6.2.

Let L be a number field, L′ a finite soluble extension over L and Π1 an automorphic representation
of GLn(AL). We frequently write BCL′/L(Π1) for the base change lifting of Π1 in the sense of [AC89,
Ch 3].

7.1. Constructing Galois representations under technical assumptions. Let E be an imagi-
nary quadratic field, F be a CM field, and F+ be the maximal totally real subfield of F . Let m ∈ Z≥2.
Let Π0 be a cuspidal automorphic representation of GLm(AF ). Consider the following assumptions
on (E,F,Π0).

• F = EF+

• [F+ : Q] ≥ 2
• RamF/Q ∪ RamQ(Π0) ⊂ SplF/F+,Q
• (Π0)∨ ' Π0 ◦ c
• Π0

∞ is cohomological for an irreducible algebraic representation Ξ0 of GLm(F ⊗Q C).
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Let us associate highest weight integers (aσ,1 ≥ · · · ≥ aσ,m) to Ξ0, where σ runs over HomQ(F,C).
For 1 ≤ k ≤ m, let

jσ(k) := k − 1− aσ,k. (7.1)

If m is even, assume in addition that

• there exist σ0 ∈ HomQ(F,C) and an odd number k such that aσ0,k > aσ0,k+1.

If the above assumption is satisfied, we will say that Ξ0 is slightly regular (at σ0). If Ξ0 is slightly
regular at σ0 then it is also slightly regular at σc0 since (Π0)∨ ' Π0 ◦ c.

If m is odd, set

n := m, Π1 := Π0 and Ξ1 := Ξ0.

If m is even, set

n := m+ 1, Π1 := Π0 and ΠM,1 := Π0 ⊗ ($ ◦NF/E ◦ det)

and choose any algebraic Hecke character Π2 = ΠM,2 : A×F /F× → C× which satisfies the following.

• RamQ(ΠM,2) ⊂ SplF/F+,Q,
• ΠM,2Πc

M,2 = 1 and

• Π1 := n-ind(ΠM,1 ⊗ ΠM,2) is such that Π1
∞ is cohomological for an irreducible algebraic

representation Ξ1.

Allow m to be odd or even. Let us fix an embedding τ : F ↪→ C. Choose a PEL datum
(F, ∗, V, 〈·, ·〉, h) as in Lemma 5.1 (in particular dimF V = n) and write G for the associated group.
Observe that the assumptions (i)-(v) in §5.1 are verified. Choose a character $ : A×E/E× → C×
as in §3.1, namely $ has the property that $|A× is the quadratic character for E/Q coming from
class field theory. Let δ denote the odd integer such that $∞(z) = (z/z)δ/2 (using the identification
(E ⊗Q R)× ' C× via τ |E). In fact we choose $ as in the following lemma.

Lemma 7.1. The Hecke character $ : A×E/E× → C× can be chosen so that

• $|A× is as described above,
• δ is sufficiently large,7 and
• RamQ($) ⊂ SplF/F+,Q.

Proof. It is standard that$ can be chosen to satisfy the first two conditions. If RamQ($) * SplF/F+,Q,

let R be the set of primes q ∈ RamQ($) which are not contained in SplF/F+,Q. By our initial

assumption, such q must be inert in E. Suppose that there exists a continuous character $0 :
A×E/E× → C× such that

• $0 is unramified outside SplF/F+,Q ∪R ∪ {∞},
• $0

q |O×Eq = $q|O×Eq and $0
q(q) = 1 for each q ∈ R,

• $0
∞ = 1 and $0|A× = 1.

Then $/$0 is the desired character of the lemma.
It remains to prove that $0 as above exists. Let T (resp. S) denote the set of places v of E such that

v|Q ∈ SplF/F+,Q∪R (resp. v|Q ∈ R). Define UT∪{∞} :=
∏
v/∈T, v-∞O

×
Ev

and US :=
∏
v∈S O

×
Ev

. Choose

a sufficiently small open compact subgroup UT\S ⊂ A×E,T\S so that (UT∪{∞}UT\SUS) ∩ E× = (1).

(This is possible since |O×E | < ∞.) Define a finite character $′ on (UT∪{∞}UT\SUSE
×)/E× so that

$′|US = $|US and $′ is trivial on UT∪{∞}UT\S . It is elementary to check that $′ extends (uniquely)
to a finite continuous character on

(UT∪{∞}UT\SA×E,SE
×
∞A×E×)/E×,

which is an open subgroup of A×E/E×, so that $′|E×∞A× = 1 and $′q(q) = 1 for every prime q ∈ R.

Finally we extend this character to A×E/E× to obtain a desired $0.
�

7We included this condition on δ just in case, but later realized that it was not used in the later argument.
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The following lemma is an exact analogue of [HT01, Lem VI.2.10] except that the condition (iv)
is new. This additional condition is guaranteed by an argument which is very similar to the proof of
Lemma 7.1. Thus we omit the proof of Lemma 7.2.

Lemma 7.2. Let Π1 and Ξ1 be as above. (Allow m to be either odd or even.) We can find a character
ψ : A×E/E× → C× and an algebraic representation ξC of G over C satisfying (i), (ii), (iii) and (iv)
below.

(i) ψΠ1 = ψc/ψ,
(ii) Ξ1 is isomorphic to the restriction of Ξ to (RF/QGLn)×Q C, where Ξ is constructed from ξC

as in §4.3,
(iii) ξC|−1

E×∞
= ψc∞, and

(iv) RamQ(ψ) ⊂ SplF/F+,Q.

Moreover if l splits in E then (for any choice of ιl) we may require that ψ satisfy the
following as well as (i)-(iv).

(v) ψO×Eu
= 1 where u is the place above l induced by ι−1

l τ |E.

Suppose that a prime l and ιl : Ql
∼→ C are fixed. Choose ξC and ψ as in Lemma 7.2 and put

ourselves in the situation of (Case ST) or (Case END) of §6.1, according as m is odd or even, by
setting ξ := ι−1

l ξC and Π := ψ ⊗Π1. These data prepare us to run the argument of §5 and §6.
We need another lemma before stating results on Galois representations. If m is even, consider the

numbers b1σ,j and γ1
σ,j defined in §6.1. Thus the numbers {b1σ,j} correspond to the highest weight for

Ξ1 = Ξ0 and aσ,j = b1σ,j for all σ ∈ HomQ(F,C) and 1 ≤ j ≤ m. Moreover,

γ1
σ,j − γ1

σ,j+1 = (b1σ,j − b1σ,j+1) + 1 = (aσ,j − aσ,j+1) + 1

where the first equality follows from (6.3). As Ξ0 is slightly regular, there exist σ0 : F ↪→ C and an
odd k such that aσ0,k − aσ0,k+1 ≥ 1, which implies

γ1
σ0,k − γ

1
σ0,k+1 ≥ 2.

Since Ξ0 is also slightly regular at σc0 as we observed before, it may be assumed that σ0 ∈ Φ+
C without

loss of generality. (Recall that σ0 ∈ Φ+
C is equivalent to σ0|E = τ |E .) Let χ and χ′ be algebraic Hecke

characters of GL1(AF ) such that χχc = 1 and χ′(χ′)c = 1. Denote by cσ, c
′
σ ∈ Z the integers such

that χσ(z) = (z/z)cσ and χ′σ(z) = (z/z)c
′
σ for each σ ∈ HomQ(F,C). We are always able to choose χ

and χ′ such that
γ1
σ0,m > cσ0

, γ1
σ0,m−k > c′σ0

> γ1
σ0,m−k+1

and for all σ ∈ Φ+
C different from σ0,

γ1
σ,m > cσ, γ1

σ,m > c′σ.

Lemma 7.3. If m is even, suppose that χ and χ′ are chosen as above. Then in Theorem 6.1, we
have e2 = e1 for either Π2 = χ or Π2 = χ′. It is independent of the choice of τ : F ↪→ C (which was
fixed in §5.1 and remained to be fixed in §5 and §6) whether Π2 = χ or Π2 = χ′ works.

Proof. By Corollary 6.5.(i), e1 = (−1)n−1. By Remark 6.3, the sign e2 depends only on the factor
det(ω∗(ϕH)) ∈ {±1}, where ϕH is by definition the discrete L-parameter such that

BC(ϕH) ' ψH,∞ ⊗Π1,∞ ⊗Π2,∞.

To prove the first assertion, it suffices to show that det(ω∗(ϕH)) has different signs for Π2 = χ and
Π2 = χ′. Let us compute det(ω∗(ϕH)) using the explicit description of ω∗(ϕH) in (3.19). We adopt
the notation of §3.6 so that for each σ ∈ Φ+

C , γ1
σ,j = γ(ξ)σ,j for 1 ≤ j ≤ m and γ(ξ)σ,m+1 = γ2

σ,1.

If Π2 = χ then for every σ ∈ Φ+
C ,

γ(ξ)σ,1 > · · · > γ(ξ)σ,m > γ(ξ)σ,m+1 = cσ, (7.2)

hence ω∗(ϕH) = 1 and det(ω∗(ϕH)) = 1. Now suppose Π2 = χ′. For every σ ∈ Φ+
C \{σ0}, (7.2) still

holds if cσ is replaced with c′σ. On the other hand,

γ(ξ)σ0,1 > · · · > γ(ξ)σ0,m−k > γ(ξ)σ0,m+1 = c′σ0
> γ(ξ)σ0,m−k+1 > · · · > γ(ξ)σ0,m.
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Thus ω∗(ϕH) is represented by an element of (Sm+1)Φ+
C whose σ-component is trivial if σ 6= σ0 and

(1, . . . ,m+ 1) 7→ (1, . . . ,m− k,m+ 1,m− k + 1, . . . ,m)

if σ = σ0. In particular, det(ω∗(ϕH)) = −1 since k is odd and m is even. This completes the proof of
the first assertion of the lemma.

As for the independence of the choice of τ , it is enough to show that the above computation of
det(ω∗(ϕH)) does not depend on the choice of τ . The above argument depends only on τ |E in that
τ |E determines the subset Φ+

C of ΦC. So we are done if we get the same value of det(ω∗(ϕH)) for τ and
τ c. This follows from the evenness of m and the fact that every parameter flips sign if τ is changed
to τ c (and σ to σc) by conjugate self-duality. �

Proposition 7.4. Let m ≥ 2 be any integer. Keep the assumptions on (E,F,Π0) as in the beginning

of §7.1. For each prime l and an isomorphism ιl : Ql
∼→ C, there exists a continuous semisimple

representation Rl(Π
0) : Gal(F/F )→ GLm(Ql) such that

(i) At every place y of F such that y - l and y|Q /∈ RamE/Q,

[Rl(Π
0)|WFy

] = [ι−1
l Lm,Fy (Π0

y)] (7.3)

in Groth(WFy ).

(ii) Suppose y - l. For any σ ∈ WFy , each eigenvalue α of Rl(Π
0)(σ) satisfies α ∈ Q and

|α|2 ∈ |k(y)|Z under any embedding Q ↪→ C.
(iii) Let y be a prime of F not dividing l where Π0

y is unramified. Then Rl(Π
0) is unramified

at y, and for all eigenvalues α of Rl(Π
0)(Froby) and for all embeddings Q ↪→ C we have

|α|2 = |k(y)|m−1.
(iv) For every y|l, Rl(Π0) is potentially semistable at y.
(v) If l splits in E, then for every y|l such that Π0

y is unramified, Rl(Π
0) is crystalline at y.

(vi) For each σ : F ↪→ Ql, (recall the definition of jιlσ(·) from (7.1))

dim grjDDR,σ(Rl(Π
0)) =

{
1, if j = jιlσ(k) for some k ∈ [0,m− 1]
0, otherwise

Proof. Fix l and ιl : Ql
∼→ C throughout the proof. Given (E,F,Π0), define Π1, Ξ1 and n depending

on the parity of m. In particular, choose ΠM,2 if m is even. Let ψ be a character satisfying (i)-(iv)

of Lemma 7.2. Let ξC and Ξ be as in that lemma. Set ξ := ι−1
l ξC and Π := ψ ⊗ Π1. With these

definitions and notations, we have put ourselves in (Case ST) (resp. (Case END)) of §6.1 when m is
odd (resp. even). The assumptions of §6.1 in each case are easily verified.

Now we can run the argument of §6 to obtain R′l(Π) as in Corollary 6.8 if m is odd and R′′l (Π) as
in Corollary 6.10 if m is even. If m is even, we may freely change the choice of ΠM,2 using Lemma
7.3, if necessary, to ensure that the case e1 = e2 occurs. With the definition

Rl(Π
0) := R′l(Π) (m : odd), and Rl(Π

0) := R′′l (Π) (m : even), (7.4)

the condition (7.3) is already verified at every y - l such that y|Q splits in E. The properties (ii)-(v) of
Rl(Π

0) follow from Proposition 5.3 and (vi) from Corollaries 6.8 and 6.10. We remark that the proof
of (v), in which we suppose that l splits in E, requires choices be made such that

• ψ satisfies all (i)-(v) of Lemma 7.2,
• $ satisfies an exact analogue of (v) of Lemma 7.2, and
• if m is even, Π2 is unramified at places of F dividing u (where u is as in Lemma 7.2).

(Obviously there exists $ which satisfies the above condition as well as the conditions in Lemma 7.1.)
It remains to prove (7.3) for y such that y|Q is inert in E and y - l. Set p := y|Q. We can find

infinitely many real quadratic fields A not contained in F such that p is inert in A and RamA/Q ⊂
SplE/Q. (So RamA/Q ⊂ SplF/F+,Q.) Choose one such A. Let E′ be the quadratic subfield of AE

different from A and E. Then E′ is an imaginary quadratic field where p splits. Let F ′ := AF
and (F ′)+ := AF+. We claim that A can be chosen so that BCF ′/F (Π0) is cuspidal. To prove

the claim, assume to the contrary that BCF ′/F (Π0) is not cuspidal for some F ′ = AF . Then by

[AC89, Thm 4.2, p.202], it must be the case that m is even and that Π0 is an automorphic induction
from a cuspidal automorphic representation of GLm/2(AF ′). This can happen for only finitely many
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quadratic extensions F ′ of F . Hence there exists a choice of A (satisfying the previous conditions on
A) such that BCAF/F (Π0) is cuspidal.

By strong multiplicity one, we deduce that BCF ′/F (Π0)∨ ' BCF ′/F (Π0) ◦ c. It is easy to ver-

ify that (E′, F ′, BCF ′/F (Π0)) satisfies the assumptions in the beginning of §7.1. So there exists

Rl(BCF ′/F (Π0)), defined as previously in the current proof, with the property that for any place z of
F ′ such that z|Q splits in E′ and z - l,

[Rl(BCF ′/F (Π0))|Wz
] = [ι−1

l Lm,F ′z
(Π0

z)]. (7.5)

The Cebotarev density theorem implies that Rl(BCF ′/F (Π0)) is isomorphic to the restriction of Rl(Π
0)

to Gal(F/F ′). We know that y splits in F ′ since p splits in E′. Let y′ be a place of F ′ above y. Applying
(7.5) to z = y′, we deduce that

[Rl(Π
0)|Wy ] = [ι−1

l Lm,Fy (Π0
y)].

�

7.2. Removing assumptions from §7.1. We are going to improve Proposition 7.4 by removing the
first three assumptions in the beginning of §7.1.

Theorem 7.5. Let m ∈ Z≥2 be an integer and F be any CM field. Let Π0 be a cuspidal automorphic
representation of GLm(AF ) satisfying

• (Π0)∨ ' Π0 ◦ c,
• Π0

∞ is cohomological for some irreducible algebraic representation Ξ0 and
• in addition, Ξ0 is slightly regular (§7.1) if m is even.

For each prime l and an isomorphism ιl : Ql
∼→ C, there exists a continuous semisimple representation

Rl(Π
0) : Gal(F/F )→ GLm(Ql) such that for any place y of F not dividing l,

[Rl(Π
0)|WFy

] = [ι−1
l Lm,Fy (Π0

y)] (7.6)

holds in Groth(WFy ). Moreover (ii)-(vi) of Proposition 7.4 are verified, with (v) replaced by

(v)′ For every y|l such that Π0
y is unramified, Rl(Π

0) is crystalline at y.

Remark 7.6. Let m ∈ Z≥2. Let F be any totally real field and Π0 a cuspidal automorphic repre-
sentation of GLm(AF ) such that Π0

∞ is cohomological and Π0 ' Π0 ⊗ (ψ ◦ det) for some character
ψ : A×F /F× → C×. Suppose that Π0

∞ is cohomological for a slightly regular representation if m is
even. (Slight regularity is defined analogously as in the case when F is a CM field.) Then a precise
analogue of Theorem 7.5 (along with Theorem 7.11 and Corollary 7.13) for F and Π0 can be proved
in the same way Theorem 3.6 of [Tay04] (which considers the case F = Q for simplicity) was deduced
from [HT01, Thm VII.1.9]. See [Tay04] for more detail.

Remark 7.7. One may compare the theorem with [Clo91, Thm 5.7], [HT01, Thm VII.1.9] and [Mor10,
Cor 8.4.9]. See also [CHLa]. Refer to §1 for more details.

Remark 7.8. The method of proof is to construct Galois representations of Gal(F/F ′) for many
quadratic extensions F ′ of F (for which technical assumptions are satisfied) by using Proposition 7.4,
and then to “patch” them to produce a representation of Gal(F/F ). This type of argument was used
in [BR89] and [HT01], and generalized to soluble extensions ([Sor]).

Proof. We may fix l and ιl : Ql
∼→ C throughout the proof. Let Π0 be as in the theorem. In what we

call Step (I), we prove the theorem under the following assumptions on (E,F,Π0), with an exception
that (7.6) is established only at y|Q /∈ RamE/Q. (We get rid of the conditions on (E,F,Π0) and y in
Step (II).)

• E is an imaginary quadratic field.
• F = EF+.
• l splits in E.
• RamQ(Π0) ⊂ SplE/Q.

• RamF/Q ⊂ RamE/Q
∐

SplE/Q.

• Any finite place y of F+ is unramified in F if y|Q is ramified in E.
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Let F (F ) be the set of all imaginary quadratic extensions F ′ over F+ such that

• Any finite place y of F+ splits in F ′ if y|Q is ramified in E.
• If y ∈ RamF ′/F+ then any place y′ of F+ such that y′|Q = y|Q splits in F .

• BCFF ′/F (Π0) is cuspidal.

Note that the last condition excludes finitely many F ′. (See the proof of Proposition 7.4 where
the cuspidality of a quadratic base change is discussed.) For each F ′ ∈ F (F ), it is verified that
(E,FF ′, BCFF ′/F (Π0)) satisfies the assumptions in the beginning of §7.1. So there existsRl(BCFF ′/F (Π0))
as in Proposition 7.4. Moreover, for any finite extension M over F , clearly it is possible to find
F ′ ∈ F (F ) such that F ′ is linearly disjoint from M over F . In this situation we may use the argu-
ment of [HT01, p.230-231] to construct a representation Rl(Π

0) : Gal(F/F ) → GLn(Ql). Moreover,
there is a certain finite extension M0 over F (which depends on a choice made in the course of
constructing Rl(Π

0)) such that for any F ′ ∈ F (F ) which is linearly disjoint from M0 over F , we have

[Rl(Π
0)|Gal(F/FF ′)] = [Rl(BCFF ′/F (Π0))]. (7.7)

(Note that our F , FF ′ and M0 play the roles of L, FA and MA1 in the notation of [HT01, p.230-
231], respectively.) The properties (ii), (iii), (iv) and (vi) of Rl(Π

0) are inherited from those of
Rl(BCFF ′/F (Π0)). To verify (7.6) for Rl(Π

0), let us fix a finite place y - l of F such that y|Q does not
ramify in E. Choose F ′ ∈ F (F ) such that

• F ′ is linearly disjoint from M0 over F .
• y|F+ splits in F ′.

Then y splits as y′y′′ in FF ′. We deduce (7.6) from

[Rl(BCFF ′/F (Π0))|WFF ′
y′

] = [ι−1
l Ln,FF ′

y′
(BCFF ′/F (Π0))]

and the restriction of (7.7) to WFF ′
y′

= WFy . To show (v)′ for Rl(Π
0), let y be a place of F above

l. Choose F ′ ∈ F (F ) which satisfies the two conditions in the above bullet list so that y = y′y′′ in
FF ′. By (7.7) we have that [Rl(Π

0)|Wy
] is the same as [Rl(BCFF ′/F (Π0))|WF

y′
] where the latter is

crystalline by (v) of Proposition 7.4. This finishes Step (I).
Step (II) is to prove the theorem in general. Let F and Π0 be as in the theorem. Let E (F ) be the

set of all imaginary quadratic fields E not contained in F such that

• l splits in E.
• RamF/Q ∪ RamQ(Π0) ⊂ SplE/Q.

• If a finite place y of F+ is such that y|Q ∈ RamE/Q then y ∈ UnrF/F+ .

• BCEF/F (Π0) is cuspidal.

As before, the last condition excludes only finitely many E. For each E ∈ E (F ), it is verified that
(E,EF,BCEF/F (Π0)) satisfies the assumptions in Step (I) of the current proof. So there exists

Rl(BCEF/F (Π0)) satisfying (i)-(vi) of Proposition 7.4. For any finite extension M over F , we can
find E ∈ E (F ) such that EF is linearly disjoint from M over F . As before we use the argument of
[HT01, p.230-231] to construct Rl(Π

0). A similar argument as in Step (I) shows that (7.6) and the
assertions (ii)-(vi) of Proposition 7.4 (with (v) replaced by (v)′) hold for Rl(Π

0), by reducing to the
case considered in Step (I). (To verify (7.6) for Rl(Π

0)|WFz
at an arbitrary place z of F , we choose

E ∈ E (F ) such that z|Q splits in E and imitate the argument in Step (I), with EF in place of FF ′.)
�

The Ramanujan-Petersson conjecture for GLn states that every non-archimedean local component
of a cuspidal automorphic representation of GLn(AF ) for a number field F is (essentially) tempered.

Corollary 7.9. Let m, F , Π0 be as in Theorem 7.5. Then Π0
w is tempered at every finite place w of

F .

Remark 7.10. Compare the corollary with [Clo91, Cor 5.8], [HT01, Cor VII.1.11] and [Mor10, Cor
8.4.10]. (cf. Remark 7.7.)

Proof. This follows from (ii) of Theorem 7.5 and [HT01, Cor VII.2.18]. �
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7.3. Strengthening of the local-global compatibility. The aim of this last subsection is to im-
prove the identity (7.6) of Theorem 7.5 as in the following theorem. It is worth pointing out that we

make use of Corollary 7.9 in the proof, among others. Fix a prime l and an isomorphism ιl : Ql
∼→ C

throughout §7.3.

Theorem 7.11. In the setting of Theorem 7.5, we have the following isomorphism of Weil-Deligne
representations at every y - l.

WD(Rl(Π
0)|Gal(Fy/Fy))

F−ss ' ι−1
l Ln,Fy (Π0

y) (7.8)

Taylor and Yoshida proved the above result ([TY07, Thm 1.2]) in the setting of [HT01]. (Boyer
([Boy09]) proved the weight monodromy conjecture for the vanishing cycle complexes arising from
Shimura varieties in the same setting, providing an alternative approach to work of Taylor and
Yoshida.) To prove Theorem 7.11, it suffices to prove an analogue of [TY07, Thm 1.5] in our setting,
namely that WD(Rl(Π

0)|Gal(Fy/Fy)) is pure for every y - l, by the remark above the cited theorem.

For this, we basically repeat the argument of sections 3 and 4 of Taylor-Yoshida’s paper with only
minor changes. Note that we only need to consider the case “l 6= p” in that paper (except a temporary
digression to the case l = p in Lemma 7.12 and Corollary 7.13). We devote this subsection to sketch
the proof of Theorem 7.11, which amounts to explaining how their argument should be modified.
Obviously we claim no originality.

First of all, we briefly recall our Shimura varieties that were used earlier. This replaces the beginning
of section 2 of [TY07]. (We do not need the later part of that section.) We put ourselves in the situation
of §7.1. So we begin with a triple (E,F,Π0) satisfying the assumptions there and choose a PEL datum
and other data. Recall that we consider (Case ST) with n = m if m is odd and (Case END) with
n = m+ 1 if m is even. In the latter case, choose ΠM,2 so that R′′l (Π) has dimension m (rather than
1) in Corollary 6.10. Such a choice is possible by Lemma 7.3.

For each sufficiently small open compact subgroup K of G(A∞), let XK denote the Shimura variety
ShK constructed from the above PEL datum (§5.2). We list the modifications to be made in section 3
of [TY07] so that things make sense in our setting. The notations B, OB , Bop and Oop

B there should
be replaced by F , OF , Mn(F ) and Mn(OF ), respectively. Fix a prime p ∈ SplE/Q and a place w of

F above p. Choose ιp : Qp
∼→ C such that ι−1

p τ induces the place w. We also fix ιl : Ql
∼→ C. The

groups Uwp (m), Ma(m) and Iw(m) can be defined as obvious analogues, as well as U0 := Up ×Ma(m)
and U := Up× Iw(m). Set GA := A[w∞] for abelian schemes A in the moduli problem of our Shimura
variety (without multiplying the idempotent ε as in Taylor-Yoshida). Let G denote the Barsotti-Tate
OFw -module associated to the universal abelian scheme for XU0

. We explained in §5.2 that XU0
has

a smooth projective integral model over OFw . Recall that the special fiber XU0
over Spec k(w) admits

a stratification into X
(h)

U0
for 0 ≤ h ≤ n − 1. Note that X

(0)

U0
is nonempty of dimension 0 as we can

exhibit an Fp-point in the corresponding Igusa variety which is a covering of X
(0)

U0
, as it was done in

[HT01, Lem III.4.3, Cor V.4.5]. By analogues of [HT01, Lem III.4.1.2] and [TY07, Lem 3.1] in our

setting (which are proved in the same way), X
(h)

U0
are of pure dimension h for 0 ≤ h ≤ n − 1. The

integral model for XU over OFw and the schemes YU,i, YU,S and Y 0
U,S over Spec k(w) are defined as

in [TY07]. Notice that m and S in their paper are denoted by m and S , respectively, in order to
avoid conflict with our notation. Apart from the changes already mentioned, the material in section
3 of Taylor-Yoshida’s paper goes through without further modification.

This is a good place to record a useful fact, which will not be needed in the proof of Theorem
7.11. Only in this paragraph, assume that w|l and l = p. We know that XU is a proper scheme
over OFw with semistable reduction ([TY07, Prop 3.4]), so the universal abelian scheme AU over
XU also has semistable reduction over OFw . Since Hk(XU ×OFw Fw,Lξ) is a direct summand of

Hk+mξ(AU ×OFw Fw,Ql) up to a Tate twist for an integer mξ ([TY07, p.477]), we deduce that

Hk(XU ×OFw Fw,Lξ) is a semistable representation of Gal(Fw/Fw) ([Tsu99]). Write each πl ∈
Irrl(G(Ql)) as πl = πl,0 ⊗ πw ⊗ (⊗i>1πwi), following our previous convention.

Lemma 7.12. Let π∞ ∈ Irrl(G(A∞)) and assume that π
Z×l
l,0 6= 0. If π

Iwn,w
w 6= 0 and Rkξ,l(π

∞) 6= 0 for

some k, then Rkξ,l(π
∞) is a semistable representation of Gal(Fw/Fw).
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Proof. Recall U = Up×(Iwn,w×Uwp (m)×Z×p ). We can arrange that (π∞)U 6= 0 by choosing sufficiently

small Up and Uwp (m). Then Rkξ,l(π
∞) is semistable since it appears with nonzero multiplicity as a

subrepresentation of Hk(XU ×OFw Fw,Lξ).
�

Corollary 7.13. In the setting of Theorem 7.5, if Π0
y has a nonzero Iwahori fixed vector at y|l then

Rl(Π
0) is semistable at y.

Proof. The proof is the same as in the crystalline case. Namely, the corollary is derived from Lemma
7.12 in the same way as the assertion (v)’ of Theorem 7.5 was deduced from Proposition 5.3.(v). �

We return to the case l 6= p. Now we adapt section 4 of Taylor-Yoshida to our situation. We work
under the setting of §6 of our paper, in either (Case ST) or (Case END), depending on the parity of m.
Choose a finite set S under the assumptions in the beginning of §6. (In addition, we already assumed
that the conditions (i)-(v) above Lemma 5.1 are satisfied.) All additional assumptions will be removed
at the end. In fact, let us consider only (Case ST) for now. In particular Π = ψ⊗Π0 is cuspidal. (The
argument is essentially the same in (Case END), which will be briefly discussed in Remark 7.16.) Let
πp ∈ Irrl(G(Qp)) be such that BC(ιlπp) ' Πp as before. Write πp = πp,0 ⊗ πw ⊗ (⊗i>1πwi) so that
ιlπp,0 = ψu for u := w|E and ιlπwi ' Π1

wi for all i.

Let I
(h)
Up,m be the Igusa variety of the first kind defined in [HT01, p.121]. (Substitute our Shimura

varieties in the definition.) The Iwahori-Igusa variety I
(h)
U over X

(h)

U0
is defined as on page 487 of

[TY07]. The results of page 487 carry over without change. If 0 ≤ h ≤ n − 1 corresponds to b as in

(5.3), we will write Ig(h) for Igb and J (h)(Qp) for Jb(Qp).
At this point we need to mention that we will follow the sign convention of [TY07] in order to

minimize confusion. This means that the signs of Hc(I
(h),Lξ) (and its variants) and H(X,Lξ) differ

from the usual convention by (−1)h and (−1)n−1, respectively. Accordingly, we change the definition

of Hc(Ig
(h),Lξ) by multiplying (−1)h.

One major change occurs in the middle of page 488 where theorem V.5.4 of [HT01] is cited. Let
us elaborate on this point. Put D := DFw,1/(n−h). Write OD for the maximal order in D. It follows

from the definition of Hc(I
(h),Lξ) that

Hc(I
(h),Lξ) = Hc(Ig

(h),Lξ)
Z×p ×O

×
D

where Z×p ×O×D is viewed as the subgroup Z×p × (O×D × (1))×
∏
i>1(1) of J (h)(Qp) via the expression

(5.4). Applying Theorem 6.1, we have that (cf. (5.16))

BCp(Hc(I
(h),Lξ)[Π

S ]) = (−1)n−1CG[ι−1
l Π∞,p][π

Z×p
p,0 ⊗ Redn−h,h(πw)O

×
D ⊗ (⊗i>1πwi)]

in Groth(G(A∞,p) × J (h)(Qp)), where BCp denotes the local base change at the places away from p

and ∞ (§4.2). We remark that ep(J
(h)) does not show up in the formula as we are following the sign

convention of [TY07]. According to page 488, Frobw acts on Hc(I
(h),Lξ) as

(1, p−[k(w):Fp], $−1
D , 1, 1) ∈ G(A∞,p)× (Q×p /Z×p )× (D×/O×D)×GLh(Fw)×

(∏
i>1

GLn(Fwi)

)
where $D is any uniformizer of D. It is easy to check that

BCp(Hc(I
(h)
Iw(m),Lξ)[Π

S ]) = BCp(Hc(I
(h),Lξ)[Π

S ])U
w
p (m)×Iwh,w

= (−1)n−1CG[ι−1
l Π∞,p][Red(h)(πw ⊗ πp,0)] · dim[(⊗i>1πwi)

Uwp (m)]

in Groth(G(A∞,p)× FrobZw) where Red(h) is defined on page 488.
It is easy to deduce the following analogue of [TY07, Lem 4.3].

BCp(H(YIw(m),S ,Lξ)[Π
S ]) = (−1)n−1CG[ι−1

l Π∞,p] dim[(⊗i>1πwi)
Uwp (m)]× (7.9)(

n−#S∑
h=0

(−1)n−#S−h
(
n−#S

h

)
ι−1
l [Red(h)(Π1

w ⊗ ψu)]

)
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We proceed to prove the following analogue of [TY07, prop 4.4] by imitating the original argument.

Proposition 7.14. Keep the previous notation. Suppose that π
Iw(m)
p 6= 0. Then

BCp(Hj(YIw(m),S ,Lξ)[Π
S ]) = 0

for j 6= n−#S .

Proof. Let D(Π) := (−1)n−1CG · dim(⊗i>1Πw,i)
Uwp (m) for each π∞ ∈ Rl(Π). (Note that our D(Π)

differs from D of [TY07] by the dimension of the Iwahori invariants at w.) The assumption implies
that D(Π) 6= 0. By (7.9),

BCp(H(YIw(m),S ,Lξ)){Π∞,p} = D(Π)

n−#S∑
h=0

(−1)n−#S−h
(
n−#S

h

)
ι−1
l [Red(h)(Π1

w ⊗ ψu)]

in Groth(FrobZw). We will be done if the above expression is shown to be zero.
The initial assumption says that Π1

w has a nonzero Iwahori fixed vector. Moreover Π1
w is tempered

by Corollary 7.9. So Π1
w has the form

n-ind
GLn(Fw)
P (Fw) (Sps1(π1)⊗ · · · ⊗ Spst(πt))

for unramified characters πi : F×w → C× and
∑
i si = n. Then Red(h)(Π1

w ⊗ ψu) can be computed as
in [TY07]. We obtain

BCp(H(YIw(m),S ,Lξ)){Π∞,p} = D(Π)
∑

si=#S

(n−#S )!∏
j 6=i sj !

[Vi] (7.10)

where Vi is defined on page 490 of [TY07]. Since Vi are strictly pure of weight mξ − 2tξ + (n−#S )
(mξ and tξ are defined in [HT01, p.98]), the Weil conjecture implies that

BCp(H(YIw(m),S ,Lξ)){Π∞,p} = 0

for j 6= n−#S .
�

So far we have considered BCp on the level of Grothendieck groups. Now we work with genuine
admissible representations. For each k ≥ 0, define (cf. (5.5))

BCp(Hk(XIw(m),Lξ)[Π
S ]) :=

⊕
π∞

dim(πIw(m)
p ) ·BC(π∞,p)⊗Rkξ,l(π∞)

where the sum runs over π∞ ∈ Irrl(G(A∞)) such that πS is unramified and BC(ιlπ
S) ' ΠS . Theorem

6.4 and its proof show that

BCp(Hn−1(XIw(m),Lξ)[Π
S ]) ' (dimπIw(m)

p ) · ι−1
l Π∞,p ⊗ R̃n−1

l (Π) (7.11)

as admissible representations of G(A∞,p)×Gal(F/F ).

Corollary 7.15. In the setting of Proposition 7.14, WD(R̃n−1
l (Π)|Gal(Fw/Fw)) is pure of weight mξ−

2tξ + n− 1.

Proof. In view of [TY07, Lem 1.4.(1), Lem 1.7], it suffices to show that WD(R̃n−1
l (Π)ss|Gal(Fw/Fw))

F−ss

is pure of the designated weight. Here the superscript “ss” means the semisimplification of the
Gal(F/F )-action.

We use a slightly different form of the spectral sequence of [TY07, Prop 3.5], which can be derived
from its proof. With the notation of that proposition, consider the spectral sequence

BCp(Ei,j1 (Iw(m), ξ)[ΠS ])⇒ BCp(WD(Hi+j(XIw(m),Lξ)
ss|Gal(Fw/Fw))

F−ss). (7.12)

Here each side is viewed as a semisimple representation of G(A∞,p)×Frobw (after semisimplifying the
action of G(A∞,p) × Frobw on the left hand side) with a nilpotent operator N . The above spectral
sequence can be obtained in the following way. First, we semisimplify the action of G(A∞,p)×Frobw
in the Rapoport-Zink weight spectral sequence, which is the second last formula of [TY07, p.485].
Next, separate the [ΠS ]-part and apply BCp to the spectral sequence.
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Proposition 7.14 tells us that BCp(Ei,j1 (Iw(m), ξ)[ΠS ]) vanishes unless i + j = n − 1. So the
semisimplified spectral sequence (7.12) degenerates at E1 and

WD(BCp(Hn−1(XIw(m),Lξ)[Π
S ])ss|Gal(Fw/Fw))

F−ss (7.13)

is pure of the desired weight. This concludes the proof in view of (7.11).
�

Remark 7.16. So far we have been dealing with (Case ST) and odd m. In (Case END) with even
m, Proposition 7.14 and Corollary 7.15 are still valid. In (7.9) and the proof of Proposition 7.14,
we apply (ii) of Theorem 6.1 to compute BCp(H(YIw(m),S ,Lξ)[Π

S ]). The proof of Proposition 7.14
mostly goes through except that one of the Vi’s will be missing on the right side of (7.10). Corollary
7.15 in (Case END) is proved similarly as in (Case ST).

We are ready to complete the proof of Theorem 7.11. Allow m to be either odd or even. Let
us forget the additional assumptions of §5-§6 and put ourselves in the situation of §7.2, but let L
denote the CM field to begin with, instead of F . So Π0 is a cuspidal automorphic representation
of GLm(AL). (Of course, unlike [TY07], we do not assume that Π0 is square integrable at a finite
place.) Let Rl(Π

0) : Gal(L/L) → GLm(Ql) be given by Theorem 7.5. Our plan is to imitate page
492 of [TY07] to find a certain finite soluble extension F over L so that the proof for L and Π0 can
be reduced to the proof for F and BCF/L(Π0).

Fix a place v of L above p where p 6= l. Recall the remark below the statement of Theorem
7.11 that it suffices to prove WD(Rl(Π

0)|Gal(Fv/Fv)) is pure. Find a CM field F such that (as usual

F+ := F c=1)

• [F+ : Q] is even,
• F = EF+ for an imaginary quadratic field E in which p splits,
• F is soluble and Galois over L,
• RamF/Q ∪ RamQ(Π0) ⊂ SplF/F+,Q,

• Π0
F := BCF/L(Π0) is a cuspidal automorphic representation of GLm(AF ), and

• there is a place w of F above v such that Π0
F,w has an Iwahori fixed vector.

We justify that it is possible to choose F as above. As a first step, we find a CM field F0 which is
soluble and Galois over L and a place w0 of F0 above v such that the last two conditions in the list are
satisfied for F0 and w0 in place of F and w. Next we find F from F0 by taking quadratic extensions
of F0 twice as in the proof of Theorem 7.5. We elaborate on this point. Choose E ∈ E (F0) such that
p splits in E and E ( F0. Since EF0 verifies the assumptions of Step (I) in that proof, we may choose
F ′ ∈ F (EF0) different from EF0 and take F := F ′EF0. Let w be any place of F above w0. It is easy
to see that F satisfies every condition in the above list.

With (E,F,Π0
F ) in hand, consider the setting of §7.1. Let ΠF denote the representation Π of §7.1

obtained by substituting Π0
F for Π0 in that section. The proofs of Corollaries 6.8 and 6.10 tell us that

CG ·Rl(Π0)|Gal(F/F ) ' CG ·Rl(Π
0
F ) ' R̃n−1

l (ΠF )ss ⊗Rl(ψ)−1.

It follows from Corollary 7.15 and [TY07, Lem 1.7] that WD(Rl(Π
0)|Gal(Lv/Lv)) is pure. The proof of

Theorem 7.11 is concluded.
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[Lan83] R. Langlands, Les debuts d’une formule des traces stable, Publ. Math. Univ. Paris VII 13 (1983).
[Lan88] , The classification of representations of real reductive groups, Math. Surverys and Monographs, no. 31,

AMS, 1988.

[Lan08] K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, Harvard thesis (2008).
[LN08] G. Laumon and B. C. Ngo, Le lemme fondamental pour les groupes unitaires, Annals of Math. 168 (2008),

477–573.
[LR92] Langlands and Ramakrishnan (eds.), The zeta functions of Picard modular surfaces, Montreal, Centre de

Recherches Math., Univ. Montreal Press, 1992.

[LS87] R. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), 219–271.
[LS90] , Descent for transfer factors, The Grothendieck Festschrift, vol. II, Birkhäuser, 1990, pp. 486–563.
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