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ABSTRACT. Our aim is to establish some new cases of the global Langlands correspondence for
GLy,. Along the way we obtain a new result on the description of the cohomology of some compact
Shimura varieties. Let F' be a CM field with complex conjugation ¢ and II be a cuspidal automorphic
representation of GLy, (Ar). Suppose that IIV ~ ITo ¢ and that Il is cohomological. A very mild
condition on Il is imposed if m is even. We prove that for each prime [ there exists a continuous
semisimple representation R;(I) : Gal(F/F) — G Ly, (Q;) such that IT and R;(IT) correspond via the
local Langlands correspondence (established by [HT01] and [Hen00]) at every finite place w {1 of F’
(“local-global compatibility”). We also obtain several additional properties of R;(II) and prove the
Ramanujan-Petersson conjecture for II. (See Theorem 1.2 and Corollary 1.3 below.) This improves
the previous results obtained by [Kot92a], [Clo91], [HT01] and [TY07] where it was assumed in
addition that II is square integrable at a finite place. It is worth noting that the mild condition on
IIs in our theorem is removed by a p-adic deformation argument, thanks to Chenevier and Harris
([CH)).

Our approach generalizes that of [HT01], which constructs Galois representations by studying
the l-adic cohomology and bad reduction of certain compact Shimura varieties attached to unitary
similitude groups. The central part of our work is the computation of the cohomology of the so-called
Igusa varieties. Some of the main tools are the stabilized counting point formula for Igusa varieties
([Shi09], [Shil0]) and techniques in the stable and twisted trace formulas.

Recently there have been results by Morel ([Morl0]) and Clozel-Harris-Labesse ([CHLal) in a
similar direction as ours. Our result is stronger in a few aspects. Most notably, we obtain information
about R;(II) at ramified places.

1. INTRODUCTION
A version of the global Langlands conjecture states that

Conjecture 1.1. Let F be a number field and 11 be a cuspidal automorphic representation of G L., (Ar)
which is algebraic in the sense of [Clo90, Def 1.8]. For each prime I, with the choice of an isomorphism
t : Q; = C, there exists an irreducible continuous semisimple representation R ,,(I1) : Gal(F/F) —
GL,(Q)) such that Ry, (1) is potentially semistable at every place y of F dividing | and

WD(Ri (Dl e, ) = 6 oo, (11,) (1.1)
for every finite place y of F' (including y|l).
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Here WD(-) denotes the associated Weil-Deligne representation for local Galois representations and
(-)¥ 755 means the Frobenius semisimplification. (See [TY07, §1] for instance, to review these notions.)
The notation %}, r, (II,) means the local Langlands image of II, where the geometric normalization is
used (§2.3). Since II is unramified at all but finitely many places, the conjecture implies that R; ,, (IT)
has the same property. The representation R, (II) is unique up to isomorphism by Cebotarev density
theorem, if it exists. For simplicity of notation, we write R;(II) for R;,, (II) later on.

If m = 1, Conjecture 1.1 is completely known by class field theory. If m = 2 and F is totally real, a
lot is known about the conjecture. (See [BR93], [Tay89], [Sai06] and the references therein.) We will
be mostly concerned with the case m > 3. In general the conjecture is still out of reach, but there
are favorable circumstances where more tools are available in attacking the conjecture. Let F' be a
CM field. Use ¢ to denote the complex conjugation. Suppose that IIV ~ Il o ¢ and that II is regular
algebraic ([Clo90, Def 3.12]). The latter is equivalent to the condition that II., is cohomological
for an irreducible algebraic representation of GL,,. These assumptions on II essentially ensure that
II “descends” to a representation of a unitary group and that the descended representation can be
“seen” in the [-adic cohomology of a relevant PEL Shimura variety of unitary type. In particular many
techniques in arithmetic geometry become available. There are some solid results in this setting. If
we further assume that

e II is square integrable at some finite place,

then Conjecture 1.1 is known by a series of works [Kot92a], [Clo91], [HTO01] and [TYO07] for every
y 1 I. More precisely, the assertions of Theorem 1.2 below, without any condition on I, when m is
even, are known under the additional assumption on II as above. (Although the assertion (vi) is not
explicitly recorded, it follows easily from the contents of [TY07].)

It has been conceived for some time that the additional condition on II might be superfluous.
However, it has also been realized by many people that it would require techniques in the trace
formula and a better understanding of endoscopy to remove the superfluous assumption on II. One
of the most conspicuous obstacles was the fundamental lemma, which had only been known in some
special cases. Thanks to the recent work of Laumon-Ngo ([LNO08]), Waldspurger ([Wal97], [Wal06])
and Ngo ([Ngo]) the fundamental lemma (and the transfer conjecture of Langlands and Shelstad) are
now fully established. This opened up a possibility for our work.

Our paper is aimed at proving Conjecture 1.1 at y t I, without assuming that I is square integrable
at a finite place, but with a very mild assumption on II,, when m is even. (See the third assumption
on IT of Theorem 1.2.) This last assumption has been removed by a p-adic deformation argument by
Chenevier and Harris ([CH, Thm 3.2.5]), so it should not be regarded as a serious condition. (However,
the equality (i) of the theorem is preserved only up to semisimplification in the p-adic deformation
argument.) No such assumption on Il is necessary when m is odd.

The main theorem is the following. (See Remark 7.6 for the case where F' is a totally real field.)
Note that we also prove the assertions (v) and (vi) below, which are predicted by Conjecture 1.1 at
y|l, as well as a few additional properties of R;(II). Unfortunately we do not prove that R;(II) is
irreducible. (If IT is square integrable at a finite place, the irreducibility is known by [TY07, Cor 1.3].)

Theorem 1.2. (Theorem 7.5, Theorem 7.11, Corollary 7.13) Let m € Z>o. Let F be any CM field.
Let 1 be a cuspidal automorphic representation of GLy,(Ar) such that

o IIV~Tloc and

e I, has the same infinitesimal character as some irreducible algebraic representation =V of
the restriction of scalars Rp oG Ly, .

o = is slightly regular, if m is even.

Then for each prime | and an isomorphism v : @l 5 C, there exists a continuous semisimple repre-
sentation Ry(I1) = Ry, (1) : Gal(F'/F) — GL,,(Q;) such that

(i) for any place y of F not dividing 1, there is an isomorphism of Weil-Deligne representations
WD(Ri(I)| g7, /)" % = 0 Lo, (L)

(ii) Suppose y 1 1. For any o € Wr,, each eigenvalue o of R)(T1)(0) satisfies |a|? € |k(y)|? under
any embedding Q — C.
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(i) Let y be a prime of F' not dividing | where II, is unramified. Then Ry(II) is unramified
at 2y, and for alll eigenvalues o of Ry(II)(Froby) and for all embeddings Q — C we have
laf* = |k(y)[™ .

(iv) For every y|l, R;(II) is potentially semistable at y with distinct Hodge-Tate weights, which
can be described explicitly.

(v) IfIL, is unramified at y|l, then R;(I1) is crystalline at y.

(vi) IfII, has a nonzero Iwahori fized vector at y|l, then Ry(II) is semistable at y.

In fact, our method allows to prove a stronger assertion that there exists a compatible system of
M-adic representations associated to II. That is to say, for each Il as above, there is a number field L
such that the representations Ry, (IT) for varying [ and ¢; are realized on Ly-vector spaces for varying
finite places A of L. This can be done by realizing £ on an L-vector space (where L is large enough
to contain the field of definition of II, cf. [Clo90, 3.1]) and % as a smooth Ly-sheaf rather than a
Q;-sheaf (cf. [Kot92a, p.655]), where ¢ and % are as in §5.2.

It is standard that the theorem implies the Ramanujan-Petersson conjecture for IT as above, but it
is worth remarking on the order of proof. First we prove Theorem 1.2 with a weaker version of the
first assertion, namely that (i) holds only up to semisimplification. This is enough for deducing the
corollary below. Then the temperedness of II, among others, is used to strengthen the statement of
(1).

Corollary 1.3. (Corollary 7.9) Let m, F, 11 be as in the previous theorem. Then I1,, is tempered at
every finite place w of F.

We sketch the strategy of proof of Theorem 1.2. In fact we content ourselves with explaining the
proof of only the first assertion as it is more or less standard to prove the other parts. Our strategy
relies on the theory of Shimura varieties, whose cohomology is expected to realize the global Langlands
correspondence in an appropriate sense. Since there are no Shimura varieties for GL,, if n > 2, the
next best thing is to use the Shimura variety for a unitary similitude group G. Suppose that the CM
field F' contains an imaginary quadratic field E. We find a Q-group G such that

e (G is quasi-split at all finite places,

e G(R) is isomorphic to U(1,n — 1) x U(0,n)F*@/2=1 up to multiplier factor, and
Note that the first assumption is not satisfied by the groups considered in [Kot92a], [Clo91] and
[HT01]. When n is odd, such a group G always exists. When n is even, G exists if and only if
n = 2 (mod 4) and [F : Q]/2 is odd. In our work it is enough to consider the case when n is odd.
Indeed, in order to construct m-dimensional Galois representations, we use n = m if m is odd and
n =m+ 1 if m is even. In case m is odd (resp. even), R;(II) will be realized in the stable (resp.
endoscopic) part of the cohomology of Shimura varieties attached to G as above. These correspond
to (Case ST) and (Case END) below. Before elaborating on this point, let us give more details about
the setup.

Consider a projective system of Shimura varieties, denoted by Sh, whose associated group is G. If

F # FE then Sh is a projective system of smooth projective varieties over F', which arise as the moduli
spaces of abelian schemes with additional structure. The projectivity of Sh and the fact that G/Z(G)
is anisotropic over QQ are related to each other and essential in our argument. Let £ be an irreducible
algebraic representation of G over Q;, which gives rise to a lisse l-adic sheaf .%; on Sh. The étale
cohomology space H*(Sh, %) := H*(Shx ¢ F, %) is a smooth representation of G(A>) x Gal(F /F).
We have a decomposition

H*(Sh, %) = P 7> @ RE,(7*)

as ™ runs over the set of irreducible admissible representations of G(A*>). Write H(Sh, %) :=
Sp(—1)*H*(Sh, Z).
Fix a prime p split in F as well as a place w of F' above p. The Shimura variety Sh has an integral

model over O, and its special fiber Sh has the Newton polygon stratification into Sih(b) where b

is a parameter for an isogeny class of p-divisible groups with additional structure. We can define a

- (b
smooth variety Ig, over F,, (which is also a projective system of varieties) from SE®. Also defined is
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a Q,-group J, which is an inner form of a Levi subgroup of Gg,. The cohomology space H (g, %)
is naturally a virtual representation of G(A*?) x J;(Qp). On the other hand, there is a functor
Manty, ,, : Groth(J,(Qp)) — Groth(G(Q,) x Wg, ), which is defined in terms of the cohomology of a
certain moduli space of p-divisible groups. Mantovan’s formula ([Man05, Thm 22], [Man, Thm 1]) is
the following identity in Groth(G(A*) x W, ), which generalizes [HT01, Thm IV.2.8].

H(Sh, %) =Y Mant, ,(H,(Ig, Z;))- (1.2)
b

An important point is that Mant, , is purely local in nature and well-understood thanks to Harris
and Taylor. (See §2.4).
Consider a regular algebraic automorphic representation II = ¢ ® II' of G(Ag) ~ GL1(Ag) x
GL,(Ar) where Tl is determined by &. We deal with two possibilities for IT* as follows (§6.1).
e (Case ST) II! is cuspidal, or
e (Case END) II' = n-ind(Il; ® IIy) where II; is a cuspidal automorphic representation of
GL,,(Ar) and ny > ng > 0. (n1 +ng = n)

For simplicity of exposition, we assume that the local base change from the representations of G(A>)
to those of G(A%) is well-defined at every finite place. (In practice we work under simplifying
assumptions to make sense of base change unconditionally, as in §4.1. To our knowledge, this idea
is due to Harris and Labesse (e.g. [Lab]).) We would like to define the “II°*P-part” of H.(Ig;, Z¢).
Write

Ho(lg, L) = Y, n(@>r®p,) 17 ® p,)

LT

where n(m°*? ® p,) € Z and the sum runs over irreducible admissible representations of G(A>?) x
Jp(Qp). Then define

He(Tgy, Z{II™ "} = Yo am>P @) bl

TP Rpp
BC(7:P)~I100:P
Also define R;(II) := > poe Re (%) where > are representations such that BC(7°P) o~ II°P.

We are ready to state our results on the cohomology of Igusa varieties and Shimura varieties. First,
H.(Ig,, Z:){II>>P} is explicitly described in terms of II,. (For a precise statement, see Theorem 6.1.)
In fact, in (Case END), the description depends on not only II,, but also II; , and Il ,. This result,
together with (1.2) and our knowledge of Mant, ,,, leads to a description of R;(II) in Groth(Wp, ). (In
fact, as a by-product, we know not only ﬁl(H) but also the contribution to EZ(H) from each Newton
polygon stratum.) Up to some explicit nonzero multiplicity and character twist, it turns out that
(Theorem 6.4)

e (Case ST) EI(HHWF,W is the local Langlands image of IT'.

e (Case END) El(H)\WFw is the local Langlands image of II; or Ils.
In particular dim R;(II) = n in (Case ST) whereas dim R;(II) = ny or ny in (Case END), up to multi-
plicity. Moreover, it can be shown that R;(II) is a true representation concentrated in H"~*(Sh, Ze).
So far we indicated how the local-global compatibility is established at w on the condition that p = wlg
splits in E. This can be extended to all places not dividing [. (See the proof of Proposition 7.4.)

With the above result on the cohomology of Shimura varieties, it is not too difficult to deduce
Theorem 1.2. Harris proposed a strategy generalizing [BR93] (which may be regarded as the case
with m = 2 and n = 3) and its outline is as follows. As the notation II is already being used, let
IT° denote the cuspidal automorphic representation of GL,,(Ar) in the theorem. If m is odd, use
n = m and II* = TI°. Then R;(II) is essentially the desired Galois representation. If m is even,
use n = m + 1 and II; = I1°. In this case, it is possible to choose Il so that R; (IT) is essentially
the desired representation, namely it corresponds to II; rather than Il,. To prove this, we carry out
explicit computation of signs in real endoscopy. The slight regularity assumption of Theorem 1.2
ensures that a good choice of Iy exists. Actually our construction of Galois representations a priori
relies on additional assumptions on F and II, for technical reasons including the issue of local base
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change. To remove these assumptions we apply a “patching” argument as in [BR89] and [HT01]. (See
the proof of Theorem 7.5.)

We have explained how a result on H.(Ig;, % ){II°*?} implies a result on R;(IT), thus enabling
us to prove Theorem 1.2. The remaining problem is the computation of H.(Ig,, Z¢){II°*?}, which
is at the core of our work. The starting point is the following stable trace formula ([Shi09]), which
stabilizes the counting point formula for Igusa varieties ([Shil0]).

tr (6% - ¢ luHe(Igy, Z)) = [ker'(Q.G)| Y u(G, G)STI (o) (1.3)
Gr

The notations should be explained. The function ¢ - ¢, € C2°(G(A>P) x J,(Q,)) is any acceptable
function in the sense of [Shi09, Def 6.2]. The sum is taken over elliptic endoscopic groups G for G
(83.2). The test functions qﬁflg away from p, oo are the Langlands-Shelstad transfer of ¢°P. See §5.3
for ¢f‘g,p and ¢?§,m~ We remark that an analogous formula for Shimura varieties was obtained earlier
by Kottwitz ([Kot92b], [Kot90]) and plays a central role in the computation of Frobenius action on
the cohomology of Shimura varieties at the primes of good reduction. Kottwitz’ formula is a key input
in [Kot92a], [Mor10], [CHLa], to name a few. However, his formula is not needed in [HT01] and our
work, where the trace formula for Igusa varieties is importantly used.

We can proceed from (1.3) using similar techniques as in work of Clozel, Harris and Labesse ([Lab],
[CHLDb]) on the base change and endoscopic transfer for unitary groups. The point is that each
summand in (1.3) is (up to constant) equal to the geometric side of the twisted trace formula for
G xqg E with respect to the Galois action of the nontrivial element 6 € Gal(E/Q). This in turn equals
the spectral side of the trace formula, expanded in terms of #-stable automorphic representations
of Gz(Ag). By a result of Jacquet-Shalika, we can separate a string of Hecke eigenvalues, or the
II°P-part from the spectral expansion. It turns out that this process singles out a unique term in the
spectral expansion in (Case ST) and two terms in (Case END). Using various character identities, an
explicit description of H.(Ig,, Z){II°°*} is finally obtained. In doing so, the most interesting and
perhaps mysterious character identities are those at p (Lemma 5.10). These arise naturally from the
stabilization process for (1.3) at p and reflect the structure of Newton stratification of Sh.

So far we sketched the proof of Theorem 1.2. We end by mentioning latest work of others in a
similar direction. Recently Morel announced a result ([Morl0, Cor 8.4.9, 8.4.10]) similar to Theorem
1.2 and its corollary, as an application of her study of non-compact unitary Shimura varieties. (In
contrast, our work offers no information about the geometry or cohomology of those Shimura varieties.)
When m is odd, she constructed R;(IT) up to multiplicity and proved (i) of Theorem 1.2 at the places
y where II, is unramified, as well as (iii). Now suppose that m is even. If m = 2 mod 4 and
[F* : Q] is odd, she obtains the same result as in the case of odd m. Otherwise, she can still
construct A2R;(IT) up to multiplicity and prove an analogue of (i) and (iii) at unramified places.
(Actually Morel states the main results only in the case F'™ = Q, but it seems that her results
extend to the cases mentioned above without much difficulty.) Perhaps the most important input in
Morel’s work is the counting point formula (and its stabilization) for the special fibers of noncompact
Shimura varieties (cf. [Mor05], [Mor08]), which generalizes [Kot92b] and [Kot90] to the noncompact
setting. On the other hand, Clozel, Harris and Labesse ([CHLa]) have succeeded to construct even
dimensional Galois representations attached to II as in our work under a similar restriction on Il...
Their method shares some common features with ours in that they use the same compact Shimura
varieties and the endoscopic transfer from U(m) x U(1) to U(m + 1) as well as the twisted trace
formula. The essential difference is that they employ (the stabilization of) Kottwitz’ counting point
formula ([Kot92b], [Kot90]) and obtain information only at unramified (good) places. In contrast,
our method makes use of the counting point formula for Igusa varieties and can deal with bad places.
Actually we can even describe the compact support cohomology of each Newton stratum (at a possibly
bad place) in the endoscopic setting, in a suitable sense.

It is worth noting that there has been a precise conjecture about the cohomology of PEL Shimura
varieties of type (A) or (C) for many years. (See the formula on page 201 of [Kot90]. Compare with
[LR92, Thm B, p.293] in the case of U(3).) If fully established, the conjecture would imply our result
on ﬁl as well as our main theorem. So the issue has been not to speculate what should be true
in general but to justify what is already expected about the cohomology of Shimura varieties, in as
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many cases as possible. To our knowledge, our work is the first to unconditionally describe the Galois
representations in the endoscopic part of the cohomology at bad places, even in the case of U(3).

We briefly outline the structure of the article. We review background materials in §2-§6. In
section 2 we define the functor Mant ,, and recall the results of [HT01] on Mant, ,,. Sections 3 and 4
are devoted to the discussion of endoscopy, local base change and the twisted trace formula for unitary
similitude groups. It is worth remarking that the functions at infinity reviewed in §3.5 and §4.3 play
an important role in the study of the cohomology of Shimura varieties and Igusa varieties. In (Case
END), the sign calculation of §3.6 is crucial. On the other hand, the functions at infinity allow us
to simplify the geometric and the spectral sides of the twisted trace formula (§4.5). In section 5 we
recall the definition of Shimura varieties and Igusa varieties, Mantovan’s formula and the stable trace
formula for Igusa varieties (Propositions 5.2 and 5.3) as well as some other facts. It is important
to allow the prime p (where the local structure is to be analyzed) to be ramified in F. As some of
our references ([Man05], [Shi09] and [Shil0]) assume that p is unramified in F, we explain how the
results there can be extended to our setting. We also need a stable trace formula for G, which will
be used to control automorphic multiplicity (Corollary 6.5.(iv).) This is essentially used in obtaining
later corollaries. The subsections 5.5 and 5.6 are devoted to an explicit version of “endoscopy for
Tgusa varieties” at p. Although the local endoscopy of G at p is banal, our discussion clarifies how
the global endoscopy for G interacts with the J,(Qp)-representations in H.(Igy,-Z), which encode
certain information about bad reduction. The main body of argument is given in §6 and §7. We
mainly consider (Case ST) and (Case END), which are introduced in the beginning of §6.1. (See
Remark 6.11 for a comment on other cases.) The stable trace formula and the twisted trace formula
are combined in the proof of Theorem 6.1, which is a key result of our paper. It is pleasant to see that
Theorem 6.4 is derived from Theorem 6.1. Although this may not be very surprising in (Case ST, the
computation is more curious in (Case END). In §6.2, we deduce several consequences from Theorem
6.1, Mantovan’s formula and the known facts about the functor Mant, ,. In the proof of Corollaries
6.5, 6.7, 6.8 and 6.10 we borrow important ideas from Harris and Taylor. The last two corollaries yield
the desired Galois representation by removing an unwanted multiplicity (and multiplying an obvious
character), under the technical assumptions made in §5 and §6. In §7.1 and §7.2, we prove the main
results on R;(IT). In the case of even dimensional Galois representations, it is crucial to make a good
choice of an auxiliary Hecke character (Lemma 7.3). This relies on our computation of §3.6. Another
important idea is to remove all extra technical assumptions by using patching argument for many
quadratic extensions, which is due to [BR89] and [HT01]. In Corollary 7.9 we prove relevant cases of
the Ramanujan-Petersson conjecture. Finally in section 7.3, we imitate the argument of [TY07] to
prove a stronger result on the local-global compatibility and the last assertion of Theorem 1.2.
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1.1. Notation and Convention. Suppose that F' is a number field or a local field. By this we mean
that F' is a finite extension of Q or Q, for some place v of Q. (We allow v = c0.) The Weil group Wg
of F is defined in [Tat79]. Let G be a connected reductive group over F. Denote by G the dual group
of G, which is a complex Lie group. Define the L-group “G := G % W of G via a semi-product. (See
[Bor79] for precise definition.) If F' is a finite extension of K, then Rp/xG denotes the Weil restriction
of scalars (whose set of K-points is the same as G(F)). Let H'(F,G) := H'(Gal(F/F),G(F)). When
F is a number field, write ker' (F,G) for the kernel of H'(F,G) — [[, H'(F,,G) where v runs over
all places of F. Similarly define ker' (F, H) for any complex Lie group H equipped with the action of
Gal(F/F) factoring through a finite quotient.

Let I" be a number field and y be a place of F'. Write k(y) for the residue field of F,. Let Ir, denote
the inertia group of WE,. Denote by Frob, the geometric Frobenius element of Wk, /1 F,, namely the
element inducing = — =~ *® in Gal(k(y)/k(y)).

When L is a finite extension of a number field F', we denote by Ramp,/p (resp. Unry,p, SplL/F)
the set of finite places of F which are ramified (resp. unramified, completely split) in L. When
IT € Irr(G(A)), let Ramg(IT) denote the set of primes p of Q such that there exists a place v dividing
p where II, is ramified.

Suppose that F'is a local non-archimedean field. Denote by Dp y the central division algebra over
F with Hasse invariant A\ € Q/Z. Let Artg : F* 5 ng be the local Artin map normalized so that
a uniformizer of F* maps to a lift of a geometric Frobenius element. Let |- |p : F* — RZ, denote
the character which is trivial on O} and maps the inverse of any uniformizer to the cardinality of the
residue field. Set |- |y, := | - |r o Art;'. There is a unique way to choose | - ;/2 : F* — RZ,. When
1y : Q= C is fixed, we often write | - \11[;/2 for ¢;7 1| - }/2 by abuse of notation.

Keep assuming that F' is a local non-archimedean field. We denote by Irr(G(F')) (resp. Irr;(G(F)))
the set of all isomorphism classes irreducible admissible representations of G(F') on vector spaces over
C (resp. @Q;). When 7 is an irreducible unitary representation of G(F) (modulo split component
in the center), 7 may also be viewed as an irreducible admissible representation by taking smooth
vectors, so we may say 7 € Irr(G(F)). The subset Irr*(G(F)) of Trr(G(F)) is the one consisting
of (essentially) square-integrable representations. Let C2°(G(F)) denote the space of smooth and
compactly supported C-valued functions on G(F). Let P be an F-rational parabolic subgroup of
G with a Levi subgroup M. For each 7y € Irr(M(F)) and 7w € Irr(G(F)), we can define the nor-
malized Jacquet module JS (7) and the normalized parabolic induction n-ind%(my;) so that JG ()
(resp. n-ind%(mys)) is an admissible representation of M (F) (resp. G(F)). The induced repre-
sentation n-ind%(mys) will often be written as n-ind$;(mas) when working inside of Groth(G(F))
or computing traces, since different choices of P give the same result. Define a function D¢/
on M(F) by Dgy(m) = det(l — ad(m))|Lie (¢)/Lie () and a character dp : M(F) — RZ, by
dp(m) = |det(ad(m))|ric (P)/Lic (M)|F- In case G = GL, and M = [[,GLy,, (3 ;n;i = n), con-
sider ; € TIrr(GLy, (F)). Denote by B;m; the Langlands subquotient of n-ind%(®;m;) (cf. [BWO0O0,
Ch 1V], [Sil78]), which is independent of the choice of P. For any s € Zs and a supercuspi-
dal w € Trr(GL,(F)), let Sp,(7) € Trr*(G L4y, (F)) denotes the generalized Steinberg representation
([HTO01, p.32]). Let e(G) € {£1} denote the Kottwitz sign defined in [Kot83]. When F = Q,, we
often write e,(G) for e(G). The definitions in this paragraph make sense for F' = R (except Sp,(7))
using the usual absolute value | - | on R and the infinitesimal equivalence between representations of
G(R).

Assume that G is an unramified group over a non-archimedean field F'. Choose a hyperspecial group
K C G(F). Define a Haar measure on G(F) so that K has volume 1. Define 5" (G(F')) to be the
C-subspace of C2°(G(F')) consisting of bi-K-invariant functions. The convolution equips " (G(F'))
with C-algebra structure with chargx being the multiplicative identity. Let Irr""(G(F')) denote the
subset of Irr(G(F)) consisting of unramified representations of G(F). For each m € It (G(F)),
define x, : H(G(F)) — C by f+— trxw(f). The association 7 — X, gives a natural bijection from
Irr™ (G(F)) onto the set of C-algebra morphisms " (G(F)) — C. (To see the inverse exists, use
[Bor79, 7.1, 9.5.)
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For a number field F' and a finite set S consisting of places of F', we denote by Af, the restricted
product of F, for v ¢ S. In case F = Q, write A® for Af@ and Ag for [[,.g Q,. Define Ir(G(A%)),
CX(G(A%)) and A" (G(A%)) via restricted product, where the last one makes sense under the
assumption that Gp, is unramified for all v ¢ S. The normalized induction is defined in this adelic
context. Let Artp : AX/F* = W2P denote the global Artin map, which is compatible with the local
Artin map defined above.

Let G be a connected reductive group over Q. Write Ag for the maximal Q-split torus in the
center of G and define Ag » = Ag(R)?. Let K, be a maximal compact subgroup of G(R). Let &
be an irreducible finite dimensional representation of G(C). Then the restriction of £ to Ag o gives
a character x¢ : Ag,co — C*. Define C°(G(R), x¢) to be the space of smooth C-valued bi-K-finite
functions f on G(R) which are compactly supported modulo Ag  and such that f(ag) = xe(a)f(g)
for all @ € Ag.o and g € G(R).

We frequently confuse an isomorphism class or an equivalence class with its member. For instance,
when we write 7 € Irr;(G(Q))), it means that 7 is an irreducible admissible representation of G(Q,)
on a Q;-vector space.

Finally let us agree that (z/2)V/2 (N € Z) denotes eV for z = re’ € C* with r € Ry and
0 € R/2miZ.

2. RAPOPORT-ZINK SPACES OF EL-TYPE

Let p and [ be prime numbers such that p # [. The aim of §2 is to recollect the description of
the cohomology of certain Rapoport-Zink spaces, which will be incorporated into various versions of
“Mant” functors defined below. We describe these functors in terms of the local Langlands correspon-
dence and study their properties in the cases which are relevant to the Shimura varieties of §5. We
will freely adopt notations from §3.1 such as I,,, P,—p h, GLp—p 1, and so on.
2.1. B(G) and isocrystals. Let G be a connected reductive group over Q,. Let L := FracW (F,,).
Denote by o the Frobenius on L which induces the p-th power map on the residue field. Define
B(G) to be the set of equivalence classes in G(L) where x,y € G(L) are equivalent if there exists
g € G(L) such that z = g~ 1yg°. The set B(G) classifies the isomorphism classes of isocrystals (over
F,) with G-structure in the sense of Rapoport and Richartz ([RR96, 3.3, 3.4.(i)]). For a Q,-morphism
u: G — G, Kottwitz defined a finite subset B(G,u) of B(G). The set B(G, ) often provides
parameters for the Newton polygon stratification in the context of Shimura varieties ([Har01, §4],
[Man05], cf. [Shi09, §5]).

Let T be a maximal torus of G defined over Q,. Let Q@ = Q(G,T) be the Weyl group over @p. Put

N(G) := ((X.(T) @z Q) /)% @/) There is a Newton map ([Kot85, §4], [RR96, 1.7-1.9])
v : B(G) - N(G)

which is useful in describing the set B(G).
Suppose that G is a finite product of connected reductive Q,-groups G;. Write p = [, u; for
i+ Gy — G;. Then we have a natural identification

B(G,p) = HB(G17M)~

2.2. Manty , functor. Let n € Z+ and ®,(F') := Homg, (F, @p). Consider a quadruple
(F,V, u,b) where
(i) F is a finite extension of Q,. (We do not assume that F' is unramified over Q,.)
(ii) V' = F™ is an F-vector space. Let G := Resg g, GLr(V).
(iii) 4 : Gy — G is a homomorphism over Q, (up to G(Q,)-conjugacy) which induces a weight
decomposition V @ F = Vy @ Vi, defined over a finite extension of Qp, where p(z) acts on
V; by 2% for i =0, 1.
(iv) b € B(G,—p).
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Giving p is equivalent to giving a pair of nonnegative integers (pe, ¢, ) for each o € ®,(F) such
that p, + ¢» = n. Given such data, the corresponding p is represented by the homomorphism

Q, = [oea, () GLa(Q,) given by

zr—>Hdiag(z,...,z,l,...,l).
[eg
Po 4o

Roughly speaking, B(G, —pu) classifies isocrystals with F-action up to isomorphism (or Barsotti-Tate
groups with Op-action up to isogeny, via covariant Dieudonné theory) whose Hodge polygons are
determined by u. Note that N(G) may be identified with the set of unordered n-tuple of rational
numbers. In fact 7 is injective, thus each b € B(G) is uniquely characterized by its image under the
Newton map

DG(b):(Ala"'a)\laAQP"5A27"'7A7”7"'5A7‘)
—_— ——

where 7 € Z~g and \; € Q and m; € Z~( for 1 <i <r. We may and will assume A\; < -+ < A.. See
[Shi09, Ex 4.3] for the explicit condition on r, {A;} and {m;} in order that b € B(G, —pu).

The reflex field E is by definition the fixed field in Q, of the stabilizer in Gal(Q,/Q)) of the pairs
{(po,40)}oew, (7). We will be only concerned with the case ) p, < 1. If p, = 0 for all o then
E =Q,. If p, =1 for a unique o then E is identified with o(F) C Q,.

The datum (F,V,pu,b) gives rise to a formal scheme My, over Spf O, representing a moduli
problem for Barsotti-Tate groups with Op-action. In fact My, is non-canonically isomorphic to Z-
copies of the Lubin-Tate deformation space for formal Op-modules of dimension 1 and height n, where
the latter is studied in [Car90], [HG94] and [HT01, Ch 2|, for instance. (See [RZ96, 3.78-3.79] for
details. In the description of My, in Proposition 3.79, replace Spf W (F,) with Spf Oz,.. Although
Rapoport and Zink discuss the same moduli space as in our case, there is a difference in the choice of
b. See (1.47) there. The source of the difference is that Barsotti-Tate groups of Op-slope A correspond
to isocrystals of slope —A in our convention but to isocrystals of slope 1 — A in that book.)

There is a standard construction to obtain a tower of rigid analytic spaces M;i,U over F' for

open compact subgroups U of GL,(OFr) ([RZ96, Ch 5]), where erai,i,GLn(Op) coincides with the rigid
analytic space attached to My ,. (Here GL,,(OF) is regarded as the stabilizer of the standard lattice
O% inside V.) We consider the étale cohomology of Rapoport-Zink spaces in the sense of Berkovich
([Ber93]), for which we use the following abbreviated notation:

HI(My5, o) = HIMS o % g B™, Q).

This Q;-vector space has the structure of a smooth representation of J,(Q,) x Wg. The last action
commutes with the action of G(Q,) on the tower of M;iiU via Hecke correspondences. Details about
these actions can be found in [RR96, Ch 5], [Far04, Ch 4] and [Man04].

Define! the functor Manty, ,, : Groth(.J,(Q,)) — Groth(G(Q,) x Wg) by

Mantbyll(p) = Z (_1)i+j h_n}EXt?]b(Qp)—smooth(Hg (le,i,U)’ p))(_D> (21)
i,j>0 1%

in the notation of [Man05] and [Man]. (Our J,(Q,) is denoted by T} in [Man05]. Our Mant , is &,
in [Man].) Here D is the dimension of M'% ; and (—D) is the Tate twist. The Ext-groups are taken
in the category of smooth representations of J;(Q,) and the limit is over open compact subgroups

U as above. Since the Ext-groups in (2.1) vanish beyond a certain degree and yield finite length
representations for each U ([Far04, §4.4]), Mant , is well-defined.

1Al‘chough we named this functor after Mantovan’s work clarifying its relationship with the cohomology of Shimura
varieties, it should be noted that (variants of) Mant, , were considered previously by several authors, as in [Rap95],
[Har01], [Far04].
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2.3. Local Langlands correspondence. Let F' be a finite extension of Q,. Harris-Taylor ([HT01])
and Henniart ([Hen00]) proved that there is a natural bijection

recy, f : Irr(GL, (F)) — WD-Rep,,(Wr)

where WD-Rep,,(Wr) is the set of isomorphism classes of Frobenius semisimple n-dimensional Weil-
Deligne representations of Wr on C-vector spaces. See [HT01, p.2] for the characterizing properties
of rec,, r. We will often use the following normalization.

Lop () = recn p(nY) @ | [y

2.4. The case of dimension 0 and 1. Let n € Z~(. Fix a finite extension F’ over QQ,, an embedding
0. F— @p and an isomorphism ¢; : Q; = C. By abuse of notation, Lfl\ . };/2 X — @ZX will be
denoted by | - |;/2 or | -|Y/2.

Write G, := Rpjq,GLn. Let i, c0 1 Gy — Gy Xg, Q, =~ Haebp(F)(GLn)@p be the Q,-morphism

given by
z 0
Z = (( 0 In—l )0_707 (In)U;éT(’) .

Let pine : G — Gn Xq, @p denote the trivial map. Define by, 0,bo, € B(Gy) so that vg, (bn0) =
(=1/n,...,—1/n) and by, = 1. Observe that b, € B(Gn, —fin o) and by, € B(Gn, —fineé). For
1 < h <n-—1, define b,—pn, € B(G,) to be the image of (by,—p,0,bo,n) under the block diagonal
embedding G, x Gy, < Gp. Then b,,_p, , € B(Gp, —fiy,70). Forany 0 < h < n—1, define an F-group
Jn—np = Dﬁl/(n_h) x GLy, where D;{i’l/(n_h) is an inner form of GL,_; coming from a division
algebra with invariant 1/(n — h). Set Jo n, := GL,. We see that Rr/q,Jn—n,n is isomorphic to J, for
b="bn_nn (0<h<n). Let P,_p p be the parabolic subgroup of GL,, whose (i, j)-component is zero
exactly when i >n — h and j < n — h. Define a character

57 Jn—nn(F) = Q[

Pn_h.n

by the relation 511,{127’1 L(9) = 5113{12% . (g") where g* € GL,, 5 (F) is any element whose conjugacy class
is transferred from that of g. ’

Let us write Mant,,_5 5 (0 < h < n—1) and Mantg, for Mant,, , when (b, 1) = (bn—n,n, ftn,-0) and
(b, ) = (bon, fin.ct), respectively. For each 0 < h < n, define n-Mant,,_j, 5, by the relation

n-Manty, 1 (p) = e(Jn_n.n) - Mant,_pn(p ® 55" ) (2.2)

for every p € Groth(.J,,—5n(F)). Note that the Kottwitz sign e(J,,—p.») equals (—1)" "1 if 0 < h <
n—1and1lif h =n.

Lemma 2.1. For each 7 € Irr;(GL,(F)), Mantg ,,(7) = [7][1] where 1 is the trivial character of Wg.
Proof. Follows from [Far04, Ex 4.4.8]. O

Recall that there exists a natural bijection JL,, : Irr?(D 5 I*(G L, (F)) uniquely character-

ized by a character identity ([DKV84]).

Proposition 2.2. (i) Ifm € Irr)(GL,(F)) is supercuspidal, n-Mant,, o(J L, (7)) = [7][Lpn.r()].
(ii) Fors € Zso, g =n/s € Zso and a supercuspidal w € Irr;(GL,(F)), n-Mant,, o(J L, (Sps(r)))
equals

;‘,l/n)

>~ (1Sp;(m) B x| det | B B | det "] @ [Zy (x| det 1) & | - [207/2))
j=1
(iii) For each p1 € Irr)(Jp—p,o(F)) and ps € Irry(Jo n(F)),

. .GL, —h
n-Mant,—p n(p1 @ p2) = D-lndpi,fizlp) (n-Mant,,—4,0(p1) ® n-Mantg 5 (p2)) ® | - IWF/2

in Groth(GL,,(F) x Wg).



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 11

Proof. Both (i) and (ii) follow from a reinterpretation of [HT01, Thm VII.1.3, VII.1.5] in our language.
We elaborate on this point.
Let J := D}, . According to [Har05, Thm 4.3.11], in his notation,

F1/n
U, (p) =Y (=1)"Hom, (¥, p)
coincides with [7][-Z, r(7)] if p = JL; () for a supercuspidal representation 7. On the other hand,
U, (p) is identified with Mant,, o(p) for any p € Irr;(J) by adapting [Man04, Thm 8.7] to our case.
Indeed, in the identity of that theorem, the right hand side is nothing but Mant,, o(p) whereas the left
hand side is easily seen to be the same as ¥, (p) since the special fibers of the relevant Rapoport-Zink
spaces are zero dimensional. Let us compare

Upin(p) =Y (1" "Wy, (p)
of [HTO01, p.87-88] with ¥,,(p) above. Note that ¥, ,(p) (resp. ¥,,(p)) is defined via the Lubin-Tate
deformation spaces (resp. the Rapoport-Zink spaces). Note that the Rapoport-Zink space of each
fixed level is non-canonically isomorphic to Z-copies of the Lubin-Tate space of the same level and
that one of the copies is canonically isomorphic to the Lubin-Tate space. ([Str05, 2.3], cf. [Har05,
p.49].) From this fact, it is not difficult to prove that W%, (p) = Hom, (¥ ,,p). In other words,

Upin(p) = (=1)""1 Wy (p) = (=1)""'Manty, o(p) = n-Mant, o(p)

in Groth(GL,(F) x Wg). Therefore [HT01, Thm VII.1.3, VIL.1.5] imply our first two assertions. Note
that r;(7) in their notation is isomorphic to .Z, p(m) in view of the relation of r; with rec,, r on page
237 of [HTO1].

It remains to prove the third assertion. This result can be derived from [Har05, Prop 4.3.14, 4.3.17]
(where p is allowed to ramify in F'), which is already implicit in [HTO01]. For simplicity of notation,
we derive it from [Man08, Cor 5] (in case p is unramified in F'), which implies in our case that

Mant,,—p 4 (p1 ® p2) = Indgff,ff%m(Mantn_mo(pl) ® Mantg 4 (p2))-

Here Ind is the non-normalized parabolic induction. From the above formula it is straightforward to
deduce the assertion (iii) in view of Lemma 2.1 and the fact that (cf. [HT01, Lem II.2.9])

n-Mant,,_p, o(p1 ® |Nm\1/2) = n-Mant,,_p 0(p1) ® | det |1/2 ®| - |‘7V];’7/2

where Nm : ngl/(nih) — F'* denotes the reduced norm map.

We define a morphism Red™ ™" as the composition
1/2

L S L _n®id
Groth(GL,(F)) " " """ Groth(GLn_nn(F)) “55 Groth(Ju_nn(F))

where JgoLp” is the normalized Jacquet module and LJ,_p, : Groth(GL,_p(F) — Groth(Jy_p,o(F))

n—h,h
is the map defined by Badulescu ([Bad07]), which extends the inverse of the usual Jacquet-Langlands
correspondence J L, _j. Define

n-Red" ™" := Red" """ @ 5,/

n—h,h’
Equivalently, n-Red” """ = (Ldp—p ®id) o JgoLi“}’L g It is easy to see that Mant,_p.p © Red" ™t =
e(Jn—n,n) - n-Mant,,_p p © n-Red” " for 0 < h < n.

Proposition 2.3. For any w € Irr;(GL,,(F)), the following holds in Groth(GL,(F) x Wr).

z_: n-Mant,,_j, ,(n-Red" """ (7)) = [x][Z.r (7)] (2.3)
h=0
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Proof. Tt is enough to check the proposition when 7 is the full parabolic induction from (essentially)
square integrable representations of Levi subgroups (including GL,,(F) itself), since such representa-
tions 7 generate Groth(GL, (F)) as a Z-module ([Zel80, Cor 7.5]). By using Lemma 2.1 and Propo-
sition 2.2, the left hand side of (2.3) can be computed in terms of Jacquet module and parabolic
induction with help of the Bernstein-Zelevinsky classification. The computational detail is essentially
the same as in the proof of [HT01, Thm VIL.1.7]. O

3. ENDOSCOPY OF UNITARY SIMILITUDE GROUPS

3.1. Setting. We use the following notation.

i = (n;)ie[,r] Where n;,r € Zxo and [1,7] := {1,2,...,r}.
GLj = l,ep1,s) GLn, and iz : GLi — GLn (N = }_;n;) is the embedding

A 0 0

0 A 0
(Alw--;Ar)F+

0 -~ 0 A,

Define det : GLz — G L by det(g) := det(iz(g)).
e &, and I,, are the matrices in GL,, with entries (®,,);; = (—1)""18; 41—, and (I,,);j = &, ;.
Put q)ﬁ = iﬁ(q)nl, ey (I)nr)~
tg denotes the transpose when g is a matrix.
Py is the upper triangular parabolic subgroup of GL,, containing iz (GLz) as a Levi subgroup.
€:7Z — {0,1} is the unique map such that e(n) =n mod 2.
F = EF" where FT (resp. E) is a totally real (resp. imaginary quadratic) extension of Q.
Splp/p+ g 1s the set of all rational primes p such that every place of FT above p splits in F.
Unrp)q (resp. Ramp/q) is the set of all primes p which are unramified (resp. ramified) in F.
7: F — Cis a Q-algebra embedding and 75 := 7|g.
¢ denotes the complex conjugation on C or any CM field.
®¢ := Homg(F,C), ¢ := Homp ,, (F,C) and O = c®f.
w* is a fixed element in Wo\Wg.
w : A /E* — C* is any Hecke character such that w|sx gx equals the composite of Artg
and the natural surjective character Wy — Gal(E/Q) = {£1}. Using the Artin map Artp,
we view w also as a character Wgr — C*.
e Ramg(w) is the set of all primes p such that w is ramified at some place above p.

Define a Q-group G by
Gi(R) := {(\,9) € GL1(R) x GLiz(F ®q R) : ¢®7'¢° = A5} (3.1)
for any Q-algebra R, where g; € GLz(F ®q R). Note that Gz is quasi-split over Q. Also define
Gii = Rp/o(Gi xq E)

and let 0 denote the action on Gy induced by (id,c¢) on Gz xXg E. We can identify the dual groups as
follows.
Gi~C*x [ GLa(C) and  Gz~C* xC* x [] GLz(0). (3.2)

g€¢g ocedc

The L-group LGy := Gz x W is defined by the relation that w(\, g,)w™t = (X, g.) where

X)) = Aguro) or [ AJ] detgo, ®atgrl., @5

06@3



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 13

according as w € Wg or w ¢ Wg, respectively. Similarly, 'G5 := @ﬁ x Wq is requiring that
w(Ai, A go)w ! equal

At Aosguto) or (Ao T detgo, Av [T detgo, ®a'y ), 7'

cEDL ocedt
according as w € Wg or w ¢ W, respectively. Consider the map BCj; : “Gy — Gy given by
()‘7 (9071')(;@4)3) X w = ()‘7 >‘7 (ga,i)geéév (gcaﬂ')ge@E) X w.

Note that (G, “Gy, 1, BCy) is an endoscopic datum for (G, 6, 1) in the context of twisted endoscopy
([KS99, §2.1]).

Note that (3.1) may be used to equip Gz with a Z-scheme structure by allowing R to be a Z-algebra,
and the same is true for Gz. For each prime p, put K;i = Gy(Zyp) and Kﬁ = Gr(Op®zZy) = Gz(Zy).
If p € Splpp+ g then Kg (resp. Kﬁ) is a special subgroup of Gz(Qp) (resp. Gz(Qp)). In case
p € Unrp/q, KZ} (resp. Kg) is a hyperspecial subgroup of G7(Q,) (resp. G7(Q,)). In that case we
define unramified Hecke algebras 7" (G7(Qp)) and " (G7(Q))) using KZ} and ng (§1.1).

Let us fix Haar measures. For every prime p, choose measures ug, , on Gz(Q,) and ug , on Gz(Q,)
such that pe, »(K7) =1 and pg, »(KF) = 1. Choose Haar measures fag, . o0 Ag, o = RZ, and
HAg . oo 00 AG 00 (RX,)"** using the standard measure dz/z on RZ,. Finally choose Haar measures
HGy,00 and fiG; 00 such that the quotient measures ([], pay,0)/pac, . and (I], #ea0)/pac .. are

the Tamagawa measures ([Ono66, §2]) on Gz(A)/Ag, . and Gz (A)/Ag.,, 0, respectively.
Lemma 3.1. Let r be the number of components in 7. Then
7(Gr) =2" or 271 and 7(Ggz) = 1.
Proof. For any reductive group G over Q,
7(Go) = |mo(Z(Go)*™ /D) | /| ker' (Q, Go)| (3.3)

([Kot88, p.629]). It is easy to see that 7(Gz) = 1. Indeed, Z(@ﬁ)Gal(@/Q) is a product of copies of C*
and kerl((@, Gy) is trivial by Shapiro’s lemma and Hilbert 90.

Recall from [Kot84, (4.2.2)] that |ker' (Q, Gy)| = |ker'(Q, Z(G5))|. Using the description of Gy
in (3.2) we identify Z(G7) with C* x [[,;C* where o runs over ®f and i over {1,...,7}. It is
casy to see that Z(G7) @D ig identified with the set of (X, (g;)) where A € C*, g; € {£1} and
MTT, gf")[FJr‘Q] = 1. Therefore

AyGa@/e)y - [ 20 2[FT:Qfor Vi, 2ln,
Imo(Z(G7) )= { 2r—1, otherwise
On the other hand, ker'(E,Gjy) is trivial by Shapiro’s lemma and Hilbert 90, which implies that
ker! (E, Z(Gy)) is also trivial. So we have an injection

kerl((@,Z(éﬁ)) < Hl(E/Q’Z(éﬁ)Gal(@/E))

via the inverse of the inflation map for H*. Note that Z(G5)%*@/E) is isomorphic to C* x (C*)".
The group Z' of 1-cocycles consists of those (X, (¢;)) which satisfy A\*([], g;“)[FJr‘Q] = 1. The group
B! of 1-coundaries precisely contains (), (¢g;)) which has the form A = ([, a]"")¥ "0 and g; = a; % for
some a; € C* (1 <i <r). Both Z! and B! surject onto (C*)" via projection maps. Comparing the
numbers of fibers for these projection maps, we obtain

2, 2|[F*: Q] or Vi, 2|n;

] A \Gal@/E)y| —
|H'(E/Q, Z(Gx) ) { 1, otherwise

Therefore 7(G5) equals 27 or 271
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Remark 3.2. Although we have not pursued the precise value of 7(G5), it can be easily determined
in some cases. If 2|n; for all 4, we can prove that kerl((@7 G7) = 1 using the argument in the second
paragraph of [Kot92b, §7]. So 7(Gj) = 27 if every n; is even. In case [F™ : Q] is odd and some n; is
odd, the above proof shows that ker' (Q,Gz) =1 and 7(Gz) =2"L.
3.2. Endoscopic triples and L-morphisms. Let £(G,,) be a set of representatives for isomor-
phism classes of endoscopic triples for G,, over Q ([Kot84, §7]). We can identify £°(G,,) with the set
of triples

{(Gn> sn777n)} U {(Gnl,nwsnl,ﬂz?nnl,nz iny+ng =n,n = ng > 0}7
where (n1,ns2) may be excluded in some cases if both n; and ng are odd numbers. (This is to satisfy
the condition (7.4.3) of [Kot84]. As we will mainly work with odd n, we will not be concerned with
the possible exclusion of such (ny,ns).) Here s, = 1 € G, Snins = (1, (In,, —1In,)) € G,y and
N @n — @n is the identity map whereas 7, », is the embedding

go,1 0
A 0,1, Yo >\’ 7
(A (9,1, 9 ,2))H< < 0 goo2 ))

The above description of £'(G,,) can be verified as proposition 4.6.1 of [Rog90], which deals with the
case of unitary groups.
We can extend 7y, », to an L-morphism 7, n, by?

e(n—ny) . 0
_N(nin w(w n
weWg (w(w) N, 2)7( (w) 0 ' w(w)<r=n2) . I, )) o

* —1 *
w5 (Any g Pryna @y ') MW

where N(ny,no) = [F'" : Q](nie(n — ny) + n2e(n — ny))/2 € Z. The constant a,, n, is chosen to be a
square root of the number (—1)~N("1:72) det(®,,, ,,,®,). It is readily checked that 7j,, ., is indeed an
L-morphism.

Let Em,nz : L(Gnhn2 — LG, be the map defined on @m,m by

. 0
()\-‘r)A—a (90',1790',2)) = <>\+’>\_7 < 9071 >>

9o,2
and sending w € Wg and w* respectively to

e(n—n1) . T 0
—N(ni,n2) —N(n1,n2) w(w) ny
(w(w) , w(w) ) < 0 w(w)<=n2) . X W

(a'n1,ng » Anyng sy (I)nl,ng ‘I)El) X w*
We have the following commutative diagram of L-morphisms.

Ting,ng

LGy my —= G (3.4)

| lBCH

LGnl,ng = LGn
ni,m2
3.3. Constant terms for GL;. We record a well-known lemma, which will be applied later to
explicit endoscopic transfer. For simplicity we state the lemma only for general linear groups. In §3.3
only, we use the following notation. Let L be a nonarchimedean field of characteristic 0. For r > 1,
fix it = (n1,...,n,) such that ). n; =n. Let G := GL,, and M := GL5. (Later we will also consider
a group G which is a finite product of general linear groups. The lemma below obviously extends to
this case.) Let P be any conjugate of Py containing M. Denote by N the unipotent radical of P. For
each f € C*(G(L)), define the constant term along P by

Pm = 1/2m mn -1 n m . .
P (m) = 64 >/N(L)/G(OL)f<k K dkdn,  me M(L) (3.5)

2We chose to write n — n1 and n — ng rather than na and nj so that the formula readily generalizes if one is to
define 7 for arbitrary 7 = (n1,...,n,) such that >7_; n; = n. cf. [Rog92, §1].
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Let ,:l:ﬁ : LM < LG be the L-morphism which trivially extends i : M < G.

Lemma 3.3. The following are true.

(i) For any semisimple m € M (L) which is regular in G(L),
O (FP) = Depa(m)' 205D (f). (3.6)

(i) For any m € Irr(M (L)), trw(fF) = trn-ind§, (7)(f).
(iti) If f € A" (G(L)) then ff is the image of f under the map " (G(L)) — " (M(L))

which is dual to iz.

Proof. The first assertion is Lemma 9 of [vD72] and the second assertion is the first formula on page

237 thereof. The last assertion is an easy consequence of the Satake transform for general linear groups
(cf. [ACS89, p.32-33]). O

_ This lemma is a special case of the Langlands-Shelstad transfer, with respect to the L-morphism
in. Indeed, it is easy to verify that Dg,ar(m)'/? coincides with the transfer factor of [LS87] up to
constant.

3.4. Explicit transfer at finite places. We begin with a brief reminder of the Langlands-Shelstad
transfer in general. Let (H, s,n) be an endoscopic triple for a connected reductive Q-group G. Suppose
that there is an L-morphism 77 : “H — £G. Langlands and Shelstad ([LS87], [LS90]) defined a
complex-valued function A,(,)%, called the (local) transfer factor, on a pair (yy,7) where vy €
G7(Qy) is a semisimple (G, Gj)-regular element and v € G(Q,) is such that the stable conjugacy
classes of vy and 7 are matching. Such a pair (yg,~) will be called a matching pair for convenience.
The local transfer factor is well-defined up to constant. Moreover, it depends not only on (H, s, ) but
also on 7. Langlands and Shelstad conjectured that for each function ¢, € C°(G(Q,)), there exists
o € C*(H(Q,)) satisfying an identity about the transfer of orbital integrals ([LS90, 2.1], [Kot86,
Conj 5.5]). We will refer to ¢ as a A,-matching function for ¢, or simply a A, -transfer of ¢,. In
the unramified situation, Langlands ([Lan83, II1.3]) proposed a more precise conjecture about the
transfer, called the fundamental lemma. (See also [Hal95, §2], which states the fundamental lemma
for unramified Hecke algebras and reduces its proof to the case of unit elements.)

Before going further, we point out that the Langlands-Shelstad conjecture on the existence of A,-
transfer is proved as well as the fundamental lemma (for unit elements) in all cases, due to Waldspurger,
Laumon-Ng6 and Ngo ([LN08], [Wal97], [Wal06], [Ngo]).

Remark 3.4. Actually Walspurger and Ngb prove the fundamental lemma (for any Q,-group Gy) over
Q, only if p is large enough (with respect to the rank of Gy). But the results of Hales (in particular,
[Hal95, Thm 6.1]) can be used to prove the fundamental lemma for all primes p, by induction on the
rank of Gy. Although the paper of Hales is somewhat sketchy, its main results are reproved by section
9 of [Mor10] which is more detailed.

However, one can avoid the use of the fundamental lemma for small primes p, if one wishes, without
weakening our main results. Let Py be the set of all primes p < N for a sufficiently large N. Impose an
additional assumption that Py C Splp,p+ o throughout §5 and §6. The point is that if p € Splp/p+ .
the fundamental lemma for G(Q,) is known without appealing to Hales, as G(Q,) is a product of
general linear groups. In §7 we can remove the additional assumption, by adding a condition on
E € £(F) in the proof of Theorem 7.5 that every p € Py splits in E.

Let us return to the situation of §3.1 and §3.2. Let G5 € £(G). Let v be a finite place of Q.
Below we will give a particular normalization of the transfer factor A,(, )g;, which is a complex-
valued function on a pair (yg,v) where vg € Gz(Q,) is a semisimple (G, Gi)-regular element and
v € G(Q,) is such that the stable conjugacy classes of vy and « are matching. We will also define
a map 7, ., which gives the A, (-, -)g;-transfer (or simply A,-transfer). Moreover, we present an
explicit representation-theoretic transfer 7, , ., which is tied to 7,;, ,, via character identity.

For later use in Case 2 and Case 3, we record a natural isomorphism for v € Splp/p+ . Fix
an isomorphism ¢, : Q, ~ C. Let V; be the set of places x of F such that the composite map

F < Q, % C belongs to @, . (This is the same definition as in the paragraph below (4.1).) Suppose
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either 7 = (n) or @ = (n1,n2). The group Gz(Q,) is a subgroup of QF x GLz(F ®g Q,) and the
projection map onto Q; x [[, ¢+ GL#(F;) induces an isomorphism

zeV
Gi(Qy) ~ Q@ x [[ GLa(F.). (3.7)
zeVy
Using the above isomorphism, fix an embedding Gy, n, — Gn Via ipy n,. Set Qpyn, = QX X

ervj Py, n, the parabolic subgroup of G,,, containing Gy, », as a Levi subgroup.

Case 1. v € Unrp)g and v ¢ Ram(w).
In this case, 7, n, induces a C-algebra map of unramified Hecke algebras

N A (Gr(Qy)) — %ur(Gm,nz (Qu))

and a transfer of unramified representations

Nw it (G no (Qy)) = Ir™ (G, (Qy)).

By the proof of the fundamental lemma ([Ngo]) and an earlier work of Hales ([Hal95]), A,(:,) can be
normalized so that

Pyt =1 (o)
is a A,-transfer of ¢, for any ¢, € #"(G(Q,)). Denote this normalization by AY(-,-). Then for
every m € Irt"™ (G, .0, (Qy)), we have

tr (7" (¢0)) = tra.(m)(¢)- (3-8)

Case 2. v € Splg q.
Let ¢, € C°(Gn(Qy)). Let u := z|p for any x € V,f. Define a character x , : G, n,(Qy) = C*
by

X;,u()‘a (gZL’,17gZ,2)) = Wy )\_N(nl,n2) H H NF.T/Eu (det(gz,i))e(n_ni)

zeV 1<i<2

(We view X as an element of E via QX ~ EX.) Denote by ¢? "1'"2 the constant term along Qn, n,
(§3.3). Define
n1,n2 . ¢?"1>"2 T

v w,u"

For any (G, Gy, n,)-regular semisimple g € Gy, n,(Q,), define

A9, 9) == Dg, jc, .. DI - X u(9)-

(Recall that we fix an embedding of G,,, », into G,, as a Levi subgroup.) Note that the above formula
pins down the value of AY(-,-) on every matching pair. It is not hard to show that AY(-,-) is equal,
up to constant, to the Langlands-Shelstad transfer factor with respect to 7. We sketch the argument.
Let 7' : LGy, m, = G, be an L-morphism (canonical up to @n—conjugacy) corresponding to the
fixed Levi embedding Gy, n, — G, via [Bor79, §3]. We may arrange that 77’ and 7 are identical on

énl,nz by conjugating 77’ by an element of G,, so that 77 = ai for a € Hl(WQv,Z(énl,nZ)). Let
Xa : Gnyny(Qy) — C* denote the character corresponding to a. (As Z(émm) is the dual torus
of the maximal abelian quotient of G, »,, the cohomology class a determines x, via [Bor79, §9].)
Let A/(g, g) denote the transfer factor with respect to 7. The following facts (which are true after
normalization up to constant) are standard and deduced directly® from the definition of transfer factors

([LS87, §3)).

e AY(9,9) =IDa, /G, 0y (9)
e A(g,9) = Al(g,9) - Xal9)-

|1/2_

3The value |DG"/G"1,"2 (g9)|*/2 (resp. xa(g)) comes from the factor Ay (resp. Agrr,) of [LS87]. In the unramified
situation, we remark that the first identity in the bullet list is a special case of [Hal93, Lem 9.2] and that the second
identity appears in the proof of [Hal95, Lem 3.3].
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~

Finally, one checks that y, = X;,u by explicitly working out the duality for the torus Z(Gp, n,)-
For any m, € Irr(G,,, »n,), define

N (my) := n—indgzlynz (7rv ® X;u)

It is easily deduced from Lemma 3.3 that the following identities hold for any g and 7, as above. In
particular ¢?1"2 is a A%-transfer of ¢,.

Og(¢7™) = Au(g,9) - Og(dv) (3.9)
trmy (™) = tri(my) (o). (3.10)

Case 3. v € Splp/p+ g and v & Splg g

We retain the same notation as in Case 2, but write v for the unique place of E above v by abuse of
notation. Things are very similar to Case 2 except that the character X;,m defined below, is slightly
different from x% ,, of Case 2.

Xbo O (9e1,002)) = @ | [ 11 Nrse, (det(ga)) )
vevi 1<i<2
ni,n L Qny,n
D (g) = g2 (g) - XL (9)
ANg,9) = |Da, /G, ., @' - xE . (9)
Me(my) = n—indg:m2 (M®X;,v)

The same argument as in Case 2 shows that AY(-,.) is the Langlands-Shelstad transfer factor with
respect t0 7, n, (up to constant). As in Case 2, it is easy to check that the same identities as in (3.9)
and (3.10) hold. So ¢7"2 is a Al-transfer of ¢,,.

Remark 3.5. There are overlaps between Case 1 and Case 2 and between Case 1 and Case 3, namely
when v € Unrp/q N Splg,pr g, v & Ramg(@), ¢y € A (Gn(Qy)) and 7, € Irr™ (G, (Qy)). However
it is not hard to see that the definitions are consistent: Consider such v, ¢, and m,. Then ¢}1:"?
in Case 2 or Case 3 is the same as in Case 1. This follows from the fact that constant terms are
compatible with Satake transform (cf. [AC89, p.33]). By the same fact we check the consistency of
the definition of A%(g, g) and 7. (7).

3.5. Transfer of pseudo-coefficients at infinity. Here we review Shelstad’s results on real en-
doscopy ([She82]) for discrete series representations, based on the summary of Kottwitz ([Kot90, §7]).
We will freely use the Langlands correspondence for real reductive groups ([Lan88]). Let G be an
R-inner form of G,,. Set (H,s,n) := (Gi, si,m7) € £(G,,), which is also an endoscopic triple for G.

Let £ be an irreducible algebraic representation of G¢. Define x¢ : Ag,oc — C* to be the charac-
ter obtained by restricting £ to Ag co. Define Irt(G(R), Xgl) to be the set of 7 € Irr(G(R)) whose
restriction to Ag o is Xgl. Let Tyt (G(R),£Y) denote the set of 7 € Irr(G(R)) which are unitary
(modulo Ag ) and have the same infinitesimal character and central character as £¥. Denote by
Irrtemp(G(R),Xgl) (resp. Igisc(G(R),&Y)) the subset of Irr(G(R),Xgl) (resp. Hynit(G(R),&Y)) con-
sisting of those representations which are tempered (resp. square-integrable) modulo Ag . Choose
any maximal compact subgroups Ko, C G(R) and Ko, C G(R) which are admissible in the sense of
[Art88b, §1]. Define an integer

4(G) = %dim(G(R) /K scAc.o0). (3.11)

Fix real elliptic maximal tori T C G and Ty C H along with an R-isomorphism j : Ty — T. Also
fix a Borel subgroup B of G over C such that B D T¢. Let ¢¢ : Wg — LG be the discrete L-parameter
for £ which corresponds to the L-packet ITgisc(G(R),£Y). Let Q (resp. Qp) denote the complex Weyl
group for T in G (resp. Ty in H) and Qg the real Weyl group for T
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For each 7 € I4isc (G(R), £Y), there exists ¢ € C°(G(R), x¢) such that for any " € Irremp (G (R), Xgl),

/ 1, ia~a
tr' (¢r) = { 0, otherwise

Such a function ¢, is called a pseudo-coefficient for m. Whenever we write the expression ¢, in the
future, let us agree that a choice of a pseudo-coefficient for 7 is implicit.

The members 7 of Igisc (G(R), £Y) are parametrized by w, € Q/Qg so that each T = 7(p¢,wy ' B) is
characterized by the character formula of [Kot90, p.183], which is due to Harish-Chandra. We want to
describe the transfer of ¢, to H(R) as a linear combination of pseudo-coefficients for discrete series of
H(R). Shelstad defined the transfer factor A; p (depending on 7)) on elliptic regular elements, which
is enough for our purpose. (Note that pseudo-coefficients have trivial orbital integrals on non-elliptic
semisimple elements and that the case of elliptic singular elements is covered by [LS90, 2.4].)

Remark 3.6. (A similar remark appears in [Shil0, Rem 5.5].) In principle, we have to be careful
about the different conventions for transfer factors when we refer to [Kot90] and work of Langlands
and Shelstad at the same time. The convention in [Kot90] differs from that of Langlands and Shelstad
by s+ s71, as explained on page 178 of that article. Fortunately there is no danger for us to confuse
the two conventions, as s = s~! holds for every endoscopic triple in £(G,,).

For any discrete L-parameter oy for H(R) and its associated L-packet II(¢pr), let

1
boy =T D by (3.12)
Wem)l | S
(In [Kot90, §7], ¢, was denoted by h(¢g).) Define
o7 = (D)D) D tw(onyen 8) det(wa(om) - Doy (3.13)
Non~pe

where the sum runs over equivalence classes of ¢y such that nyy is equivalent to pe. We remind the
reader that we adopted notations of [Kot90]. (In that article, see page 185 for w.(¢xg) and page 175

for ay,, (4w )
Lemma 3.7. Let m = m(p¢,w; ' B).
(i) For any discrete L-parameter g for H(R),

g , otherwise

S trrm(eld) = { (D)9, (pp)wn» 8) det(walom)), if To ~ pe
mu €l(pn)
(ii) ¢ is a Aj p-transfer of ¢y

Remark 3.8. Compare with [Clo, Thm 3.4], which proves a similar result with a somewhat different
approach. It seems that our proof is general enough to work for other groups with little change.

Proof. Note that (i) follows immediately from the definition of ¢X.
Let us prove (ii). It suffices to prove that for any elliptic regular v € H(R) and v := j(yg),

S04, (87) = Djp(va, %) D (Iv(30,7):5) - O () (3.14)

Y ~stY0

where inv (v, ) is defined in [Kot86, 6.7] and the sum runs over the set of v € G(R) (up to G(R)-
conjugacy) which are stably conjugate to 9. We import notations and facts from pages 183-186 of
[Kot90]. By the third formula of page 186 and the formula for A; g of page 184,

SO’YH(¢<PH) = (71)q(H)V01_1 Z XwH(BH)(fYI:Tl)'AUJH(BH)(PYI_il)il
wHEQH

= (_l)q(G)VOI_l Z Aj,UJHUJ*(B) (’YHarYO) *Xwgw. (B) (70_1) : AwHw*(B)(’YO_I)il

WHEQH
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where we wrote w, for w,(¢m). Since Aj 0, () = det(w.)Ajp, we see that SO, (¢F) equals
(recalling from [Kot90, p.185] that there is a bijection between ., and the set of ¢pr)

(_1)q(G)V01_1 Z Z <aw*w.,r75> . Aj,B('VHv’YO) ! XwHw*(B)(W(;l) ! AwHw*(B)(W(;l)_l'
Wi €EQu W EQH

Using the equality (aw,w.,$) = (Gwpw,w.,s) and the bijection Qp x Q. — Q mapping (wg,ws) to
wHws, we can simplify the above expression as

(=)ol ™ A 5 (v, 90) D (G 8) - Xy (0 ) - Doy (7 )
weN
On the other hand, using the computation of orbital integrals in [Kot92a, p.659],

Z <inV(’YO7'7)7S>Ov(¢7T): Z <aw’8>ow“/0(¢ﬂ): Z <GW7S>V0171'trﬂ-((w70)_l>

st Y0 weQ/ weQ/M

Using the formula of [Kot90, p.183] for trm((wyo) 1), the last expression can be written as

D P I A e T (3.15)
w€eN/Or wo €NR

Since (ay, ) = (Aww,,s) and the last summand is equal to waowgl(B)('Vo_l) . AWWOW?(B)(%A)*,
(3.15) is the same as

(_1)Q(G)V0171 Z <awwﬂas> . Xw(B) (7071) : Aw(B)(,Y(;l)_l'
weN
Hence (3.14) is proved.
O

Remark 3.9. Note that each gy such that npyg ~ ¢ corresponds to an L-packet of the form
Maisc (H(R), £(pr)Y) where £(ppg) is a suitable irreducible algebraic representation of H. The function
¢ey is often called an Euler-Poincaré function in the following sense: for each g € II(H(R), Xg(;H)),
the trace tr mg (¢, ) computes the Euler-Poincare characteristic of the relative Lie algebra cohomology
of my ® £(wm). The existence of an Euler-Poincaré function was proved by Clozel-Delorme ([CD90]).
Its explicit realization as (3.12) was used by several authors ([Kot92a, Lem 3.2], cf. [Art89, (3.1)]).
The twisted analogue is obtained by Labesse ([Lab91]). (cf. §4.3.)

In view of Remark 3.9, we will sometimes write ¢ ¢y, for ¢y, .

3.6. Explicit computation of real endoscopic signs. We wish to make the discussion of the

last subsection explicit in case G = G(U(1,n — 1) x U(0,n) x ---U(0,n)), which is an inner form of

Gn xg R. A precise definition of G is given below. As in §3.5, we use the notation of [Kot90, §7]

without recalling here. Note that a similar computation as ours was obtained earlier by Clozel ([Clo]).
For each 0 € @g let

Ja;:(l 0 )ifcr:r and J, =1, ifoc #T.

0 - n—1
and define an R-group G and its maximal R-elliptic torus T' (via the obvious diagonal embedding) by
G(A) = {(\(90) €A x Ma(CORA)Y | Yo, godoles = Mo} g0
T(A) = {(\(toy) € AX X (C@R AMP | Vo,i,  teits, = A} '

for any R-algebra A, where o € ®f and 1 <i <n.

Let nq,ng € Zsq be such that nq > ne and n1+ne = n. The group (H, 5,1) := (Gny.nss Snings MTnans)
(defined in §3.2) is an endoscopic triple for G, equipped with 7, », : “H — £G. For our purpose, we
may identify H with the R-group given by

H(A) = {(\(he)) € A% X My, n,(C®R A | Vo, heJithe = AJL}

for R-algebras A, where J/ is a suitable diagonal matrix with entries +1 and —1 such that H is
quasi-split. Let Ty := T, which obviously embeds into H diagonally. Take j : Ty = T to be the
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identity. There is an obvious isomorphism (induced by the map z; ® 23 +— 2129 from C ®g C to C, in
view of (3.16))

G(C) ~ GL1(C) x GL,(C)* (3.17)
and similarly for H, with GL,, replaced by GL,, n,. Let B C G¢ and By C Hc be the Borel
subgroups consisting of upper triangular matrices. Note that B D T and By D (Ty)c.

Let Sy denote the symmetric group in N variables. There are natural identifications

+ N\ {r
Q=87 Qp= (S xSu)%,  Qr=8,_1 xSre M

so that any w = (ws) € Q acts on T as (A, (t5,5)) € T+ (A, (tow, 1)), and similarly for Qp acting on
Ty . Of course Qp is identified with a subgroup of € via j. The component S,,_1 of Qg is viewed as
the group which permutes the sub-indices for (t;2,tr3,...,trn). The set {2, is a subset of (w,) € Q
such that w, (1) < -+ < we(n1) and wy(ng 4+ 1) < -+ < wy(n) for every o € ®f. The multiplication
induces a bijection Qg x Q, — Q.

Let £ be an irreducible algebraic representation of G¢. To ¢ there is a way to attach ag(§) € Z
and @(€), € (Z)" for each o € ®f by the following condition: |Gz, is z = 2% and d(¢), =
(@(&)o1,---,0(8)om) is the highest weight for the restriction of § to the o-component GL,, with
respect to (3.17), where a(§)s1 > -+ > a(§)sn- (This is different from the convention of [HTOL,
p.97-98] in that the inequalities are reversed.) Define w({) € Z and «(),,; € 37 by

w(©) = ~200() = Y alois Ao =~ + g (3.18)

View ., as a character C* — C* by identifying £ ®gR ~ C via 75. Note that we(2) = (2/%)%/?
for an odd number § € Z, as w extends the sign character on R*. Let (7y(§)s,;) be any permutation
of (a(€)s,:) by an element of  such that

'Y(f)a,l > > "Y(f)o,nu 'Y(f)a,m-&-l > >9(Eom

and put
ﬂ(&)m—{ 7(5)0»1‘—6(”—”1)-%, if1<i<ny,

V(&) —€(n—mng)- 5, ifny <i<n.
Consider a discrete L-parameter ¢ : Wg — LH sending z € W to

((zz)w@)m(z J2) (8= 50012, (2 2)1E)0) v s

ge¢5,1§¢§n>

where ((z/%)#&)74), <, for each ¢ embeds into the diagonal of GL,,, ,,,(C) in an obvious way. So
e :=nNo @y sends z € W to

(Z/g)v(i)a,l 0 e 0
(22) "W E/2(z)7)” Lo (8oi/2 0 (2/2)/ @20 < 2
: 0 0
O PN 0 (Z/z)’y(g)o,n

UE@é
It is not hard to check that ¢¢ is (up to equivalence) the discrete L-parameter for Ilgisc(G(R),&Y),
which justifies our notation for . (Use the characterizing properties of g in §4.3.)

The element w, = wy(pp) € Q. is easy to describe in terms of v(§),;’s. It is the unique element
of . such that

VEowe() > >V Eown(myy Vo € BE. (3.19)

This description of w, easily follows from the discussion of [Kot90, p.184-185].

Recall that 7 € Hgisc(G(R),£Y) are parametrized by w, € Q/Qr. (We will confuse w, with any of
its representatives in 2.) Note that |Q/Qr| = n. We may write

HdiSC(G<R)7€V) = {7T17 sty 77”}
where 7’ is characterized as follows: if we write w,: = (wﬂi’g)oeq% then wgi , is an element of the
permutation group S, that takes 1 to é. (The last condition determines w,: as an element of /Qg.)



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 21

We will consider h : Rc/rG,,, — G factoring through T'. Suppose that on R-points h : C* — T'(R)
is given by (compare with (5.1))

2 (2,(2,Z, .. Z)o=rs (B, Z) otr)-
~——

We have a natural identification 7¢21(C/B) = C* x ({:I:l}")‘I’Er so that py, € X*(TCC/B) (defined
on page 167 of [Kot90]) sends each element (A, (t5,:)) of T to At; ;. In particular,

(Hhs Snyny) = 1. (3.20)

Recall from [Kot90, p.175] that for each w € €2, the character a, € X*(T¢(C/R)) is defined by
Gy = Wi — Wp. Hence
aw()‘7 (ta,i)) = t;&tr,w(l)-
The following computation is immediate.
1, if1<i<mn,

<aw*wﬂi75n17n2> = { 1, ifny <i<n. (321)

4. TWISTED TRACE FORMULA AND BASE CHANGE

In section 4 we review the twisted trace formula and the base change for the groups Gz and Gg.
The twisted trace formula is due to Arthur and various results on base change are due to Clozel and
Labesse, who also studied the case of unitary groups in more detail. Our strategy basically follows
theirs with minor differences for unitary similitude groups. Throughout §4 we assume that

Ramp,q U Ramg (@) C Splp/p+ o (4.1)

For each prime p, fix a field isomorphism ¢, : @p 5 C. Also fix an embedding ¢ : Q < C, which
gives an embedding L’l :Q — @ for each p. Choose 7 : F' — C and define <I>+ and @ as in the
last section. For each prime p € Splg ) p+ o, define ), := Homg(F,Q,), ¥ := Lil(bé_, D =01 DG.
Let V, be the set of places of F' above p. Let V+ be the image of <I>+ under the natural map ®, — V.
Then V, = Vi [[cV,f.

Let # : Rp/gG L7 — Rp/gGLj denote the map g — @5 tg=c®>"'. Define

G} = (Rp/oGL1 x RpoGL7) % {1,0} (4.2)

e
where 0(\, g)0~! = (A, A\°g#). Denote by G% and G%6 the cosets of {1} and {#} in G} so that
G = G2 ]I GY%. Recall that G; was defined in the last section. There is a natural Q-isomorphism
Gz = GY which may be described on the R-points (for any Q-algebra R) of the underlying groups as

(E®g R)* x GLz(F ®g E ®g R) — (E ®g R)* x GLz(F ®g R) (4.3)

induced by the linear map f ® e — fe from F ®g E to F. The isomorphism Gz = G% extends to
G x Gal(E/Q) = G} so that ¢ € Gal(E/Q) maps to 6, where Gal(E/Q) acts on G in the obvious
way. So we will use Gz, G0 interchangeably with G%, G%6 by abuse of notation.

From now on, we often write G for Gz, G for Gz, ® for &5 and BC for BC5z until the end of this
section, unless we specify otherwise. We caution the reader that from §5, the symbol G denotes an
inner form of G,,.

4.1. f-stable representations. Let v be a place of Q. We say that (II,, V) € Irr(G(Q,)) is 8-stable
if (IL,,V) ~ (I, 0 6,V) as representations of G(Q,). In that case an easy application of Schur’s
lemma enables us to choose Ap, : V 5 V which induces I, = II, o § and satisfies A% =id. The
last condition pins down Ap, up to sign. We will say that such Ap, is normalized. In §4 2 and §4.3,
a specific normalization A% i1, Will be introduced.

Let S be a finite set of places of Q. Similarly IT° € Trr(G(A%)) is called #-stable if I1¥ ~ IT° 0 §, in
which case we denote by Aps an intertwining operator such that A% s = id. Denote by Y (G(Q,))
(resp. Trr?*(G(A®))) the subset of Irr(G(Q,)) (resp. Irr(G(A%))) consisting of f-stable representa-
tions.
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Given a f-stable representation (II,, V) and Ay, : I, = I, o §, we can produce a representation
(ILF, V) of GT(Q,) by setting I} (g) := II,(g) and IL}(0) := Ap,. Conversely, a representation IT;
of G*(Q,) yields IT, := IT{ | (q,) € Irt’*(G(Q,)) and a normalized operator A, := IT; (6).

We may write II € Irr(G(A)) as II = ¢ @ II! for a continuous character ¢ : A5 /E* — C* and
' € Irr(GL7(AF)), corresponding to the isomorphism G(A) ~ GL;(Ag) x GL7(AF). Denote by 1
the central character of IT'. Corresponding to 7 = (ny,...,n,), write ¢¥q =¥ @ --- @ ¥,.. It is easy
to verify that II is f-stable if and only if

o (II')Y ~TI* o c and
b H;:1 ¢i|A§ =y°/y.

4.2. Local base change and BC-matching functions at finite places. For each finite place v,
we say that f, € C(Gz(Qy)) and ¢, € C®(Gz(Qy)) are BC-matching functions, or ¢, is a BC-
transfer of f,, if they are “associée” in the sense of [Lab99, 3.2]. (This is non-standard terminology.)
Similarly we will define in §4.3 the notion of BC-matching for a pair of functions f on Gz(R) and
$oo o0 Gj(R) which are compactly supported modulo Ag .. The notion of BC-matching functions
obviously extends to the adelic case.

We are going to explain case-by-case how to find a BC-transfer ¢, of each f, and how to define the
local base change map BCz. The BC-transfer and BCj; are closely related via character identities.
We will define normalized intertwining operators AOHv for O-stable representations II, in each case.

Case 1. v € Unrp/g and v ¢ Ramg(w).

Let BC% : " (G(Qy)) = ™ (G(Qy)) be the dual map of the L-morphism BCjy defined in §3.1.
Define a map BCj : Irr"™ (G(Q,)) — Irr"™?**(G(Q,)) which is uniquely characterized by the following
identity: for each m, € Irr""(G(Q,)) and f, € " (G(Qy)),

XBCy(m,) (o) = X, (BCZ(fv))- (4.4)

It is a routine check that BCj(m,) is 6-stable, but it is not always true that BCj is surjective onto
Irr"%5*(G(Q,)). (The reason for the latter is essentially the same as in [Min, Rem 4.3], which treats
unitary groups.) If v € Unrp/g N Splg g, the injectivity of BCj is easily checked. (For instance,
use formula (4.8) for BCj.) However BCjy is not injective in general.? When II, € Irr""?"(G(Q,)),
we define AY : I, = II, o 6 as the one acting on II5" as +1 (rather than —1). (The hyperspecial
subgroup K, defined in §3.1 is clearly #-stable.) If IT, = BC(m,) then (4.4) implies

tr (L (fo)AR1,) = X1, (fo) = X, (BC5(f0))-
Suppose a finite set of places S contains Ram y/gURamg(@)U{oc}. For each IT° € Irr™ 05 (G (AS)),

~

denote by A% : 1% 5 11 o § the unique intertwining operator which acts on (HS)KS as +1. If
1% = BCxz(7®) then (4.4) implies that

tr (I1%(F%) ARs ) = X (BOF () (4.5)

Case 2. v € Splp/p+ g (v € Splg g or v ¢ Splg q).
There are natural isomorphisms

GQ,) ~ Q x [[ GLa(F,) (4.6)
IEVJ

GQ) =~ Efx [ GLa(Fa) x [ GLa(F). (4.7)
zeVy zEV,

If v ¢ Splg g then 6 acts on G(Q,) as (A, g+,9-) — ()\C,)\Cgi)\cgf). If v € Sply,q then write
A=Ay, ) under Ef ~ EX x E. where u = z|g for any z € V,/. Then 0 sends (A, A\_,g4+,9-) to
(A= A, g™, Mgl

4Supp0se that v is not split in £ and that the multiplier map G(Q,) — Qy is surjective. Then 7 % 7 ® XE,/Q, but
BCj5(m) ~ BCx(m ® xg, /qQ,), Where xg, /@, is the quadratic character of QX with kernel E, viewed as a character
of G(Qy) via the multiplier map.
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We define BCy : Irr(G(Q,)) — I Y(G(Q,)). Write 7w, € Irr(G(Q,)) as mpo @ T4 on the
underlying vector space Wy ® W. Define BCy(m,) on Wy @ W @ W by

0,0 @ T, 0¥r, , @ Ty 4 @ wﬁ_w ifve SplE/Q (4.8)

(To.0 0 Np, g ) VS, , @t @iy, if v ¢ Splgg (4.9)

where Wﬁ_lr(g) := 7.+ (¢%). In particular Wﬁ_lr =~/ oc. Define A%C(M) : BC(m,) = BC(m,) 00 by

Wo QW QUW_ — Wy QW_ QWy.
More generally consider II, =11, o ® II, + ® II, — € Irr(G(Qy)), according to (4.7). If v € Splg g,
write IT, o = I, o+ ® I, o — in view of E} ~ E x E,.. We see that II, is -stable if and only if

o4 =0, , Mo =T if v e Splyg (4.10)
o =10¢ g6, Yn, , Wy ~ 107, if v ¢ Sply g (4.11)

For a f-stable II,, choose 3 : I, ; = H#7_. The same map on the underlying vector spaces induces
B Hfer = IL,,—. Define A} by wo ® wy ® w_ — wo ® (%) (w-) ® B(wy). It is easy to check
that AOHU is an isomorphism from II, to II, o 6 and that (A%U)2 =id.

Consider f, € C*(G7(Q,)) of the form f, = fu o fo+ - fo,— with respect to the decomposition
(4.7). Tf v ¢ Sply g, define ¢, = BC*(f,) by

Bu(AX, g) =/ Foo(@TIA) fo 1 (TN gh ™Y fo _ (h¥) dadh,
B /QX XT1, 4 GLa(Fs)

and ¢, (Ao, g) = 0if Ao ¢ Ng, o, (E;). If v splits in E, define ¢, by the same formula except that

the integrand is replaced by

Foo(@7IN) fur (@A gh™h) o - (BF).

The Haar measure used above is chosen to be compatible with the Haar measures on G(Q,) and
G(Q,) fixed in §3.1. More concretely, the quotient measure on E/QJ is given by the Haar measures
on E) and Q for which Of and Z; have volume 1, respectively. The measure on each G'L;(F) is
such that GL7(OF,) has volume 1.

It is shown by an elementary calculation exactly analogous to the proof of [Rog90, Prop 4.13.2.(a)]
(but our case is a little more tedious as it is necessary to take care of similitude), that ¢, and f, are
BC-matching functions and that

trmy(dy) = trm(BC*(f)) = tr (BO(m0)(fo) ABc(r,)) (4.12)

for every m, € Irr(G(Q,)). If v splits in E, it is straightforward to check that BC is injective and that
BC* is surjective.

Remark 4.1. The above discussion is consistent in the following sense. Suppose v € Unrr,qNSplp, p+ g
and v ¢ Ramg(w). For every m, € Irt"™(G(Q,)), BCz(m,) is isomorphic in Case 1 and Case 2. If
IT, € Irr™ (G(Q,)) is f-stable, it is easily verified that the two definitions of Af; coincide. Furthermore,
for each f, € " (G(Q,)) there is no ambiguity about ¢, since the two definitions of ¢, in Case 1
and Case 2 coincide.

4.3. Base change of discrete series at infinity. Recall our convention throughout §4 that we write
G = G7 and G = G5 unless stated otherwise. Let £ be an irreducible algebraic representation of G¢.
Consider the natural isomorphism G(C) = G(C ®q F) ~ G(C) x G(C), induced by C®g E = C x C
mapping z ® e to (z7(e), 27¢(e)). Define a representation = of G¢ by = := £ ® . We can extend = to
a representation =1 of G*(C) by defining =% (0) as v; ® vy — va ® v1 on the underlying vector space
for £ ®E.

We say that Iy, € I’ “Y(G(R)) is O-discrete (cf. [AC89, p.17]) if Il is tempered and not a
subquotient of any parabolic induction from a #-stable tempered representation of a proper #-stable
Levi subgroup of G(R). For a maximal torus T of G contained in Ko, define d(Gg) := D(T, G;R) in
the notation of [Lab99, 1.8]. The value of d(Gg) is independent of the choice of T.

Denote by Age the split component of the centralizer of 6 in Ag. So Age is a Q-torus contained
in Ag. Set Agpoo := Ago(R)?. Note that Agp oo = Ag.eo via the inclusion G(R) — G(R). Let
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C(G(R), xe) denote the space of smooth functions G(R) — C which are bi-K-finite, compactly
supported modulo Ag o and transforms under Ag o by x¢. Let Irr(G(R), Xgl) denote the subset of
Irr(G(R)) whose central character is the same as X§—1 on Ag co-

There exists a function f&*f € C2(G(R),x¢) ([Lab91, Prop 12], cf. [CL99, Thm A.1.1]), which

is a twisted analogue of the Euler-Poincaré function in Remark 3.9, characterized by the following
property: for each IT{ € Irr(GT(R)) whose restriction to Ag o is Xgl,

tr L (fE°f) = Z(—l)ktr(9|Hk(Lie (G(R)/AG.00), Koo, ITL, @ EV) (4.13)
i
where TTL (fLef) = fG(R)/AG N fLet(g)ITE (gf)dg. If the infinitesimal characters of Il and Z do not

coincide, then the right hand side of (4.13) is zero since the cohomology vanishes in all degrees. (cf.
[Wal88, Prop 9.4.6].) Computing the right hand side of (4.13) as in [Lab, Lem 4.10], we can prove
that there exists a unique irreducible f-stable generic unitary representation Ilz € Irr(G(R), Xgl)

such that tr IIZ (fLef) # 0 for any extension IIZ of IIz. We remark that an alternative proof of the
existence of the function fZ°f may be given by the results of Delorme and Mezo ([DM08, Thm 3]).
By the computation as in the proof of [Clo91, Prop 3.5], we have

tr ITE (fE°0) = 207 (4.14)

where the sign depends on the choice of an extension HJEr of II=. Let A%E : Iz 5 Iz o 6 denote the
operator ITZ () where TIZ is chosen so that the sign in (4.14) is positive. Set

foz = fL/d(Gg) = fLef jorlF Q-1

(A direct computation with Galois cohomology shows d(Gg) = 2"F Q=1 ) The function fezis a
stabilizing function in the sense of [Lab99, Def 3.8.2] and a cuspidal function in the sense of [Art88b,
p.538] by [CL99, Thm A.1.1].

Remark 4.2. There is a direct product decomposition G(A) = G(A)! x Agp. ([Art86, §1]). Put
G(R)! := G(R)NG(A)" and f¢ = := fc zlem)- Note that the inclusion induces G(R)" = G(R)/A¢ o
and that IT (fZ°f) in (4.13) is the same as I (f2f|g@)1) == Jemy fLet(g)TTE (g0)dg. Hence

tr (Mz(fg=) 0 Af) =2 (4.15)

where the trace is computed with respect to the action of G(R)'. We also see that tr (IT,(f§ =)) =0

for any II1 € Irr(G*(R)) such that Il is generic and non-isomorphic to IIz as a representation of
G(R)!. (Here we need not assume that I, € Irr(G(R), Xgl).)

We claim that Iz is the base change of the L-packet Igisc(G(R),£Y) in the following sense. Let
¢ : Wg = LG be the L-parameter (unique up to equivalence) corresponding to Igisc(G(R),£Y)
([Lan88, §3]). Let ¢= := @¢|w.. Then it is easy to see that Ilz is the unique generic representation
corresponding to ¢z via the local Langlands classification for G(C) (cf. [Kna94]). The fact that ¢, is
a discrete L-parameter implies that IIz is §-discrete. Conversely, ¢, is uniquely characterized by Iz
and x¢ in the sense that there is a unique ¢¢ (up to equivalence) such that

® ©¢|w, corresponds to II= by the local Langlands correspondence and
o Wr KLg - L Ag corresponds to a character of Ag(R) which restricts to Xgl on Ag co-
(The L-morphism “G — ¥ Ag is induced by the canonical injection Ag — G.)

Recall the notation ¢g ¢ = ¢, from §3.5. We are about to explain that fg= and ¢g ¢ are BC-
matching functions. Let 6 € G(R) be any #-semisimple element (i.e. 66 is semisimple in GT(R)) and
v € G(R) be the norm of ¢ ([Lab99, 2.4]). For such § and v, a direct computation shows that

tr21(60) = tré(y). (4.16)

Indeed, write 6 = (d1,d2) € G(C) ~ G(C) x G(C) so that v = d102. Let Ay := E(01), Az := E(d2) and
C :=E%(0) so that A1, Ay € End(¢) and C € End(£ ®€). Recall that C is given by v; @ vy — v @ 1.
Then (4.16) boils down to the identity tr (4; ® As) o C' = tr A; Ay, which is an elementary exercise in
linear algebra.



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 25

Let I59 (resp. I,) denote the neutral component of the centralizer of 66 in G(R) (resp. v in G(R)).
The R-groups Isg and I, are inner forms of each other ([Lab99, Lem 2.4.4]). Let Isp (resp. I.)
denote an inner form of Isy (resp. I,) which is compact modulo center. Then Isp ~ I,. Choose
compatible measures pr,,, fir,, piz,, and piz., on Isg, I, Is59 and 7% respectively. We fixed a Haar
measure fia. ., on Ag o in §3.1. Thus we obtain quotient measures pr,,/pia. .. and pr, /pag ... We
can compute stable orbital integrals as in [CL99, Thm A.1.1]. (They consider analogues of d(Gr)da, ¢

and d(Gr)fg,=, in case £ and = are trivial. For the computation of SO»?(R)(be,g), one may also use
[Kot92a, Lem 3.1].) Since our normalization of Haar measures is different from that of [CL99], we
need to include the volume factors in the values of stable orbital integrals.

SOT™ (Gee) = iy, /1. (Ty(R)/Ac,0) i E()

SO55" (Jo.2) = b, /1ac. . (Tso(R)/Ac,oc) ™ tr 57(36)
Here we write SO (gb(; ¢) and SOy, (R)(fG z) for @E(R (7, 0a,¢e) and CIJ%;(R)(é fc,=0), respectively, in

the notation of [CL99]. Observe that for any § and « as above, SOG(R)(fGVH) and SOG(R)((;SG,E) have
the same value. Hence the functions fg = and ¢¢g ¢ are BC-matching in the sense of §4.2.

4.4. Transfer for Cm n, and compatibility of transfers. Fix n; and ng with ny +ns =n, ny >
no > 0. Recall that Cnl,nz : L(Gnhn2 — LG,, was defined in §3.2. Often Cnl n, Will be written as C in this
subsection. We would like to give an explicit recipe for the transfer of functions and representations
with respect to (p, n,. Since Gy, ,, and G, are essentially products of general linear groups, it is
easy to work explicitly. Recall that we have given a Q-isomorphism Gz ~ Rp,oGL1 X Rp/qGLj for
71 = (n) and 7 = (n1,ns). For each place v of Q,

G#(Qy) ~ EX x GL(F,).

Let Qu, ny = REjoGL1 X RpjgPn, n,, a parabolic subgroup of G,. Let X : Gy, ny(A) — C* be a
character such that

2
(A g1,92) €AY X GLy, (Ap) X GLp,(Ap) — @ </\N(”1*”2) HNF/E(det(gi))E(”"i)> :
i=1
For each f, € C2(Gn(Qy)) and Ila, € Irr (G ny (Qy)), define C*(f,) € C(Gpyny(Qy)) and
C*(HM,’U) S Irr(Gn(Qv)) b

Tk Qnyn = ; n
C(fo) = F77 X G(Marw) = n'mdgm,m (a0 ® Xeo,0)-

(Here det is the product of the component for E) with the determinant of the component for
GLy, n, (Fy).) If f, € (G, (Qy)) then (*(fy) is no other than the image of the unramified Hecke
algebra morphism which is dual to (. Lemma 3.3 implies that for every v,

i, (C(5)) =t (M) (£): (4.17)

Now we check whether the transfers for 7, n,, Zm,nz, BC,,, n, and BC,, are compatible, case by
case.
Case 1. v € Unrp/g and v ¢ Ramg(w).

We have two commutative diagrams as follows. The first one is the dual of the diagram (3.4), thus
commutative. Then the commutativity of the second one is easy to deduce from the character relation
(3.8), (4.5) and (4.17).

A (Gn(Qy)) i> A Gy ny (Q)) L™ (G, (Qv)) ~— T™ (Gnyna (Qu)) (4.18)
BCZ\L lBCf‘Ll ny BC,, TBC”1 ng

A (Cn(Qu)) — A (G s (Qu) L™ (G (Q)) <=——Trr™ (G, 1y (Qu))

*
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Case 2. v € Splp/p+ o- (v € Splg g or v & Splg )

Here we have similar diagrams as in Case 1. All the maps are previously defined and we are
interested in the commutativity. Note that we prefer to use Grothendieck groups rather than the sets
of isomorphism classes since parabolic induction (involved in ¢, and 7j,) can be reducible.

C(Gn(@0) —> CF Gy (@) Groth(Gp(Qy)) < Groth(Goy ny(Qy)  (4.19)
BC,’;J/ lBC,,*Ll,,L2 BC,LT TBCM ng
c (Gn(Qv)) 7) Ohe (Gm,nz (Qv)) GrOth(Gn(Qv)) T GrOth(Gnl,ng (Qv))

It follows from the definition of maps without difficulty that the second diagram is commutative.
We claim that the first diagram is commutative (not as functions but) as invariant distributions, in
the following sense: for every f, € C°(G,(Q,)) and m, € Irr (G, 0, (Qy)),

trm, (BC;, 1, (C (1)) = trmy (7 (BC () (4.20)

To prove this, using earlier character identities, we may instead show that

tr (BO()(C* () 0 Apen,y ) =t (BCGR(m))(o) © A in,y)

This follows from Theorem 2 of [Clo84], noting that A%C(M) gives rise to A%C(ﬁ*(ﬂv)) as in §6.2 of
that article.

Remark 4.3. Again, Case 1 and Case 2 are compatible if v € Unrg g N Splp/p+ g, v ¢ Ramg(w) and
representations are unramified.

Remark 4.4. When v = oo, there is the following analogue of (4.18) and (4.19) on the representation
side. Let ¢p 00 be a discrete L-parameter of G, »,(R) and ¢ be the L-parameter of G, (R) given
by @Yoo = NPH 0o Write BC(¢m,00) (resp. BC(ps)) for the image of base change, namely the
representation of Gy, n,(C) (resp. G, (C)) corresponding to ¢ co|we (resp. @oolwe). Then we have
C.(BC(¢H.0)) = BC(¢o). This is a simple consequence of the fact that (3.4) is commutative. As
for test functions, we do not need an exact analogue of (4.18) or (4.19). (We have a loose analogue.)
The discussion of the current remark remains valid if G, is replaced with any inner form.

4.5. Simplification of the twisted trace formula. The twisted trace formula by Arthur ([Art88al,
[Art88b]) is unconditional thanks to work of Kottwitz and Rogawski ([KR00]) and recent work of De-
lorme and Mezo ([DMO08]). (The two issues were the trace Paley-Wiener theorem over archimedean
fields for non-connected groups and whether the distributions in the invariant trace formula are sup-
ported on characters. cf. [Art88a, p.330].) Let f € C°(G(A),xe). The function f0 on GO(A) is
simply defined as the right translation of f by 6. The twisted trace formula for G6 is an equality
between

L5 (£0) = T (£0) (4.21)
where each side is defined in section 3 and 4 of [Art88b]. Recall from Remark 4.2 that there is a
natural isomorphism G(A) ~ G(A)' x Agg,«. Let f! denote the restriction of f to G(A)'. Actually
both sides of (4.21) can be evaluated in terms of f1, as remarked on [Art88b, p.504].

Let £ and = be as in §4.3. Define ST (¢) for ¢ € C°(G(A), x¢) by

STE(6) == 3. 7(G) - SO () (1.22)
¥
where v runs over a set of representatives for Q-elliptic semisimple stable conjugacy classes in G(Q).
Fix a finite set S C Splp,p+ o containing Ramp,q U Ramg(w). (See (4.1).) From here until the
end of §4, we assume that ¢° € " (G(A%)) (resp. ¢s,, € C(G(Ag,,))) is a BC-transfer of f
(resp. fsg,) according to Case 1 (resp. Case 2) of §4.2. The functions
¢ =0 sy, dce and f:=f7fs, - fos

are BC-matching functions.
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Proposition 4.5. Suppose that [F*: Q] > 2. Then
Tgeom (f0) = ZVOI(LW(Q)AGe,oo\Iae(A))O?e(A)(f)
é

where 0 Tuns over a set of representatives for 0-elliptic 0-conjugacy classes in G(Q). (Here Isq :=
Z5(66)°.)

Remark 4.6. In case F™ = Q, the right hand side has to include more terms. See [Mor10, Prop 8.2.3].

Proof. We know that f is cuspidal at oo and that O;G(,(A) (f) = 0if § is not f-elliptic in G(R) by [CL99,
Thm A.1.1]. This is a twisted analogue of the first condition of [Art88b, Cor 7.4].

To prove the proposition, it suffices to show that IS (66, f0) = 0 for every proper Levi subset
M C GO and semisimple element § € M(Q). Once we have done this, we can use the argument in
the proof of Theorem 7.1.(b) and Corollary 7.4 of [Art88b] to finish the proof, even though f is not
necessarily cuspidal at any other place than co. (The assumption that f is cuspidal at two places was
imposed by Arthur to guarantee that Iyf (56, f0) = 0.)

Since fg = is a cuspidal function, the splitting formula ([Art88a, Prop 9.1]) implies that

IF (60, £0) = dig (L, G) I3 (80, (£°°0)1) Ing (90, fc.=0)
L
in Arthur’s notation, where the sum is taken over the Levi subsets L of Gf containing M. (Note that
IS (00, fo=0) = jﬁf”(é& fe.=0). cf. [Art88a, Cor 8.3]) The point is that Igf (66, fg.=60) = 0 unless M
is a cuspidal Levi subset of G#, as shown in the proof of [Mor10, Prop 8.2.3]. So it suffices to prove
that GO does not have any proper cuspidal Levi subset. By the very definition of proper cuspidal
Levi subsets ([Morl0, §8.2]), we can reduce the proof to showing that G has no proper cuspidal Q-
Levi subgroups in the sense of [Mor10, Def 3.1.1]. Recall that a Levi subgroup M C G is cuspidal
if Mg has no maximal tori which are anisotropic modulo (As)r. Suppose that M & G. Let G,
denote the kernel of the multiplier map G — G,,. Consider the Levi subgroup M; := M N G of G;.
For notational convenience we prove that M; is not cuspidal, as the same proof will show M is not
cuspidal. The fact that M; & (1 implies that M; contains a direct factor of the form D = RF/QGLa
for some a € Z~o. But the center of D xg R contains a split torus of rank [F' : Q] > 1 whereas Ap
is a rank 1 torus. So M; cannot be cuspidal. O

Corollary 4.7. ([Lab, Thm 4.13], ¢f. [Lab99, Thm 4.3.4])
Let 7(G) be the Tamagawa number of G (c¢f. Lemma 3.1). Suppose that [FT : Q] > 2. Then

Lgeom (f0) = 7(G) ™" - ST ().

Proof. We use the notation of [Lab99]. (The only unfortunate difference is that his use of the symbols
f and ¢ is opposite to ours.) By théoréeme 4.3.4 of Labesse,

7(G)Jz(9)

7(G)d(G,G)
Comparing the definition of TC? ([Lab99, §4.1]) with the formula of Proposition 4.5, we see that
TEO(f0) equals Jz(0) - 1S9, (f0). By Lemma 3.1, 7(G) = 1. Since H'(R,G) is trivial, d(G,G) = 1

geom

(which is defined on [Lab99, p.45]). So the proof is complete. O

T(f0) = - STE(9).

In view of (4.2), fix a minimal Levi subgroup
My = RE/QGLl X RF/Q(Z(l _____ 1)(GL1 X oo X GLl))
—_——
of G = Gz. Let M be a Q-Levi subgroup of G containing My. (We do not assume that M is f-stable.)
Choose a parabolic subgroup @ containing M as a Levi subgroup. The group WGG(CLM)reg defined on
[Art88b, p.517] acts on the set of parabolic subgroups which have M as a Levi component. For each
5 € WC(ap)req, let Q° denote s(Q). Choose a representative w € GO(Q) of s. Note that =16 acts

on G by (), g) = (A6, Xtg¢). So @710 preserves any M containing My. In particular, ® 16 defines
an element of W& (ay;),eq for each M.
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Consider the regular representation Rz aisc of M(A) on L3, (M(Q)An \M(A)). Noting that
s acts on M, let Rprdisc(s) denote the action ¢ — ¢ o s on the underlying space for Rps disc. Let

x — po(s,0,x) denote the representation n—indg(RM7diSC) of G(A). Arthur defined the operators
pq(s,0,20) (for x € G(A)) and

pq(s,0, f10) : n—indg(RMvdisc) — n—indgs (R, disc)

on page 516 of [Art88b]. These operators are G(A)!-equivariant if the G(A)!-action on the target
is twisted by 6. The decomposition Ry disc = @, Ila into irreducible subrepresentations yields a
decomposition of operators

,DQ(S, 0, fle) = EBHMPQ(Sa 0, f19§ HM)
If TI) is such that Iy, ~ 113, then pg(s,0, f10; 1) can be seen as a composition of the following
operations

0 (5,0,0;T157) n-indg)s (Tar) (F1)
n- mdQ(HM) Lo N indS. (I5,)? o mdQs(HM) (4.23)

where the first arrow is described as follows. Let V(IIp;) be the underlying vector space for IIy;.
Then pg(s,0,6;II5) is an isomorphism sending ¢ : G(A) — V(IIp) to ¢’ which is defined by
¥ (g) = Raraise(s)(¢(w™tgh)). This map does not depend on the choice of w. Here n—indgs (Ipr)?
denotes the representation n—indgs (Ipr)00. Tt is easy to see from Arthur’s description of pg (s, 0, f16)
that the following also holds.

pa(s,0, f10;I1nr) = po(s,0,60;I1ay) o n-indg (Tar)? (1) (4.24)
The intertwining operator Mg+ (0) sends
n-indg. (Iar)? — n-ind§) (Iyr)?. (4.25)

As I/ is unitary, n—indg (ITpr)? is irreducible for any choice of @ D M and Mg)g-(0) is an isomor-
phism. (cf. [MW89, p.607,(3)])

Proposition 4.8.

(Wl _
% (£0) = Z T 4et @0~ Dol Yt (Mgige-10(0)pq(@710,0, /165 T1))
1883

where M runs over the Levi subgroups of G containing My and Ilp; runs over the irreducible ®~10-
stable subrepresentations of R aisc- (By the multiplicity one theorem for general linear groups, each
isomorphism class of Ilyr contributes to Rpr gise only once.)

Remark 4.9. It is easy to check that n—indg (Iyy) is @-stable if 1T, is ®~'6-stable.

Remark 4.10. Let r be the number of (nonzero) components in 7, where G = Gz. If M = G, the term
|det(®10 — 1)q¢e| in Proposition 4.8 is equal to 2". The same term equals 271 if M is a maximal
proper Levi subgroup of G.

Proof. By Theorem 7.1.(a) (cf. p.516-517) of [Art88b],

W, _
LIRS e S detts =gl 3 (M Opa(s,0.6: 1)
s

where M is as above, s runs over WGe(aM)reg, and IIp; runs over the irreducible subrepresentations
of Rps dise. The Weyl set WGe(aM)reg is defined on page 517 of [Art88b] by the condition
| det(s — 1)aﬁf| # 0. (4.26)

and a description of its elements will be recalled as the proof proceeds. It is easy to see from Arthur’s
description of pg(s,0, f16) that only those ITy; such that ITy; ~ II, contribute to the sum. The proof
is complete if we show that

tr (Mg)q:(0)pq(s,0, fg =0; o)) = 0 (4.27)
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for any s # ®~10 (which may occur only when M # G). By (4.24), the left side may be rewritten as
tr (Mg|q-(0) 0 pg(s,0,0;Ta,00) 0 (n-indy™ (Tar,00))? (f& 2))-

Put II := n—indgﬁ(HM,oo). Let A : II — TI° denote the operator Mgq:(0)pq(s,0,0; s 00). As
noted earlier, IT is irreducible and A is an isomorphism. Hence A o A is a scalar operator on II. Let
Ao : TI 5 TI be a normalized intertwining operator (which can also be viewed as IT = TI?). To
prove (4.27), we may instead show
tr (I1°(f4 =) Are) = 0. (4.28)

We claim that if 11y, ~ 115, for s # ® !0 then the infinitesimal character of II is not regular. For
convenience of notation, we prove the claim when G = G,, as the proof is identical in the more general
case G = G;. In this case M is isomorphic to Gy, .. m, with Y ;_; m; = n (m; > 0). There is an
R-vector space

S ~RORD---OR
T
which is a quotient of Hom(X*(A4x),R) by Hom(X*(Agp),R). An element s € W (ap)eq can be
represented by s = w(®~10) where ®~16 acts as multiplication by —1 on aﬁ’f and w acts as an element
of the symmetric group S, which naturally acts on a§? by permutation. By the assumption s # ®~16,
w is nontrivial. Write
1_J:M,oo = ® (HM,J,l & - ® HJV[,U,T)
oced¢

and w = ¢1---¢p (kK > 1) where ¢; are mutually disjoint nontrivial cycles in S,.. The condition
(4.26) implies that every ¢; is an odd cycle. By rearranging m;’s if necessary, let ¢; be the cycle
1—-2—=..-—=a—1for an odd number a > 3. Then II;; ~ II}, implies that

~ TT1° ~ ~ TT1°
Ua,e 20 e = ars,o = Iy g ge o

This proves the claim since the isomorphism Ilas 1, =~ Ils,3,, indicates that the infinitesimal character
of II is not regular.

By the claim, if s # ®710 and II; ~ II5, then the infinitesimal character of 1% is not equal to
that of any irreducible finite dimensional representation of Gz. In view of Remark 4.2 and the remark
below (4.13), we conclude that (4.28) holds.

([l
Lemma 4.11. Suppose that M and Ilp; are as in Proposition 4.8. Set
A;—ind%(HM) = Mg ge-10(0) 0 pQ(®716,0,6; 1),
which is an operator from n—indg(HM) to n—indg(HM)e. (¢f. Remark 4.9.) Then A;_ind%(HM) is

. . , , .
normalized, i.e. An_ind%(nm o An_ind%(nm =id.
Remark 4.12. If M = G, things are simpler. Let us write IT for n—indg (T1pr) = Mpy. Tt is easy to see

that Al is given by Rz disc(®7160), from the paragraph between (4.23) and (4.24).

Remark 4.13. The sign of an analogous intertwining operator in the case of unitary groups is precisely
computed in [CHLb] (especially §4.4) by a different method replying on the so-called Whittaker
normalization.

Proof. For simplicity we write s = ®~ 16 and II = n—indg (IIpnr). We know Af; is an isomorphism since
po(s,0,6;1157)? = id and Mg)q+(0) is an isomorphism. (See the paragraph above Proposition 4.8.)

For ease of reference, we use [Art05] and its notation. Recall that Mg q- () for A € af) ¢ is defined
by a precise global analogue of the first displayed formula of page 135. (Also see page 128 of that
article.) If A lies in a certain chamber then the integral formula for Mg - () absolutely converges
([Art05, Lem 7.1]), and Mg|gs () is defined by analytic continuation in general. It is a standard fact
that the functional equation Mgq|qs(A)Mqs@(—A) = id holds for any A € af, ¢ (page 129). So the
lemma is proved if we show

Moo+ (N) 0 pq(s,0,0;11a) = pg(s,0,0;10ar) 0 Mgsjo(—A)
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for A = 0. It suffices to check this equality in the range of absolute convergence. Now this is an
easy exercise using our earlier explicit description of pg(s,0,6;II;) and the integral formula for

Recall that Ag e = Ago,co C AGoo- Let ag,co @ G(A) - Ag oo denote the natural surjection.
Define ¢ : G(A) — C* by X¢ := X¢ © ag,00- In the notation of the above lemma, set

n-ind (Mar)e := n-ind (Mar) © X - (4.29)

If I, is @~ '-stable then n—mdQ (Iar)e is -stable. Observe that A’ indS (I )e = Al indS, (IL) serves

as a normalized intertwining operator for n—lndQ (ITar)e. The following is easily deduced from Lemma
4.11.

Corollary 4.14. The second summand in Proposition 4.8 is computed as

tr (MQqu)_u(O)pQ(@_lH,O, f19;HM)) =tr (n—indg(HM)g(f) o A;_ind%(nmg) .

5. SHIMURA VARIETIES AND IGUSA VARIETIES

Throughout §5 and §6, we fix a prime ! and an isomorphism ¢; : Q; = C.

5.1. PEL datum for Shimura varieties. Consider a quintuple (F,*,V, (-,-), h), called a PEL da-
tum, given as follows.

Fis a CM field with an involution * = c.

V = F" is an F-vector space.

e (--):V xV — Q is a nondegenerate Hermitian pairing such that (fvy,ve) = (v1, fvs) for
all f € F,vy,v € V.

e h: C — Endp(V) ®g R is an R-algebra homomorphism such that the bilinear pairing

(v1,v2) = (v1, h(i)vg) is symmetric and positive definite.

Define a Q-group G by

G(R) ={(\,g9) € R x Endpg,r(V ®q R) | (gv1,gv2) = A(g)(v1,v2) for all v1,v2 € V ®¢ R}

for any Q-algebra R. We see that the group G,, defined in §3 is a quasi-split Q-inner form of G.
Fix an embedding 7 : F' — C. Suppose that F' contains an imaginary quadratic field £ so that

F = EF*, where Ft := =1, Define <I>(J.Cr as in §3.1. Until the end of §6 we further assume that

(i) n 6 Z>3 is odd,

(i) [F*:Q] > 2,

(iii) RamF/Q C SplF/F+ o (cf. (4.1)),
(iv) Gy, is quasi-split at every finite place v, and
(v) For o € ®f, (ps,qo) is (1,n — 1) if o = 7 and (0,n) otherwise. (See §3.1 for ®f.)

We list a few (but not all) implications of the above assumptions to guide readers. The assumptions
(ii) and (v) imply that G is anisotropic modulo center over Q and the reflex field for the PEL datum
is F (viewed as a subfield of C via 7). The assumption (iii) ensures that the local (quadratic) base
change is unconditional at every finite place, if ramification is suitably controlled, as it may be defined
in an elementary manner as in §4.2. (In general the local base change should involve local L-packets
and has not been established yet.) By (iv) there is an isomorphism G xg A ~ G,, Xxg A%, which we
fix.

The following lemma is standard. (cf. [HTO01, Lem 1.7.1].) All the necessary results in Galois
cohomology that go into its proof are found in [Clo91, §2]. The point is that when n is odd, there
is no cohomological obstruction for finding a global unitary (similitude) group with prescribed local
isomorphism classes.

Lemma 5.1. As above, let F = EFY be a CM field. For any 7 : F — C, there ewists a PEL datum
(F,*,V,{,-,+,),h) such that the associated group G satisfies (iv) and (v) above.
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More explicitly, we will choose h such that under the natural R-algebra isomorphism Endp(V)g ~

Ha@g M,,(C), the map h sends
Z ( 2lp, 0 ) 5.1
0 g, cedt

for some p,,q, € Z>o such that p, + ¢» = n. There is a standard way to associate a C-morphism
ph : Gy — G ([Kot92b, Lem 4.1.(2)]). Under the natural isomorphism Gc ~ GL1 X [, g+ GLn, We

may describe uy as
2L, 0
H(< i ))

Fix a prime p € Splg g such that p # [. Also fix a place w of F above p. (In fact the case p =1
is considered once, only in establishing Proposition 5.3.(v) where we refer to Harris-Taylor for the
proof.) Choose ¢, : @p 5 C such that L;IT F @p induces w. We will keep 7, p, w and ¢, fixed
until the end of §6.1. Define VI as in the beginning of §4. For convenience, write V., = {w1,...,w,}
where w; = w. Define ®,,, := Homg, (F.,,Q,). Using ¢, '¢: Q — Q, we get

Wi, < Gal(@,/F.) — Gal(@/F).

Write u = p,, for the @p—morphism fth X 1 @p. Let po : G,y = Gy, denote the identity map.
For each w; define p, : Gy, — (RFU,./QPGLTL) Xq, @p ~ Ha€<1>w. (GLn)@ by

ze | 2 ( p, 0 )
’ 0 Iq" TED,

so that u = (to, (fw; )1<i<r). We have p, = 1 if ¢ is induced by L;IT and p, = 0 otherwise.
Let us describe the finite set B(Gg,, —p). Using the isomorphism

Go, ~GL1 x [] Rr.,,/0,GLn, (5.2)

1<ilr
we identify
B(Gq,,~p) = B(GL1, —pp0) x || B(Rr,, /0,GLn, —hw,)

1<i<lr

and write b € B(Gg,, —) as (bo, (bw,;)). In view of [Shi09, Ex 4.3], there is a bijection

(hezZ:0<h<n-1} & B(Gg,,—n) (5.3)

where h corresponds to b(h) = (bg, (by,)) which is given by by = b1,0, by = bp—n,n and by, = by, for
i > 1 in the notation of §2.4. When b = b(h),

To(Qp) = Q) X (DR 1 upy X GLn(Fw)) x [ GLa(Fu,). (5.4)
i>1

Recall from §3.1 that we defined the groups K, C G,(Q,) (v # o00) and the measures g, , on
G, (Qy) for every v as well as PAg, o O0 Ag, 0o = Ag,co- For each v € Unrpq, define a hyperspecial
subgroup U of G(Q,) to be the image of K, under the isomorphism G(Q,) ~ G7(Q,) which was
fixed earlier. We transport ug, ., to a Haar measure ug, on G(Q,) for each v # oo via the last
isomorphism. To fix a Haar measure on J,(Q,), denote by M (cf. §5.5) the quasi-split inner form
of J, over Q,. We may identify M(Q,) with Q) X GLy,—pn(Fu) X [[;5, GLn(Fy,). Choose a Haar
measure on My(Q,) so that Z) x GLy—p n(OF,) % [[;5; GLn(OFwi) has volume 1. The measure on
Jp(Qy) is chosen to be compatible with the one on M;(Q,) in the sense of [Kot88, p.631]. Also choose

a Haar measure pg oo so that Hv MG,v/MAG,OO is the Tamagawa measure.
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5.2. Shimura varieties and Igusa varieties. For each open compact subgroup U C G(A*), con-
sider the following moduli problem.

connected locally noetherian

F-schemes — (Sets)
with a geometric point
(S;s) = {A NG ~

where the quadruples on the right consist of

e A is an abelian scheme over S

A:A— AV is a polarization

i: F— End(A) ®z Q such that Aoi(f) =i(f)V o\, Vf € F.

7] is a m1(9, s)-invariant U-orbit of isomorphisms of F ®g A®°-modules 1 : V ®g A® 5 V A,

which take the pairing (-, -) to the A-Weil pairing up to (A°)*-multiples. (See [Kot92b, §5]

for more explanation.)

e An equality of polynomials detog (f |Lie A) = detg(f|V?!) holds for all f € F, in the sense
of [Kot92b, §5].

e Two quadruples (A1, A1,41,71) and (Az, A2, i2,72) are equivalent if there is an isogeny A; —
Ag taking Aq,41,71 to YAg,is, 72 for some v € Q.

Note that for each S and two geometric points s and s’ of S, the values of (S, s) and (S, s") under
the above functor are canonically identified. So we can remove the reference to geometric points.
And then the above functor can be extended to a functor on the category of all F-schemes in an
obvious way. If U is sufficiently small, this functor is representable by a quasi-projective variety over
F ([Kot92b, p.391]), which we denote by Shy.

Recall that we fixed p and w in §5.1 such that p € Splg g and w[p. For each i (including i = 1), let
A; be a Uzlfs—stabilized (’)Fwi—lattice in V®p Fy,. It can be assumed that A; is self-dual with respect
to (-, ). For m = (my,...,m,), define

UP(1) := UP x L% x err(GLoni (A7) = GLoy,, (Ai/mf Ai)) C G(A™)
where mp,, is the maximal ideal of OF, . We can construct an integral model of Shy» () over OF,,

via the follovvlng analogue of the moduli problem in [HT01, p.108-109]. (The (A,%)-compatibility
condition there corresponds to our determinant condition.)

connected locally noetherian

Op, -schemes — (Sets)
with a geometric point
(578) — {(A3A7iaﬁp7{ai}£=1)}/ ~

where the tuples on the right consist of

A is an abelian scheme over S.

A:A— AV is a prime-to-p polarization.

i: Op — End(A) ®z Zy) such that Ao i(f) =i(f)" o\, Vf € Op.

7 is a m (S, s)-invariant UP-orbit of isomorphisms of F' ®g A**P-modules 1 : V ®g AP 5
VP A, which take the pairing (-,-) to the A-Weil pairing up to (A°P)*-multiples.
(Determinant condition) An equality of polynomials detog(f|Lie A) = detg(f|V?) holds
for all f € Op, in the sense of [Kot92b, §5].

ay :w ™Ay /Ay — AJw™] is a Drinfeld w™!-structure

for i > 1, a; : (w; ™ A;/A;) = Alw!™] is an 1som0rphlsm of S-schemes with O, -actions.
Two tuples (41, )\1721,7717{041 1 1) and (Ag7 Ao, o, T, {cu, 2}7 1) are equivalent if there is a
prime-to-p isogeny A; — Ao taking Ay, iy, 771 , 0.1 0 YAg, ig, 772, o 2 for some v € Z(p).

Because of our assumption on (p;,¢,;) and the determinant condition, if p is locally nilpotent in
S then A[w™] (resp. A[ws®] for ¢ > 1) is a Barsotti-Tate group of dimension 1 (resp. 0) if A is as
above. (cf. [HTO1, p.108]. ) This moduli problem is representable by a quasi-projective scheme over
Op, (using the argument of [Kot92b, p.391]), which will be denoted by Shy» 5. In fact, Shys 5 is
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projective and flat over O, for all m and smooth if m; = 0. The smoothness and flatness is proved
exactly as in [HT01, Lem I1I.4.1]. The projectivity follows from [Lan08, Thm 5.3.3.1, Rem 5.3.3.2].
The special fiber Shy;, 5 := Shy;, 5 X0y, k(w) admits a Newton-polygon stratification into k(w)-

—(h
varieties Sh(Up) g where the integer h runs over 0 < h < n — 1. The stratification can be described as

in [HTO01, p.111] or [Man05, p.580]. (Roughly speaking, %8? g is the locus where the Barsotti-Tate
Op,-module A[w*] has étale height h in the sense of [HT01, p.59].) To compare the index sets for

strata in two different references, note that each 0 < h < n — 1 bijectively corresponds to an element

b € B(Gq,, —u) under the bijection described in (5.3). When b corresponds to h, we write Sihg)lya for
Sty 5.

We may consider Igusa varieties in the sense of [Man05]. On page 576 of that paper the so-called
unramified hypothesis was imposed, which is equivalent to assuming that p is unramified in F in our
situation. The unramified hypothesis ensures that Shimura varieties have smooth integral models over
OpF, when no level structure is imposed at p. However the results of that paper carry over to our case
(where p may be ramified in F'): we substitute Shy;, g and SihU,,)G for Xyp (o) and YUP(O) in Mantovan’s
paper. (The same applies to the Newton-polygon strata). As remarked above, ShU,,ﬁ is smooth over
Op,. We use the results of Drinfeld as in [HT01, Ch II] instead of the Grothendieck-Messing theory.
It is worth emphasizing that we can work without the unramified hypothesis since we are in the special
case where p splits in E and the condition (v) of §5.1 is satisfied.

Let us briefly recall the definition of Igusa varieties. Choose any Barsotti-Tate group X, over F,
whose associated isocrystal with G-structure corresponds to b in the sense of [Shi09, §4] (cf. [RR96,
3.3-3.5]). Since any two isogenous one-dimensional Barsotti-Tate groups over F, with O, -actions are
isomorphic, for each b there is a unique choice of ¥ up to isomorphism (with additional structure). As
a consequence, each central leaf Cy,, = Cy, yr defined in [Man05, §3] coincides with the corresponding

stratum thg’fdﬁ. We write Igy, ;7» ,,, for the Igusa variety Jp ,, (which depends on U?) defined in [Man05,
§4]. In general Igusa varieties depend on the choice of Xy, but Ig, ;5 ,,, only depends on b in our case

(up to isomorphism) since X is unique up to isomorphism. By [Man05, Prop 4], Ig;, ;75 ,,, are finite

étale Galois coverings of ﬁ(UbI), 5 and smooth over F,.
An important point for us is that theorem 22 of [Man05] (also see [Man, Thm 1]), stated as
Proposition 5.2 below, works in our case. (We need to make a small change that the Rapoport-Zink

spaces should be viewed over the base Oﬁgr rather than Z;r.) This should not be surprising since
Proposition 5.2 is a close analogue (but formulated in a different language) of [HT01, Thm IV.2.9]
which works even when p is ramified in F.°

Even though the unramified hypothesis mentioned above is imposed in [Shi09] and [Shil0], the
results of those papers also carry over to our situation without the hypothesis. Again, this is possible
as the conditions (iii) and (v) in §5.1 are satisfied. In fact, the only place where the unramified
hypothesis is necessary is the proof of [Shi09, Lem 11.1]. In that proof, in our setting without the
unramified hypothesis, we know that dim(Lie A[w®]) is 1if ¢ =1 and 0 if ¢ > 1. Then we can argue
as in the proof of [HT01, Lem V.4.1] (in which p may be ramified in F) to prove Lemma 11.1 of
[Shi09]. (If the dimensions of the Lie algebras were arbitrary, the argument does not work.) Careful
readers may check that the rest of arguments in [Shi09] and [Shil0] goes through and the results of
those papers remain true in our situation.

Let & be an irreducible algebraic representation of G over Q;. Such a & gives rise to a lisse [-adic
sheaf on each Shy; as well as on each Igy, ;75 ,,,- Let Z¢ denote those l-adic sheaves by abuse of notation.
We write Ig, and Sh for the projective systems of varieties {Ig, ;7 ,, } and {Shy }, respectively, where
m runs over Zsq and U? (resp. U) over sufficiently small open compact subgroups of G(A>?) (resp.
G(A*>)). Define

Hk(Sha ZE) = lim Hk(ShU XF F?D%)? H(]'C(Iglﬂ"gf) = lim Hf(lgb,Up,mV’?ﬁ)'
U

— —
UP m

5In our case, it is appropriate to say that Proposition 5.2 is essentially due to Harris and Taylor. The beauty of
Mantovan’s work lies in its nice reformulation and generalization of their result.
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which are admissible representations of G(A>) x Gal(F/F) and G(A>?) x J,(Q,), respectively. Define

H(Sh, %) := Y (-1)*H*(Sh, %),  Hc(lg,, %) =Y (-1)"H!(lg, ).
k k
which belong to Groth(G(A>) x Gal(F/F)) and Groth(G(A>?) x J,(Q,)), respectively. The space
H*(Sh, %) is a semisimple G(A>)-module and admits a decomposition (cf. [HT01, p.103])

H*(Sh, %) @77 ® RE (7) (5.5)

where 7 runs over Irr(G(A>)) and R“(W"O) is a continuous finite dimensional representation of
Gal(F/F). Define R¢ (7*°) := Zk(—l)kRél(ﬂ"x’), viewed in Groth(Gal(F/F)).

Let S be a finite set of places of Q containing p and co. Set Sgy, := S\{oo}. Let R € Groth(G(A%) x
G’) where G’ is a topological group. A typical situation is R = H(Sh, %) with G’ = G(Ag,,) X
Gal(F/F) or R = H(Ig,, %) with G' = G(Ag,,\(p}) X J5(Qp). Write R = > nS®p n(m¥ @ p) - [7%][p]

where n(7° ® p) € Z, and 7° and p run over Irr;(G(A®)) and Irr;(G’), respectively. For a given 72,

define R[7°] € Groth(G(A®) x G') and R{7°} € Groth(G’) by
R[x*1:=Y n(x@p)-[r°llp,  R{zx®}:=) n(x*@p)-[o]

p p
where p runs over Irr;(G’). This way we define H(Sh, %)[n°], H(Sh, Z:){n°}, H(1g,, Z)[7°] and

H(Igy, Ze){m"}.
Define a functor Manty, ,, : Groth(J,(Qp)) = Groth(G(Q,) x Wg, ) using the notation of [Man05]
by (cf. §2.2)

Mantb,,u(p) = Z (_1)i+j hi>n EXt?]b(Qp)—smooth( (Mrli7U ) p))(_D)

,7>0 UpCG(Qp)
)

Here D is the dimension of Ml?,i,Upv (—D
compact subgroups U, of G(Q,). The following proposition is the theorem 22 of [Man05] ([Man, Thm
1]), which holds in our case as explained above.

denotes a Tate twist, and the limit is taken over open

Proposition 5.2. With the notation as above, there is an equality in Groth(G(A*>) x Wg,)
H(Shv"ff) = Z Mantb,#(HC(Igbagf))'

bEB(Gay 1)

The Rapoport-Zink spaces /\/lb1 U, admit product decompositions into Rapoport-Zink spaces of
EL-types, corresponding to the decompositions (5.2), b = (bg, (bw,;)) and p = (po, (w,;)). (cf. [Far04,
2.3.7.1, Ex. 2.3.21].) This induces a corresponding decomposition of Mants ,. Namely, if we write
each p € Irr(J,(Qp)) as po ® (R;pw,) according to (5.4), then

Manty, ,,(p) = Mantp, ,,(p0) © (©; Mants,, ., (Pw,)) - (5.6)

To the irreducible representation &, there is a way to attach ao(€) € Z, d(&), € Z"™ and w(§) € Z
for each 0 € @ as in (3.18) and the paragraph preceding (3.18). The following proposition is an
analogue of [HTO01, Prop III.2.1], except the last assertion comes from [HT01, Lem III.4.2] (for which
we allow p =1). The proof of Harris and Taylor works in our case and will be omitted.

Proposition 5.3. Recall that we fired 7 : F < C and v; : Q, = C. Let Uy, be the centralizer of h in
G(R).
(i) The following holds where moo Tuns over Iynit(G(R), 1,€Y). We denote the (discrete) auto-
morphic multiplicity by m(-).

dileg,l(w) | ker’(Q, G |Zm (1(7%°) ® 7o) dim H*(Lie G(R), Uso, Moo @ 1)

(ii) Let y be a pime of F not dividing I. For any o € VVFﬁ each eigenvalue o of ng)l(ﬂoo)((f)
satisfies o € Q and |a|? € |k(y)|? under any embedding Q — C.
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(iii) For almost all primes y of F, for all eigenvalues a of ng,l and for all embeddings Q — C,
we have |af? = [k(y)[Ft©,

(iv) R’g’l(ﬂ'o") is potentially semistable at every yl|l.

(v) Suppose that a prime g splits in E and that g € {p,l}. Write my = mq0 ® (®v€V[fﬂ—v) and
let y € V;‘ be the place determined by Lq_lT  F— @q. If mg0 and 7, are unramified, then
R’g7l(7r°°) is crystalline at y if ¢ =1 and unramified at y if ¢ = p.

5.3. Stable trace formula for Igusa varieties. Recall that the Haar measures on G(A*), J,(Q,)
and G(A)/Ag. - are fixed (§3.1, §5.1), where G5 denotes elliptic endoscopic groups for G. The goal
of this subsection is to state the stable trace formula for Igusa varieties, which was the main result of
[Shi10).

We need to pin down transfer factors. For each Gy, fix AY(., )gﬁ as in §3.4 at each v # oo, where
we take AY =1 for every v # oo if 7 = (n). Choose the transfer factor A,(-,-)& (v # co) so that

via the isomorphism G xg A® ~ G,, Xg A™ that was fixed in §5.2. We choose the unique A, )gﬁ
such that the product formula

T2 e, =1

holds ([LS87, (6.4)]) for any matching pair (vyg,~y) with v € G(Q), i.e. for any semisimple v € G(Q)
and any (G, H)-regular semisimple vy € G7(A) with matching stable conjugacy classes.

Fix (j, B) as in §4.3, once and for all. Recall that Aj; p was defined in §3.5. Let ez(A) € C*
denote the constant such that

Ao (s NG = €i(Doo) Ay B (Y, 7) (5.8)
for any matching pair (yg,7) € Gz(R) x G(R). Note that ez(Ayx) = 1 for 7 = (n). We claim that
for each @ = (n1, n9),

ea(Aso) € (C)', (5.9)
namely that |e7(As)| = 1. The argument is as follows. It is not hard to see from the definition (§3.4)
that for every v # oo, Av(’yH,'y)gﬁ is equal to Arv,,(va,7) up to (C*)!, the latter being the ratio
of Weyl discriminants at v defined in [LS87, §3.6]. By the product formula (5.7), the same is true for
v = oo. On the other hand, A; g(vm,7) is also equal to Ary, oo (vm,7) up to (C*)!, as can be seen
from the definition of [Kot90, p.184]. (Note that x¢ m in that article is a unitary character in our
case.) Hence the claim is proved.

Remark 5.4. Although a more careful analysis of transfer factors would show that ez(As) € {£1},
we have not attempted to do it here. Instead, we prove the same fact with an ad hoc argument later
in the proof of Theorem 6.1. There e;(As) shows up in the coefficient of a spectral identity, which
must be a real number, hence +1 or —1.

Let ¢>P - ¢, € C°(G(A>®P) x Jy(Qp)) be a complex-valued function. Assume that ¢°°F - ¢, is
an acceptable function ([Shi09, Def 6.2]). For each elliptic endoscopic group Gz for G, we recall the
construction of the function ngng on G(A). We may assume that ¢ has the form ¢># = [, _ ¢v
as the general case follows via finite linear combination.

For each place v # p, 00, let d)flg,v € C(G7(Qy)) be a Ay(+, -)gﬁ—transfer of ¢, (§3.4). Set H := Gx
in order to make the notation compatible with some references. Put

Pl p =y (5.10)

where hf is the function constructed from ¢, in §6.3 of [Shil0], with the convention of §8.1 of that
paper. (The construction of Al is briefly recalled in (5.32).) Set

Bl o0 = €i(Doo) - (=1 D, 5) Y det(wa(om)) - by (5.11)

$YH

in the notation of §3.5, where ¢y runs over the equivalence classes of L-parameters such that oy ~
¢¢. Observe that gbf’gm is the function hs of [Kot90, p.186] multiplied by ez(Ax)-
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The latter constant is multiplied to make up for the difference between A, and A; g.
The following stable trace formula is proved in [Shil0, Thm 7.2]. It is worth noting that the proof
uses the fundamental lemma in an essential way.

Proposition 5.5. If 97 - ¢, € CX(G(A®P) x J,(Qp)) is acceptable,

tr (™ x ¢ luHo(Igy, L)) = |ker'(Q,G)| Y (G, Gr)STI (¢1L) (5.12)
Gi

where the sum runs over the set E(G) of elliptic endoscopic triples (G, Sit,Mit)-

Let us explain the constants «(G,Gy). By definition «(G,Gy) = 7(G)7(G7) ~Out(Gx, sm, )|~
Recalling that n is odd, |Out(Gg, si,n7)| equals 1 for any 7@ = (n) or (n1,ns). (It equals 2 if n were
even and 77 = (n/2,n/2). cf. [Rog90, Prop 4.6.1] in the case of unitary groups.) Now it is easy to
compute, by using (3.3),

B 1, if #@=(n)
L(G; Gﬁ) - { 1/2, if 7= (n1,n2)

5.4. Stable trace formula for L?-automorphic spectrum of G(A). Keep the convention from
the last subsection. In particular we use the same Haar measures and the same transfer factors as in
§5.3.

Denote by Re,,¢ the regular representation of G(A) on the space L*(G(Q)\G(A), X:Lé) consisting
of those functions G(Q)\G(A) — C which transform under Ag o by X:lé and are square integrable
modulo Ag oo Let 70 € Taise(G(R),£Y). For any ¢ € C®(G(A™)), let (™) be a A(:,)& -
transfer of ¢>°. Denote by gbfrgo the product of ez(As) with gbﬁgo given by (3.13). Then (;5;720 is a
Al ~)gﬁ—transfer of ¢ro . (We have to multiply e;(As) due to the difference of transfer factors. See
formula (5.8).) The following proposition is an analogue of Proposition 5.5, which is derived from
the trace formula for compact quotients by stabilizing geometric terms after Langlands and Kottwitz
([Lan83], [Kot86]; especially theorem 9.6 of the latter). Note that Proposition 5.6 is unconditional, as
is Proposition 5.5. Although the stabilization of Langlands and Kottwitz relies on the fundamental
lemma and the transfer conjecture, these were settled by a recent proof of Ngd ([Ngo]), building on
work of Waldspurger and others.

Proposition 5.6. The following equality holds, where the first sum is taken over the set of isomor-
phism classes of m € Trr(G(A)) and the second is over the set E(G) of elliptic endoscopic triples

(G, s,m7)-

tr Ree (6% - o) Zm r (6% - frg ) = Y UG, G) STE((¢7) - ¢l ) (5.13)

G

Remark 5.7. The number | ker!(Q, G)| shows up in the formula (5.12) but not in (5.13). This comes
from the fact that our moduli varieties Shy over F are |ker'(Q,G)|-copies of the usual canonical
models of Shimura varieties. See [Kot92b, §8] for explanation.

Remark 5.8. Proposition 5.6 will not be used in this paper until the proof of Corollary 6.5.

5.5. Definition of n-Red%. In §5.5 we will freely use notation and terminology from [Shil0], especially
section 6 there.

For each (H,s,n) = (G, s7,m7) in EU(G), recall that there is a finite set Egﬁ(Jb, G; H) consisting
of (isomorphism classes of) triples (Mg, sg,ng). Such (Mpy, sg,ng) is a G-endoscopic triple for Jj.
The Q,-group My is equipped with a Qp-morphism vy, : D — Mg and a finite set Z(My, H)
consisting of certain Q,-embeddings My — H whose images are Levi subgroups of H. We will use
the normalization of transfer factors A(-, )%b and A(, )M as in [Shil0, Eqn (8.6)]. The constant
cyvy € {£1}, assigned to each (Mpy, sH,nH), may be evaluated as in section 8.1 of the same paper.
As the numbers ¢y, intervene in the definition (5.32) of d)ﬁ;,p, they will be included in the definition

of n-Red? (thus also Red%), which is motivated by Lemma 5.10 below.



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 37

Define n—Red% to be the composition of the following maps.

Croth(H(Q,) — @ Croth(Mu(@,)) Z" Groth(My(Qy)) % Groth(Jy(Qy)) (5.14)
(Mp,sg,mm)

The first map is the direct sum of the maps from Groth(H(Q,)) to Groth(Mg(Q,)) for all (Mg, sy, nm) €
SSH(Jb,G;H), where the map for each (Mg, sy, ny) is given by ®; cary, Jg(wMH)Op as 1 runs over

I(My,H). In fact, Z(My, H) is always a singleton in our case, so we will simply write Py, for
P(ivpr, ). (See Case 1 and 2 below.) As for 7y ., an explicit definition is given below case by case.
This map 7 . should be seen as the functorial transfer with respect to the L-morphism 7. Not-

® is the “Jacquet-Langlands” map on

ing that M(Q,) is a product of general linear groups, LJ%
Grothendieck groups defined by [Bad07] (cf. §2.4).

Define Red% by
Red%(myp) := n-Red’ (7)) ® 511)/5,})).

Case 1. 1 = (n), i.e. (H,s,n)=(Gp,1,id).

In this case ESH(J;,, G; H) has a unique isomorphism class represented by (M, sg,ng) = (M, 1,id).
So we may take 7y = id and 7y . = id. In that case car, = ep(Jp) ([ShilO, Rem 6.4]). There are
isomorphisms

GQy) =~ QF x GL,(Fy) X Jlis1 GLn(Fuy,)
My(Qp) =~ QF x GLpp(Fu) X GLy(Fy) X s GLn(Fu,)-

An analogous decomposition for J,(Q,) was given in (5.4). The set Z(My, H) contains a unique
element, which may be represented by the Levi embedding i,z : M, — G which is the obvious
block diagonal embedding on the F,,-component with respect to (5.15). (The G(Q,)-conjugacy class
of iy, is canonical.) Let h € [0,n — 1] be the integer corresponding to b as in (5.3). We see that
ep(Jp) = (=1)"~"=1in view of (5.4). If m), = 7,0 @ (RiTw,) € Irr;(G(Q,)) then it is clear that

(5.15)

n-Red’ () = (=1)" "7, 0 @ n-Red" """ (1) ® (Rin17w,)- (5.16)

where n-Red™ ™" is defined in §2.4. An analogue of (5.16) holds for Red’ (m,) if n-Red™ " is
replaced by Red" ™" on the right hand side.

M- ﬁ = (nh n2)~ ie. (Ha S, 77) = (Gnl,n27 Snl,ngannl,n2)~
In this case we have the following isomorphisms over Q.

G ~ GL; x Hi21 RF,, /0,GLn

H ~ GL1 X HiZl Rsz‘ /Qp GLnl,nz

Mb ~ GL1 X RFw/QpGLnfh,h X Hi>l RFwi/QpGLn (517)
Jbp =~ GL; x RFw/Qp (D;'w,l/(nfh) X GLh) X 1_[i>1 RFWi/QpGL"

Consider the following two groups which will be viewed as Levi subgroups of H via the natural block
diagonal embeddings, which are to be denoted by ins, , and ipgy, ,-

MH,l = GL1 X RFU,/QPGLnfh,thLz,TLQ X Hi>1 RF'[ui/QpGLnlanQ (lf h 2 TLQ)

. 5.18
MH,Z = GL1 X RFw/QpGLnfh,hfnl,nl X Hi>1 RFuxi/QpGLnl7n2 (lf h Z nl) ( )

The dual groups are described as follows. The L-groups are given by an obvious action of Wy, on the
dual groups. Namely Wg, permutes the index sets Hom(Fwi,@p).

G c* x Hi>1 GLn(C)Hom(F“’i’@P)

H = € x [liz; GLayu(C)mFen@)

M, = C* x GLy_pu(C)llomFely) X [Io1 GLy(C)Hom(Fu;8y) (5.19)
My = CF X GLyphongns(©1mFeT) T, GLy, y (C)Hom(FurTy)

Mgz = CX X GLypponym (QFmFT) s [ GLy, , (C)HomFuy @)
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We give the maps ng ; ]\/ZH,j — ]\/4:, (7 =1,2) so that ng ; is the identity on C* and the obvious
block diagonal embedding on the F),,-component (¢ > 1). Extend ng 1 to 1 : LMH,l — LM, by
sending z € Wy, to

(@(2) N mm2) (e (2) ), () ), o (2) ), (o(2)h ), o (2) 7)) ) s 2.
Similarly define 72 : LMH,Q — LM, which maps z € We, to

(@(2)Nmm2) (@(2) 1) o () ), o (2) =), (0(2) ), o (2) 7)) ) s 2,
With respect to (5.19), let

sargy = (1, (1,1, =1),(1,1)) € Z(Mu1), Sy, = (1, (=1, -1,1),(1,1)) € Z(Mp).

Recall that the sets £ (M, G; H) and £ (J,, G; H) are defined in [Shil0, §6.2]. Certainly (M ;, Say - Nm,5)
(j = 1,2) belong to £ (My,G; H). (In general £ (M, G; H) has other elements, but they do not
concern us since they are not contained in £ (.J,, G; H).) Using the fact that J; has D;ml/(nih) X
GLp(Fy) in its product decomposition, it is easy to check that

@, if h < ng,
ER(J,, G H) = {(Mp1, 80y, mm.1) } if ny < h<ny, (5.20)
{(MH,jaSJMH,jvnH,j)v ] = 172}7 if h Z ni.

(In order that (Mg, sar,,,ne) lies in £ (J,, G; H), the element sy, should transfer to J, = M, via
ng so that it is either +-1 or —1 in the GL,_4(C) block of the F,,-component, since Dp, 1/(n—p) is &
division algebra.) From now on, whenever we consider (Mg j, sy, ;,Mu,j), we assume the condition
on h of (5.20) so that the triple belongs to £ (.J,, G; H).

Let Iay,, « “Mp; — “H (j = 1,2) be the obvious embedding, except that FZVMH)2 on the F,-
component is given by

(AlaA27A3) S GLnfh,hfnl,nl — (A3> ( [(1)1 122 )> € GLnl,n2~

Then one can directly check that TMb : LMy, — G can be chosen to be a é—conjugate of the obvious
embedding so that the following commutes.

In

Lpg, —s L (5.21)

ﬁHT WT
l]\/IH_j

LMHJ‘ H'L]—[

For each j € {1,2}, the set Z(Mpy,;, H) has a single element, which may be represented by the Levi
embedding 4,7, ; : My ; — H. The parabolic subgroup Py, , C H is generated by My ; and upper
triangular matrices of GL,,, p, at the Fy,-component.

We are about to define g ;. : Groth(Mg ;(Q,)) — Groth(M,(Q,)) and give a relevant trace
identity, in a way similar to Case 2 of §3.4. Let u := w|g. Define a unitary character X:,j My ;(Qp) —
C* such that

X;j(}\) = wu()\)*N(nl:’n&)’
+ @ (Ney/m, (det((guagua) @ gl5™)) ) G =1,
Xuwj (G, 15 w25 Gw,3) = _ (5.22)
u,j ’ ’ ’ e(n—na) e(n—ny) ;
@y (Nr, /5, (det((gw,19w,2) w2 )) ), i=2,
Xj,j(gwi;l’gw'i72) = L

where (A, (Gw,1, 9w,2, 9w,3), (Gw;,1, Gw;,2)) denotes an element of My ;(Q,) with respect to (5.18). For
each ¢5 € C2°(My(Qp)) and mas,, ; € Irry(Mp ;(Qp)), define

¢£/1H,j = (QS;)QJ 'Xi,ﬁ and ﬁHﬁj’*(W]\/fH,j) = n'indgf (ﬂ-MH,j ® XJur,j) (5.23)
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where @); is any parabolic subgroup of M} which has My ; as a Levi subgroup. As in §3.4, we can
normalize A, (-, )%21 with respect to 77y,; so that ¢]¥H’j is a Ay(,, -)%Ld—transfer of ¢5. Note that
N, i« is independent of the choice of ;. We have the following identity analogous to (3.10). The

first equality holds by definition and the second by Lemma 3.3.(ii).

tr oy, (679) = tr (T 5 @ X ) (65)9) = tr (s (Tar,)) (63) (5.24)
The next job is to compute cpr,, ; € {£1}. We use the result and notation from [Shil0, §8.1]. Note

that our s, n, is the element s € Z (H) of that article. We may take the decomposition s = s1s with
51 € Z(H)SQn/Q) and s, = 1. Tt is easy to compute v, as in [Shi09, Ex 4.3]. From this we see that

i Z(]\/ZHJ)GB“I(@P/QP) — C* can be described as

C* x (((Cx):i)Hom(Fw,@p)x Hi>1((CX)2)H°m(sz"@p) _, X
2Zwa, ifj=1, (5.25)

(Za (zw,lu Zw,Zu Zw,S)» (Zwi,ly Zwi,Q)) = { ZZw72, lf] —9.

(Note that the number of copies of C* may be smaller in (5.25). Namely in case h = n —n; for
j €41,2}, (5.25) is correct after erasing the corresponding copy of C* from the F,-component.) Now
[Shil0, Eqn (8.7)] tells us that

My - Jy), ifj=1,
CMy ; :ep(n]b)/il(52)<’/l§w 9, s1) :{ (o), i ] (5.26)

—ep(Jb), ifj=2.

Of course we know that e,(Jp) = (—1)"~h=1,
Recall the definition of n—Redehn2 from (5.14). In the current case, we see from (5.20) and (5.26)
that n-Red’, is equal to

ni,n2
0, h < ng,
ep(Jb) - LI 0 Tty © J%;H)lv n2 < h<mn, (5.27)
ep(Jo) Y5 (1) LI 0 fiagy, 0 J};IXIij, h>ny.

We set up notation for Lemma 5.9. Let 7y, be any representation of Irr;(H(Q,)) and set maz,p, :=
THp ® x;,u, where X‘(-;;u, is defined in Case 2 of §3.4.5 Put 7, := 7. (7 ), or equivalently
Tp 1= n-indg (Tap)-
Here H is viewed as a Levi subgroup of G (over Q). Write
TM,p = Tp,0 @ ® (TMwi1 @ T w;,2) 5 Tp = Tp,0 @ ® Tw,
i>1 i>1

where 7,0 € Irr)(Q)), Tarw,; € Iri(GLy, (Fy,)) and m,, € Groth(GL,(Fy,)). (As a parabolic
induction, 7, may be reducible.) Let us write the following Jacquet modules as finite sums of
irreducible representations.

GL, GLy
ooy (M) = Zk:%l Bows  Jpel | (Tawz) = Z];/B’“ ® Pea- (5:28)
Define X1 (h, 7m,p), Xo(h, 7r,p) € Groth(Dj 1) X GLn(Fy)) as follows.
_ Yok Ldn—n(og1) @ n-ind(o,2 @ marw,2), if b > no,
Xi(hmrp) = { 0, if h < no,
_ Yok LIn—n(Br) @ n-ind(Br2 ® Trw,1), if h>nq,
Xo(h mip) = { 0, if h < ny.

6There is no Levi subgroup M in this subsection. The notation s p is justified by the fact that BC(mas,p,) should
appear as the p-component of ITj; of §6.1. (The same holds for BC(ng ) and IIg.) The use of M in the subscript
is intended to reflect the fact that m, is parabolically induced from mps . (In contrast, mp is viewed as an endoscopic
transfer of wg p.)
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It is immediately checked that (5.29) below provides an equivalent definition for X (h, 7 ) when
h > ng and Xo(h, mH p) when h > ny.

Xi(hyp) = weindgpr (n—Red”_h’h_"2 (Tpw,1) ®7rM,w,z)
Xo(h,myp) = n—indgfzinl " (n—Red”fh’h*”1 (M w,2) ®7TM7w71> (5.29)

Lemma 5.9. Put ourselves in Case 2 as above. The following hold in Groth(J,(Q,)).
(i) H‘Redi(ﬂp) = ep(Jo) " mpo @ (X1(h, mrp) + Xo(h, T p)) @ (Ris17w,)-
(i) n-Red;, ,,, (mr1,p) = ep(Jo) - mp0 @ (Xa(hymrrp) = Xo(hy 1)) © (Qis17m0,)-

Proof. We will present a proof when h > ni. The same proof works in the other cases if the terms
involving h — ny (resp. h —ny and h — ny) are disregarded in case ny < h < ny (resp. h < no).
The proof of (i) goes as follows. Recall from (5.16) that

n'Rede(Wp) =ep(Jy) - M0 @ X @ (517w, )
where X € Groth(Dy 1/ (nn) X GLn(Fy)) is described as

X n—Red"_h’h(Ww) =LJ,_pn (JGL" (n-ind(mps0,1 ® 7TM,w72)))

PP n
— _1 GLp, GL"l _1 GLp, GL”2
= LJun <n-“1dGLhn%n2 (ijihﬁ_nz(WALUAl) ‘Hlmdc:Lh,nl,n1 J}jzhﬁ_nl(ﬂﬂ4mn2) +Y

The last identity is implied by the geometrical lemma ([BZ77, p.448]), where Y is a certain linear

combination of irreducible representations of GL,_p(F,) X GL,(F,) of which each GL,,_}(Fy)-

component is a full parabolic induction from a proper Levi subgroup. It follows from [Bad07, Prop

3.3] that LJ,_p,(Y) = 0. Therefore X = X1(h,7np) + Xa(h, 7a,p) and the proof of (i) is complete.
To demonstrate (ii), we use the identity

Ty © J;Iﬁ)H (71,p) = nrind}p o J{;%;H (Tarp) (5.30)

»J

which is verified from the definition of 7y, ; . By (5.27) and (5.30),

2
nRed’,, (nrp) = ep() ST LI o neindM o T (mar,)
j=1
= ep(fp) Tpo R X ® <® (n-ind(mas,0;1 ® WM,wi,g))>
i>1
where X € Groth(Dy 1/(n—ny % GLn(Fy)) is given by
. CLuim . GLy, n

LJy_po (n—mdzmm2 o Jngh’hfwm —n-ind ,_, o JPSf,n;ihm) (TMw1 @ Tarw2).  (5.31)

Plugging in (5.28), we obtain
X = LJ(ag,1) @ n-ind(ak2 @ Tarw2)) — Z LJ(Bk,1) @ n-ind(masm,1 @ Br,2)

k
which is nothing but X1 (h, 7gp) — Xo(h, 7w ).

k

O
5.6. n-Red and ¢

n
Ig,p*
representation-theoretic operation Red%. Lemma 5.10 is a key input in the analysis of the p-part of
representations in the proof of Theorem 6.1.

Lemma 5.10. Let (H,s,n) = (G, s7,n7) € ENG). For any 7y, € Groth(H(Q))),
tr 7TH,;)(%Z;,;;) =tr (Red%(ﬂH,p))(¢;)~

(Here test functions are Q;-valued.)

The following lemma shows that the construction of qﬁf‘g)p is “dual” to the
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Proof. We freely use the results and notation of [Shil0, §6.3]. Recall that by definition (see the formula
above Lemma 6.6 of [Shil0])
qs?g,p = Z CMpy - 52“ (5.32)
(Mp,su,nm)
as functions on H(Q,), where the sum is taken over SSH(J(,7 G; H). As we noted earlier, Z(My, H) is
a singleton, so we chose to write 52/[” rather than (EZ])VIHJ with ¢ € Z(My, H). By [Shil0, Lem 3.8],

e (BMH) = tr (J%FH (WH,p)) (OM). (5.33)
Here ¢Xf € C2°(Mp(Qp)) is a Ap(:, -)ﬁH—transfer of 9 := ¢l - S}D/(ib) € C(Jp(Qp)). The normal-

ization of [Shil0, (8.6)] is adopted for transfer factors, namely

AP(VMH’(S)JA;)[H =ep(Jp) - AP(’YMH?’YO)%I;I (5.34)

if 0 and 7o are transfers of ypr,, € My (Q,).
We claim that the transfer from ¢2 to (Z)S/IH factors through as

$p € CX((Qy)  ~ ¢ € CZ(M(Qp)) ~ ¢ € C2(Mp(Qy))

in the sense that if ¢} is a transfer of ¢) via A, (-, )]J\/”Ib = ¢p(Jy) then )7 is a Ap(., -)%L-transfer
of ¢. To prove the claim, we check the transfer identity for orbital integrals on regular semisimple

elements. Since ¢/ is a A, (-, -)']{}’[H—transfer of ¢,
Ji P
OMa (@) (9Mrt) = Ay (yaryy, )1, - 03" 4 (D) (5.35)

for any (Jp, My )-regular v, and its transfer §. (Recall that a stable conjugacy class is the same as
a conjugacy class in the groups J,(Q,) and My (Q,) as well as M(Qp).) On the other hand, as ¢5

is a transfer of ¢, Lemma 2.18.(i) of [Shil0] tells us that O%b((@p)(qﬁ;ﬁ) =ep(Jp) - Oé’]b(Qp)(gég) if there
exists 6 € J,(Q,) matching ~o and 05 %) (¢7) = 0 if else. Together with (5.34) and (5.35), the last

fact implies that gbg/[H is a Ap(-, -)%’;{—transfer of ¢ as claimed.
It follows from (5.24), Lemma 3.3 and [Shil0, Lem 2.18.(ii)] that for mas, ,» € Irr(My(Q,)),

(@) = 0 (T (Tatip)) (6) = 0 (L (e (i ) (6)
tr (LJ(ﬁH,*(WMH,p)) ® 5;/(1)) (¢1,)-

(When H = G,, the first identity holds trivially since 7y . = id and we may take (bIJjWH = gb;.) The
identities (5.32), (5.33) and (5.36) complete the proof.

(5.36)

O

6. COMPUTATION OF COHOMOLOGY

We keep the notation and assumptions from §5. The prime p, the place w of F’ and the isomorphism
tp are fixed in §6.1 (they have been fixed soon after Lemma 5.1), but allowed to vary in §6.2 under
certain constraints.

6.1. Cohomology of Igusa varieties. The main goal of this subsection is to compute part of the
cohomology of Igusa varieties after quadratic base change. The main ingredients are the stable trace
formula for Igusa varieties and the twisted trace formula.

Choose the character @ : Wg — C* (introduced in §3.1) such that Ramg(w) C Splg,p+ . (This
is possible by Lemma 7.1 that will be proved later but does not depend on this section. Recall that
the last condition on w is assumed throughout §4.) Let = be the algebraic representation of (G, )c
given by ;€ as in §4.3. (Put ;€ in place of ¢ there.) Let IT = 1 @ IT' be an automorphic representation
of G,(A) ~ GL1(Ag) x GL,(AF). Assume that

e [I~1lo#,

e Il is generic and ZE-cohomological (in particular, the central characters of IT and ZV coincide
on A(Gnﬁ,oo)a

e Ramg(Il) C Splp,p+ g
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where Ramg(IT) denotes the set of finite primes p where II is ramified. By Z-cohomological we mean
that there exists k such that H*(Lie G, (R), K/, ® Z) # 0, where K/_ is as in §4.3. In particular
11 is isomorphic to IIz as in §4.3.

Recall that Ramp/q is contained in Splg/p+ o by our previous assumption in §5.1. Let Sk, be a
finite set of places of Q such that

RamF/Q U Ram@(H) U Ram@(w) U{p} C Sin C SplF/F+,Q (6.1)

and put S := Sgp U {o0}.
‘We will consider two cases for II.

Case ST. (“stable”)
Assume that II is cuspidal.

Case END. (“endoscopic”)

Let my, mg € Zsq be such that m; > mg and m; + my = n. (Recall that n € Z>3 is odd.) Let II;
(i = 1,2) be a cuspidal automorphic representation of GL,,,(Ar) and =; be an irreducible algebraic
representation of GL,,, (F ®g C). We will set ¢ := ¢ ® w¥(m1:72) and

My =g @I @, = (g (g,

HMJ‘ = Hz ® (w o NF/E o det)e(n_mi), HM = w ® HM71 ® HM72.
In addition to the previous assumptions on II, suppose that (for ¢ = 1,2)
(i) Iy ~ 1, 0¢,

(i) Ym,vn, = ¥ /u,

(iii) II; o0 is cohomological for an irreducible algebraic representation Z; and
By (i) and (ii), ITz is a #-stable cuspidal representation of G, m, (A). Denote by mrr , € Irri(Grny s (Qp))
the unique representation (up to isomorphism) such that BC(ymg ) ~ Iy, ,. Denote by g the dis-
crete parameter for Gy, m, (R) such that BC(¢p) ~ Iy o (with the notation BC(¢y) as in Remark
4.4).

Observe that IT ~ n—indg;1 s (ITpr). (The last parabolic induction is irreducible; for general linear

groups, any parabolic induction of a unitary representation is irreducible.) Let 119, denote the twist
of ITps by a character of Ag,, . o (via the canonical surjection Gy, m,(A) = Ag,, ., .00) such that

1Ty, is trivial on Ag,, .. .- Then it is easy to see that

I~ n-indgr (I9)) @ X, ¢ (6.2)

Let us define certain parameters in (Case END). For i € {1,2}, let b, , > --- > 0., (0 €
Homg(F,C)) be the integers parametrizing the highest weight attached to Z; and put

mi+1—2j , , 5

MELTH =y ey (63
where § is the odd integer such that we.(2) = (2/Z)%2. (The numbers ’yf,’j should be thought of as
parameters for IIys,;.) Recall that we defined a(4€)s,; (0 € ®F, 1 < j < n) from ¢ in (3.18). For
any o and j < n, we have a(4€)s,; > a(4€)s j+1. Since oo >~ n-ind(ITx7,~0 ), it is easy to see that for
each 0 € O,

i qi
Ba,j = _ba,miﬂﬂ +

{a(u€)oy:1<j<n}={y;:1<j<m}[[{n5,: 1 <j<ma}
Thus there is a unique partition {1,...,n} = W2 ][ W2 with the following property for each i € {1,2}:
a(u)er = ’yf,,j for some j € [1,m;] if and only if k € Wi.

We are done with describing the two cases for II. Let us set up more notations before stating the
main result of §6.1. For any R € Groth(G(A%) x G') (over Q;), where G’ = G(Ag,, ) x Gal(F/F) or
G' = G(Agy\(p}) X Jb(Qp). Define

R{II°} :=) "R{r®} and R[I®]:=) R[r"] (6.4)

s
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where each sum runs over 7 € Irr}" (G(A®)) such that BC(y;7%) ~ I1°. (The right hand sides of (6.4)
are defined as in §5.2.) An easy observation is that H(Sh, % ){I1°} and H.(Ig,, % ){I1°} are virtual
admissible representations of the corresponding G’. Let BCr : Groth(G(Ar)) — Groth(G,(Ar))
denote the Z-linear extension of the base change map defined in §4.2, where T C SplF/ FrQ 1S a
finite set. (A priori BCr is defined on virtual C-representations but also defined on virtual Q;-
representations via ¢; : Q, ~ C.)

Theorem 6.1. Define an integer C := | ker' (Q, Q)| - 7(G). Denote by m, € Trr)(G(Q,)) a represen-
tation such that BC(ymp) ~II,. (Such a m, is unique up to isomorphism as p splits in E. cf. §4.2.)
For each b € B(Gq,,—nu), the following equalities hold in Groth(Gy,(As,,\(py) X J6(Qp))-

(i) (Case ST) There is a constant eg € {£1}, independent of b, such that

BCy\ oy (He(Igy, ZO{I®}) = C - €0 - [t Ty, \ ) Red,, ()] (6.5)
(ii) (Case END) There are constants e1, ez € {£1}, independent of b, such that

BCisy () (H(Tg, £ (I1°)) = C ([ g ] [1<e1Red (wp>+e2Redmlm2<pr>>D. (6.6)

Remark 6.2. A priori the sign ey depends on II. The signs e; and es depend not only on IT but also
on Il and other data, at least a priori. However it turns out that ey and e; always have the same
value, as we will see later in Corollary 6.5.(ii). As for e, refer to Remark 6.3 in case mqo = 1.

Proof. In the first three paragraphs, we explain the choice of test functions to be used in the trace
formula. Choose (f™)° and S8\ (py @ any functions in A (G (A%)) and C(Gy (Asg\(p})), T
spectively. Let ¢% := BC((f")%) (resp. dgu\ip} i= BC;;(fgﬁn\{p})) as in Case 1 (resp. Case 2)
of §4.2. Set ¢>P .= qbsqﬁsﬁn\{p}. Choose any ¢, € C°(J(Qp)) such that ¢>P¢) is an acceptable
function. We construct other test functions from these.

For each elliptic endoscopic groups G for G, let ((bflg)s (resp. qS?g an\{]D}) be the A(, -)gﬁ—transfer
of ¢¥ (resp. ¢g,,\{p}) defined in §3.4. Define (f"+"2)% := ¢*((f™)®) and fgf:,n?p} C*(fgﬁn\{p}) as
in Case 1 and Case 2 of §4.4. Recall from (4.18) and (4.19) that BC; .. ((f""2)%) = (¢""2)% and

that BC}; ,, ( fg:?r‘}[p}) and ¢}; gfz\ (p) have the same trace against every admissible representation of
Goima (s py)
Let o1, , (resp. &1, ) be the function arising from ¢, (resp. §) in (5.10) (resp. (5.11)). Choose

f]f so that BC} (fg) = gbflg’p. (This is possible because BC: is surjective at p. See §4.2.) Define
FL = ei(Do) - (=1)%D(pn, 5) Y det(w. () - fer z(en) (6.7)
P
where the sum runs over ¢; : Wg — Gy (up to equivalence) such that 7jp; ~ @¢. Observe that

q(G) =n—1 (ct. (3.11)). Here =(¢p5) denotes the algebraic representation of Gy arising from £(¢5)
(defined in Remark 3.9) as in the beginning of §4.3. Recall that fg . =(,,) Was defined in §4.3. By §4.3

and the comparison of (5.11) and (6.7), it is verified that f7 and ¢1g,oo are BC-matching functions.
Put f7 := (fn)S . fgﬁn\{p} . f;@ R

Consider the formula of Proposition 5.5. By Corollary 4.7, the formula (4.21), Proposition 4.8 and
Corollary 4.14, we see that (recalling the notation A’(_) from Lemma 4.11)

tr (¢°7 ), |u H (Ig,, Z)) (6.8)

Ztr I (f™) +f Z Tgem20 (fraom)

nl n2

+ > 'MM//MHd (@710 — 1) g0 | 1Zm~ (n-de (Ihy)e(f™) o

MCG, We.|

n- md“?(%)g)

1%

where the first sum runs over f-stable (equivalently, ®~1#-stable) subrepresentations IT" of Rg,, disc,
the second over the groups G, ,, coming from elliptic endoscopic groups G, n, for G (with ny >
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ng > 0), the third over proper Levi subgroups M of G,, containing My and the fourth over ®~1#-stable
subrepresentations IT; of Rsaisc. Keep in mind that Proposition 5.5 works on the condition that
>, is acceptable. So the same condition is imposed on (6.8). However, we claim that (6.8) holds
without such a condition.

Let us prove the claim. Fix test functions outside the p-component. Fix any ¢;,, without assuming
>, is acceptable. As shown in [Shi09, Lem 6.3], there is a certain element fr® in the center of
Jp(Qp) such that ¢°°’p(¢;)(N) is acceptable for any N > 0, where (¢;)(N) (9) = ¢, (g(fr*)N). So (6.8)
is true if ¢, is replaced by (¢;)(N) (and if at the same time f;L and ¢f’g’p are constructed from (¢’p)(N)
rather than ¢;,), for any N > 0. In other words, by (4.12), Corollary 4.14 and Lemma 5.10, both
sides of (6.8) are finite linear combinations of the terms which have the form tr p((qS;)(N )) for some
p € Irr(J,(Qp)). Now the argument in the proof of [Shi09, Lem 6.4] shows that the equality (6.8)
holds for ¢>P (¢;)(N ) for every integer N, in particular for N = 0. Hence the claim is proved.

Now that (6.8) is known to be true without acceptability assumption, we may work with arbitrary
test functions d)"o*pgb;. To proceed, we divide into two cases.

(Case ST). Choose a decomposition Aj; = Azn) SAi'Isf. Af;_ as a product of normalized intertwining

operators. Set
Ay Ay Ang, A

0 "~ A0 40 " 7A0
AH AHS Ansfm AHOO

(For the definition of the denominators on the right side, see §4.2 and §4.3. By definition AOHsf =

fin

€ {+1}. (6.9)

[Toes,, Af,-) In the formula (4.14), any term involving f™ "2 may be rewritten as the trace of an
induced representation against f™, by using (4.17). This fact together with Corollary 4.14 guarantees
that trI19((f™)%) appears only in the first sum of (6.8), according to the multiplicity one result of
Jacquet and Shalika ([JS81a], [JS81b]; see [AC89, p.200] for summary), which implies that the string
of Satake parameters outside a finite set S of a cuspidal automorphic representation of GL,(Ar)
unramified outside S does not occur as that of automorphic representations of GL,,(Ar) which are
subquotients of induced representations from proper Levi subgroups of GL,,(Ar). Thus the right side
of (6.8) has the following form

o | 3 4ans (") MU+ S e =

(I1") 92118

expression 1n ) (610)

terms of fg

where (IT')¥ runs over a set of unramified representations of G(A®) not isomorphic to IT°. (Note that
(I")% = T1° implies that I, = I’ ® i:lgl is isomorphic to II by the strong multiplicity one and the
fact that II; and II transform by the same character on Ag, . Hence the first summand in (6.8) for
(1) = ¥ equals tr (IT(f™) Agr), which is the first term in (6.10).)
On the other hand, we can write tr (¢>P¢; v H (Igy,, Z¢)) in the following form using (4.5).
tr I8 ((f)%) tr (G (py 9| H (Igy, Ze){I1%})
£ X wBO()S) () (Bl H (g Z{ (7)) (6.11)

(n)S

The above sum runs over (7/)° € Trr"™ (G (A%)) such that BCO((r')%) 2 II¥. If the test functions on S
are fixed, both (6.10) and (6.11) are finite sums (as (f")* varies in % (G,,(A%))). We deduce from
linear independence of characters that

Co 4

(G () Pl H (Igy, Ze){I1°}) = 2 A9
Recall that I, ~ IIz. In view of (4.15), the construction of f7 implies that
b (T (f2) A% ) = 2(—1)7), (6.13)
On the other hand, by Lemma 5.10 and (4.12),
tr (T, () Afy)) = trump(¢i ) = truRed) (m,)(¢),) (6.14)

e (T (/) Arp) (6.12)
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Therefore if we set eg := (—1)%(%) AL /AY | then tr (D5 {p) DpluiH (Igy, Ze){I1°}) equals

Ca-eo-tr (Hsﬂn\{P} (fgﬁn\{p})AOHsﬁn\{p}) “tr LlRede(ﬂ'p)(¢;)~ (6.15)

Applying (4.12) to the places in Sgan\{p}, we finish the proof of the assertion (i). (Use the fact that
the twisted characters of non-isomorphic 6-stable representations are linearly independent. cf. [AC89,
Lem 6.3, p.52].) Obviously e is independent of b.

(Case END). We imitate the previous argument for (Case ST). By the multiplicity one principle for
Satake parameters by Jacquet and Shalika, (6.8) may be rewritten as

C
tr (6P ¢! | H (lgy, Ze)) = TG(X1 + X5+ X3), (6.16)
where X; = tr <n—indg” (T)e(f™) 0 A 4En o >
m1.me . Gml,mg( e

Xy = tr (Hu(f™™)oAf,,)

and X3 is a linear combination of evaluation against f° of unramified Hecke characters of 2" (G,, (A%))
different from xps. Note that X; comes from the last term in (6.8) in the case where the standard Levi
subgroups M of G,, is conjugate to Gy, m,. (There are |Wg, |/|Was| such Levi subgroups.) The term
Xo appears in the second summation on the right side of (6.8), namely those terms in the expansion

G 4
of Isprg(} 2

confusion, let us agree to write n-ind(I13,) instead of n—indg:;1

(fmr2) where the Levi subgroup of G, m, 1S Gy m, itself. As there is no danger of

_(19,). Define the signs (+1 or —1)

A;l—ind(n?w)g/A?l—ind(n?w)g and  Ap,, /A,

as in (6.9). Define e; := <_1)Q(G)A;-ind(r[0 )g/A?l—il’ld(Ho e Recall from (6.2) and (4.29) that there is
M M

!/

an isomorphism IT ~ n-ind(I19, )¢, under which we transport A’ e, 0 Af;. So we may rewrite

X, as

X1 = e (11Dt (") AR) = e (=D xns ((f")%) - tr (s (f§) Afy) (6.17)

whereas (4.17) implies that

I
Xy = AIQ[H . XHS((f")S) tr (Hsfin\{p}(fgfin\{p})AOHSﬁn\{p})
H
xtr (g (f ™) Al ) -t (Wi ee (f20072) ARy, ). (6.18)
By Lemma 5.10 and (4.12), we have the following analogue of (6.14).

tr (T (£ ) AR ) = tr (uRedl, (7)) (6)) (6.19)

Moreover the expression (6.7) along with (4.15) implies that, since only ¢z = ¢ in the sum of
(6.7) contributes nontrivially (where ¢ was defined in §6.1),

tr (Hoo (f21™2) AR ) = 22 - (A1, /AR, (6.20)
if we set
eg i= (=) Depn, my (Doo) (pins 8) det(wi(pr)) - (Anp,, /AT, )- (6.21)
By linear independence of unramified Hecke characters outside S, the identity (6.16) becomes, in
view of (6.13)-(6.21),

C,
tr (650, Syl (g, Z{T®}) = SF (Vi +Ya),  where (6.22)
YI = e -tr (Hsﬁn\{P}(fgfm\{p})AH%ﬁn\(m> - tr <LlRedZ(7rp)) (gb;)
Y = ex-tr (HSfiu\{P} (fgfin\{p})A%Sfin\{P}> tr (LlRed?nl’mQ (’R—H’p)) (QS;)

In view of (4.12), the above identities imply the assertion (ii).
Clearly e; belongs to {41} by definition but we only know e, € (C*)! a priori. The fact that
ea € {£1} can be proved as follows. Observe that the definition of e5 (as well as e;) does not depend
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on b. If Redfnhm2 (ma,p) = 0 for all b € B(Gyq,, —p), then (6.6) remains valid for all b with any choice

of eg, in particular we may choose eg in {£1}. Otherwise there exists b such that Redfn Loms (THp) 18
not trivial. We see from (6.6), which was proved a priori with C-coefficients, that e; € {£1} since the
multiplicities of representations on the left side of (6.6) are certainly integers.

O

Remark 6.3. Recall that the sign ey is defined in (6.21). We remark on the dependence of e on the
®~10-stable representation Iy € Irr(G,y,y i, (A)) when mao = 1. Note that €, m,(As) depends only
on the choice of transfer factors and not on IIy. The same is true for (uy, s). In fact, according to
(3.20), {un,s) = 1 with the convention of §3.6. Recall that Il = ¥y ® II; ® IIy. Using the fact that
both ¥y and II; are one-dimensional characters, it is easy to prove that A, /A%H depends only on
IT;, and not on ¥y and IIy. Therefore if II; remains the same, it is only det(w.(vx)), a factor coming
from real endoscopy, which may vary on the right side of (6.21).

6.2. Galois representations in the cohomology of Shimura varieties. We remind the reader
that we keep assuming (i)-(v) of §5.1 and that II is as in the beginning of §6.1. All results of this
subsection relies on these assumptions. (Some of them can be strengthened by the results of §7.)

In the last subsection we fixed p, w and S. Here we want to allow p, w and S to vary. (For each

pE SplE/Q\{l}7 we freely change the choice of ¢, : Q, ~ C to consider all the places w above p. Recall
from §5.1 how ¢, was chosen.) Define Z%;(II) to be the set of 7°° = 79 ®@ g, € Irr;(G(A>)) such that
R’g7l(7r°°) # 0 for some k.
e 7 is unramified,
BCO(yn®) ~ 1% and
BC(L”TSﬁn) = Hsﬁn .
Note that the definition of %, (II) does not involve the choice of the prime p. It is easy to see that the
definition of Z;(II) is independent of S, as long as S satisfies (6.1). (We use the following fact about
my, € Ity (G(Qy)): Suppose II, is unramified. If v € Unrp/g N Splp pr g then BC(ym,) ~ 11, implies
that 7, is also unramified.)

Define a representation RF(II) of Gal(F/F) and R;(Il) € Groth(Gal(F/F)) by

Rim:= Y RE@™),  R()= Y (—DFRAW. (6.23)

FOOE'%L(H) k

Theorem 6.4. Let p € Sply,q be a prime different from | and w be any place dividing p. Let ), be
as in Theorem 6.1 and write T, = Ty ® (Q;Ty,;) as usual. Then the following holds in Groth(Wg,).

(i) (Case ST)
Bi(M)lwy,, = Ca-eo- [(myh 0 ArtgHlwe, © 67 L, a(IT)]
(ii) (Case END)

- o ~1 g —may/2 .
ﬁ (H)| Cg-e1- (7Tp7é o ArtQ;ﬂWFw @1 1 Fw,ml(HM,l,w)| . |W’:j/ . ifer = eo,
l W w = _ _ _ -~ '
i Cgo-eg- (wp,(l) o ArtQ5)|WFw @1 Ly o (Mas2.0)] - |W7;1;/2 ifer = —es

Proof. For the proof we may fix p and w|p as in the theorem. Choose ¢, : @p ~ C such that L;lT

induces w. (Note that Ef (IT) for each k is defined independently of ¢,.)
Consider (Case ST). Let us take the {II°}-parts of the identity in Proposition 5.2 and apply
BCs; \ipy- In view of Theorem 6.1 the following holds in Groth(G,(Ag, \{p}) X G(Qp) x Wg,),

w

> IBC(ms )Tl [Re i (7))] = Ca- [t Mg )] Y. Manty,(Red;, ()] | (6.24)
(m')ee beB(Gq,,—n)

where the first sum runs over (1) € Irr;(G(A>)) such that (7')* is unramified and BC(y(7')%) ~
1%, Of course we are using the same 7, as in Theorem 6.1. Observe that [Manty, M(Redfl(ﬂp))] equals

n-Manty o(7p,0) ® n-Mant,,_, , (n-Red” ™" (7)) ® (®;>10-Mantg , (4, )
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by (2.2) and (5.6), if h = h(b). Proposition 2.3 implies that the right hand side of (6.24) is
Co - i Mgy ilmg) [ 0 Artghlwi, © 17 Zp, o (111)] (6.25)

By comparing the left side of (6.24) with (6.25), we see that the summands in the left side of (6.24)
which do not satisfy BC (g, \ ) ~ 1] g, {py must be canceled out. Hence the first sum in (6.24)
can be replaced by a sum over (7)*° € Z,;(II) without disturbing the equality.

In (Case END) a similar argument works, so we only indicate changes. The same identity as (6.24)
holds if we replace [Mant,, ,(Red’ (7,))] by

1
{2Mantb,u(elRedZ(ﬂ'p) + egRedanm (7rH7p))] . (6.26)

Consider the case e; = es. By Lemma 5.9, the formula (6.26) equals
e1 - n-Mant o(7p,0) ® n-Mant,_p, ,(X1(h, Ta,p)) @ (Rs>10n-Mantg , (Tw,))
for h = h(b). By (5.29), n-Mant,,_ 5 (X1 (h, 7H,p)) vanishes if h < mao. If h > mg, it equals

n-indgyt ((n'Mantnfh,hfmz (n-Red" ™2 (T 1 0)) ® HM,z,w)) ®|- |§v7§j/2
by Proposition 2.2.(iii). Proposition 2.3 implies that

Yo n-Mant, o n(X1(hwap) = (4 )l Ly (Mar )] @ |- 2.
0<h<n—1

From this the conclusion easily follows in (Case END) with e; = e3. The case e; = —ey is proved in

the same way.
|

Corollary 6.5. (¢f. [HT01, Cor VI.2.7]) Recall the assumptions made at the start of §6.2. For each
7 € Z(Il) the following are true.
(i) R’gl(ﬂm) #£ 0 if and only if k =n — 1. Similarly Elk(l_[) #0if and only if k=n — 1.
(i) eg = (=1)""! in (Case ST) and e; = (—=1)"~! in (Case END).
(i) Bvery Too € Munit(G(R), y€Y) is y&-cohomological. If Too € Munit(G(R), 4E€Y) is such that
m(u(7°) @ Too) > 0, then moo € Mgisc (G(R), y£Y).
(iv) Write Haise(G(R), u€Y) = {ml, ..., 7%} as in §3.6. Then

‘ 7(G), for all i, in (Case ST),
Z m(u(r)erl) =< 7(G), ifi<mi, e =e2, or i>my, eg=—ey, in (Case END),
w0 e, (1) 0, ifit>my, eg =€, or i<my, eg=—ea, in (Case END).

(Recall that 7(G) = 7(Gy) equals 1 or 2 by Lemma 3.1. In some cases we computed this
number in Remark 3.2.)

Remark 6.6. In the proofs of Corollary 6.5 and Corollary 6.7 we largely borrow argument from Harris
and Taylor, who attribute their result to Clozel. (Especially the second assertion of (iii) is due to
Clozel.) In doing so, it is worth remarking that the two conditions in [HT01, Cor VI.2.7, Cor VI.2.8]
are not necessary in our situation. For instance we do not assume that 7°° is generic at a finite
prime split in E. In the setting of Clozel and Harris-Taylor, the base change of 7°° is an automorphic
representation of a non quasi-split inner form of G,, and the genericity condition ensures that the
image of the base change transfers to a cuspidal automorphic representation of G,,. However, we
work directly with G,, and a cuspidal representation II is given at the outset in (Case ST), so no such
assumption is necessary. (In (Case END), use the cuspidality of II;.) We also note that we use the
strength of the stable trace formula and the twisted trace formula in order to prove (iv) of Corollary
6.5. The proof of its counterpart in corollary VI.2.7 of Harris-Taylor was simpler.

Proof. The first assertion of (i) follows from the second at once. To prove the second assertion of (i),
we argue exactly as in [HT01, p.207], appealing to our Theorem 6.4 instead of their corollary V.6.3.
(The part (iii) of Proposition 5.3 is also used.)

Note that (ii) is an immediate consequence of (i).
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Let us prove (iii). The first part of (iii) follows from [SR99, Thm 1.8] (which identifies every 7o €
it (G(R), 1;€Y) with a unitary representation studied in [VZ84]) and the computation of the Lie
algebra cohomology in [VZ84]. Observe that (i) and Proposition 5.3 imply that if m(;(7°) ®7s) > 0
then

H*(Lie G(R), Uso, Too @ 11(€)) # 0
if and only if kK =n — 1. The second part of (iii) can be deduced from this and the results of [VZ8&4].
(See [HTO1, p.207-208] for detailed argument.)

Finally we prove (iv). The argument goes in a similar way as in the proof of Theorem 6.1. Let
(fm)>° = (f")% - f5. € C°(G,(A™)) be any function such that (f")% € #"(Gn(A%)). Obtain
(from2)S (¢™)9, (¢mrm2)S, fer™, ¢ and ¢gl™ from (f)>°, as in the beginning of the proof of
Theorem 6.1, except that Sg,\{p} should be now replaced by Sg,. Define

o= (Do) - (1)1 Z@w*(@mw%ﬁ) det(ws (i) - foq,2(0n) (6.27)
P
where the sum runs over gy such that nyy is equivalent to ¢,,¢. Then f” and (;5” are BC-matching.
(See (3.13) and the last paragraph of §4.3. Refer to the paragraph above Pr0p0s1t10n 5.6 for the
definition of zb” and for the reason why ez (Ao ) appears.) Applying the results of §4.5 to Proposition
5.6, we see that
tr Rg NS ¢ (bﬂ"‘ Zm tI‘T(' ¢oo qj)ﬂ'l ) = ZL(G7G )Igjeg((fn)oc : n ) (628)
Gy
By construction of fT; ,
tr (Moo (f7 VA% ) = 2(=1)%9,
whereas
tr (HOO(f:lhnz)Ao ) = (_1)q(G)en1,nz (AOO)@M(«/m)w,,éo ,8) det(w(@m)).

Let
. tr (HOO(f:Z’m2)AOHOO) <aw*(¢H)wﬂgo’S>
T M (ZTAYL ) T ()
where f71™2 is as in §6.1. Using the convention of §3.6 we can compute that e(i) = 1 if ¢ < m; and
e(i) = —1if ¢ > my. (See (3.20) and (3.21).)
Arguing as in the proof of Theorem 6.1, we obtain in (Case ST)

tr RGaLZE{HS}(¢Sfixl ! (7257\'20) = T(G) eg - tr (Hsfin(fgfin)A%sﬁn)' (629)

n (Case END),

tr R ue{1°} (85, - dmo,) = 7(G) - (e + e(i) - e2) - tr (Isy,, (5, ) AR, ). (6.30)
The formula (6.29) along with (iii) of the corollary implies that

Zm u(m™®) ® 1) = 7(G)

where the sum runs over 7 € Irr;(G(A™)) such that BCO(yn®) ~ 1%, BC(yms,,) =~ Ilg,, and
R¢(m%°) # (0). This proves (iv) in (Case ST). Similarly, the assertion (iv) in (Case END) easily
follows from (6.30).

O

Recall that we defined integers ag(¢;€) and a(1)s,; for o € @g and 1 <4 < n in the paragraph
preceding (3.18). Let s : F' — Q; be a Q-algebra embedding. For each integer k € [1,n], set

Je(k) =k —1—a(u€)ywr — ao(uf).
(Note that j. (k1) # jx(k2) if k1 # ka.) Let W, (resp. WY) be the set of j,.(k) (resp. k—1—a(y€) 1)
for those k € [1,n] such that

e (Case ST) any k is allowed.
e (Case END) k € W1 ife; =ex; k € VV2 if e, = —eq. (The sets W1 and W2 were defined
in §6.1.)
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Corollary 6.7. ([HTO01, Cor VI.2.8]) Let k = ¢; '7. Then

CGa iwaWm

dimgerDR,n(ﬁzThl(H)) - { 0, ifw¢W,.

Proof. The proof of [HT01, Cor VI.2.8] works almost verbatim in our case, if we use the results of
Corollary 6.5 instead of [HT01, Cor VI.2.7]. We only need to consistently work with the sum over
all 7 € R,;(II), rather than with a single 7°°. For instance, the last two identities of [HT01, p.209]
become in our case

dim gr/* ) Dpp o (Rp 1 (I1) = [ker (Q,G)| Y m(u(r™®) @ k) = Ca.
moeeRy(II)
In the course of proof, we use an analogue of the part 6 of [HT01, Prop I11.2.1], which is also true in
our case. Note that our j, (k) is different from jj, of Harris-Taylor since we have put {a(¢€)s,i1<i<n

in decreasing order.

O

Corollary 6.8. There exists a (true) continuous semisimple representation Rj(II) of Gal(F/F) on a
Q,-vector space which is

e (Case ST) n-dimensional,
e (Case END) my-dimensional if e; = eg; mo-dimensional if e; = —ea,

such that for any place w of F satisfying w|g € Splg g and wlg # 1,

L r, (IL), (Case ST),
Ri(ID)|w,, = 0 N (L r a1 0) ® - |;VTZS/2)7 e1 =ey, (Case END), (6.31)
0 N (G pe Mar2,0) @ | - |;VTZ;/2), e1 = —ey, (Case END).

in Groth(Wg,). In particular, R}(I1) is independent of T and 1. Moreover, for every r : F — Q,

. w 1, ifwew?
dim gr DDR,K(RQ(H)):{ ; Zﬁw ) (6.32)

Proof. Consider the semisimplification R of (—1)"‘1]?5?71(1'[). Then R is a true representation of
Gal(F/F) whose dimension is C¢ times the expected dimension of Rj(II) in the corollary. We deduce
from Theorem 6.4 and the Cebotarev density theorem that R is independent of the choice of 7. (A
priori the construction of E;‘_l(ﬂ) depends on 7 as the PEL datum does.) Thus an obvious analogue
of (6.32) for R is true for every x : F < Q,; by Corollary 6.7. The proof of [HT01, Prop VIL.1.8] (see
Remark 6.9 below) shows that there exists a semisimple representation Ef(l‘[) such that

R = Cg - R)(II).
Define
Ry(IT) := Ry(I1) @ recy,, (1/J)|Ga1(F/F)

where rec; ,, (1) denotes the continuous l-adic character Gal(E/E) — GL1(Q;) corresponding to 9°
via class field theory. (See [HTO01, p.20].) The identity (6.31) for each w follows from Theorem 6.4.
The last two assertions are easy to see. |

Remark 6.9. When importing argument from the proof of [HT01, Prop VII.1.8], the two conditions in
that proposition are not necessary for the same reason as in Remark 6.6. In the proof of proposition
VII.1.8, the use of corollaries VI.2.7 and VI.2.8 of Harris-Taylor can simply be replaced by the use of
their counterparts, namely Corollaries 6.5 and 6.7.

In (Case END), define
Wii={k—1-1b

L

ln’k:lgkﬁmi}.
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Corollary 6.10. In (Case END), there exists a continuous semisimple representation
where i =1 if e; = e3 and i = 2 if ey = —ea, such that for any place w of F satisfying w|g € Splg/q
and w|g # I,
(Rl (W)lwe,] = [0 Zns, oy (i)
and for every k : F — Q,
. w 1 |1, fwe W,i,
dim gr* Dpg, . (R} (II)) { 0, ifwd W,

Proof. Define R (I) := Rj(I) ®recy,, ((wo Np/p)<"~™) @| - |("=m)/2) "where || : Aj/F* — RZ,

is the modulus character. With this definition, the current corollary is easily deduced from the previous

one. As for the Hodge-Tate numbers, we use the fact that

e(n—m;) -0 —(n—my)
2

which is easily seen from the discussion in the paragraph preceding (6.2). (Il

WE = {w+ cw e WO,

Remark 6.11. We end this section with a remark on generalization. Regarding the results of this
section, it is natural to ask whether one can work with more general II than those considered in (Case
ST) or (Case END). (We restricted ourselves to these two cases since they are enough for the purpose
of proving our main results in §7. We have not discovered a promising way to strengthen the results
in §7 by considering more general II.)

The method of this paper mostly works if II is induced from a cuspidal automorphic representation
P ® (®1_11;) of Gz(A) for 7 of any length r where each II; is §-stable. For instance, we can define
EI(H) in the same manner and prove analogues of most results of §6.2, including Theorem 6.4. A
drawback is that we have less control over the sign factors such as eg, e; and es, which show up in
the twisted trace formula. (Compare with Corollary 6.5.(ii) and Lemma 7.3. It is expected that the
sign factors would be precisely computed by means of the Whittaker normalization of intertwining
operators as in [CHLb]. For instance, one would be able to compute the sign of the intertwining
operator of our Lemma 4.11.) Apart from that, there is no new difficulty other than complication in
book-keeping. We have pursued only the case r < 2 mainly because that is enough for our application
to the construction of Galois representations.

We have not tried to deal with the case where II is induced from a discrete but not cuspidal
representation of Gz(A). This case may present new difficulties and the computation would be more
complicated. We merely remark that Corollary 6.5.(i) is not expected to be true in that case.

7. CONSTRUCTION OF (GALOIS REPRESENTATIONS

In this section we establish some instances of the global Langlands correspondence and prove the
local-global compatibility as an application of our computation of the cohomology of Shimura varieties
in §6.2.

Let L be a number field, I’ a finite soluble extension over L and IT! an automorphic representation
of GL,(AL). We frequently write BCp, 1, (II') for the base change lifting of IT" in the sense of [AC89,
Ch 3].

7.1. Constructing Galois representations under technical assumptions. Let E be an imagi-
nary quadratic field, F' be a CM field, and F'* be the maximal totally real subfield of F'. Let m € Z>s.
Let I1° be a cuspidal automorphic representation of GL,,(Ar). Consider the following assumptions
on (E, F,11%).

F=FEF*

[F+:Q] >2

Ramp/q U Ramg(I1°) C Splp/pr g

(HO)\/ ~ HO oc

1%, is cohomological for an irreducible algebraic representation Z° of GL,,(F ®qg C).
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Let us associate highest weight integers (ay1 > -+ > ay.n) to 2%, where o runs over Homg(F, C).
For 1 <k <m, let

Jo(k) =k —1—asp. (7.1)
If m is even, assume in addition that
o there exist op € Homg(F, C) and an odd number k such that ag, x > oy kt1-
If the above assumption is satisfied, we will say that Z° is slightly regular (at og). If Z° is slightly
regular at og then it is also slightly regular at o§ since (I1°)¥ ~I1° o c.
If m is odd, set
n:=m, II':=0° and Z=':=Z°
If m is even, set
ni=m+1, II;:=1° and My, :=11°® (wo Ng/p o det)
and choose any algebraic Hecke character Iy = I 2 : A; /F* — C* which satisfies the following.
[ RamQ(HM,g) C SplF/F+,Q7
o Il oIlf 5 =1 and
o It = n-ind(IIpz1 ® Hpz2) is such that H})o is cohomological for an irreducible algebraic

representation =!.

Allow m to be odd or even. Let us fix an embedding 7 : F — C. Choose a PEL datum
(F,*,V,(-,-),h) as in Lemma 5.1 (in particular dimr V = n) and write G for the associated group.
Observe that the assumptions (i)-(v) in §5.1 are verified. Choose a character @ : Ay /E* — C*
as in §3.1, namely w has the property that w|syx is the quadratic character for £/Q coming from
class field theory. Let ¢ denote the odd integer such that w.(2) = (2/%)%/? (using the identification
(E®gR)* ~ C* via 7|g). In fact we choose w as in the following lemma.

Lemma 7.1. The Hecke character w : Ay, /E* — C* can be chosen so that

e w|yx 1s as described above,
e 0 is sufficiently large,” and
e Ramg(w) C Splp/p+ -

Proof. Tt is standard that @ can be chosen to satisfy the first two conditions. If Ramg(@) ¢ Splp/ -+
let R be the set of primes ¢ € Ramg(w) which are not contained in Splp/p+ . By our initial
assumption, such ¢ must be inert in E. Suppose that there exists a continuous character w® :
A} /E* — C* such that

e @ is unramified outside Sply/p+ o U RU {oc},
o w2|o§q = wq|ogq and @) (q) = 1 for each ¢ € R,
o w) =1and @[y« = 1.

Then w/w" is the desired character of the lemma.

It remains to prove that w® as above exists. Let T' (resp. S) denote the set of places v of E such that
v|g € Splp, p+ gUR (resp. v|g € R). Define UToteet .= [To¢r, vpoo Op, and Us == [],c5 OF, . Choose
a sufficiently small open compact subgroup Up\s C AE,T\S so that (UTU{‘X’}UT\SUS) NE* =(1).
(This is possible since |O}| < cc.) Define a finite character @’ on (U7} Up\ gUsE*)/E* so that
@'|us = wlus and @' is trivial on UTY{} Uy, g. Tt is elementary to check that @’ extends (uniquely)
to a finite continuous character on

(UT U gAY gEXLAXEX)/E*,

which is an open subgroup of Aj,/E*, so that w’|EOXOAX =1 and w;(q) = 1 for every prime ¢ € R.

Finally we extend this character to A% /E* to obtain a desired .
O

"We included this condition on § just in case, but later realized that it was not used in the later argument.
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The following lemma is an exact analogue of [HT01, Lem VI.2.10] except that the condition (iv)
is new. This additional condition is guaranteed by an argument which is very similar to the proof of
Lemma 7.1. Thus we omit the proof of Lemma 7.2.

Lemma 7.2. Let IT' and Z! be as above. (Allow m to be either odd or even.) We can find a character
¢ AR /E* — C* and an algebraic representation {c of G over C satisfying (i), (i), (iii) and (w)
below.
(1) Ym =¥°/Y,
(ii) B! is isomorphic to the restriction of 2 to (RpgGLy) Xq C, where E is constructed from &c
as in §4.3,
-1 _ ¢
(%11) &C'ono =S, and
(iv) Ramg(¥) C Splp/p+ -
Moreover if | splits in E then (for any choice of ;) we may require that ¥ satisfy the
following as well as (i)-(iv).
(v) ¢O§ =1 where u is the place above | induced by 1; '7|f.

Suppose that a prime [ and ¢ : Q, = C are fixed. Choose £c and ¢ as in Lemma 7.2 and put
ourselves in the situation of (Case ST) or (Case END) of §6.1, according as m is odd or even, by
setting £ := Lfl&c and II := ¢ ® II'. These data prepare us to run the argument of §5 and §6.

We need another lemma before stating results on Galois representations. If m is even, consider the
numbers by ; and 7, ; defined in §6.1. Thus the numbers {b} ;} correspond to the highest weight for

=' = 2% and a, ; = b} ; for all ¢ € Homg(F,C) and 1 < j < m. Moreover,

’Yclf,j - ’Y;,j+1 = (bclf,j - b<1f,j+1) +1=(a5; — aojt+1) +1

where the first equality follows from (6.3). As Z° is slightly regular, there exist o¢ : F' < C and an
odd k such that as, r — Ggg,k+1 = 1, which implies

1 1
’yao,k} - 70’0,]9-&-1 > 2.

Since = is also slightly regular at o§ as we observed before, it may be assumed that oo € @E without
loss of generality. (Recall that og € ®¢ is equivalent to oo|g = 7|.) Let x and X’ be algebraic Hecke
characters of GL1(Ar) such that xx¢ = 1 and x’'(x’)¢ = 1. Denote by ¢,,c, € Z the integers such
that xo(2) = (2/2)% and x/,(z) = (z/Z)% for each ¢ € Homg(F,C). We are always able to choose x
and Y’ such that

’Y;o,m, > Coy Vzlro,m—k > oy > 7io,m—k+1

and for all o € <I>('£ different from oy,
1 1
’YU,m > Co, ’YU,m > C:T'

Lemma 7.3. If m is even, suppose that x and X' are chosen as above. Then in Theorem 6.1, we
have es = ey for either lls = x or Iy = x'. It is independent of the choice of 7 : F — C (which was
fized in §5.1 and remained to be fixed in §5 and §6) whether Iy = x or Iy = x' works.

Proof. By Corollary 6.5.(i), e; = (—1)""!. By Remark 6.3, the sign ey depends only on the factor
det(ws (@) € {1}, where g is by definition the discrete L-parameter such that

BC(‘)OH) = ¢H,o<> & Hl,oo 02y H2,<><;~

To prove the first assertion, it suffices to show that det(w.(pg)) has different signs for II; = x and
II; = x'. Let us compute det(w.(¢p)) using the explicit description of w,(¢g) in (3.19). We adopt
the notation of §3.6 so that for each o € ®F, ’y;’j =7()o,j for 1 < j <m and v(&)omt1 = V2

o,1°

If I, = x then for every o € ‘I’E,

'Y(f)a,l > > ’Y(f)a,m > 7(§)o,m+1 = Co; (7.2)

hence w,(py) = 1 and det(ws(¢m)) = 1. Now suppose II, = /. For every o € ®\{oo}, (7.2) still
holds if ¢, is replaced with /. On the other hand,

'Y(g)ao,l > > ’Y(f)aoﬁm—k > 'Y(f)oo,m-&-l = Ciro > Y(&)oom—k+1 >0 > 7(€)Uo7m-



GALOIS REPRESENTATIONS ARISING FROM SOME COMPACT SHIMURA VARIETIES 53

Thus w.(¢m) is represented by an element of (Serl)q’Er whose o-component is trivial if o # ¢ and
(L...om+1)—=(1,....m—km+1lm—-k+1,...,m)

if 0 = 0¢. In particular, det(w.(pg)) = —1 since k is odd and m is even. This completes the proof of
the first assertion of the lemma.

As for the independence of the choice of 7, it is enough to show that the above computation of
det(ws(¢rr)) does not depend on the choice of 7. The above argument depends only on 7|g in that
7| determines the subset @& of ®¢. So we are done if we get the same value of det(w. (¢ )) for 7 and
7¢. This follows from the evenness of m and the fact that every parameter flips sign if 7 is changed
to 7¢ (and o to 0¢) by conjugate self-duality. O

Proposition 7.4. Let m > 2 be any integer. Keep the assumptions on (E, F,1I°) as in the beginning
of §7.1. For each prime | and an isomorphism v : Q, = C, there exists a continuous semisimple
representation R;(I1°) : Gal(F/F) — GLy,(Q,) such that

(i) At every place y of F such that y {1 and y|lo ¢ Ramg q,
(R |we, ] = [ ' Lo, (I1)] (7.3)

in Groth(WE, ).

(ii) Suppose y { l. For any o € Wg,, each eigenvalue a of Ri(II°)(c) satisfies o« € Q and
|a|? € |k(y)|? under any embedding Q < C.

(iil) Let y be a prime of F not dividing I where Hg is unramified. Then Ry(I1°) is unramified
at y, and for all eigenvalues a of R;(I1°)(Frob,) and for all embeddings Q — C we have
laf? = [k(y)[™ .

(iv) For every y|l, R;(11°) is potentially semistable at y.

(v) If 1 splits in E, then for every y|l such that Hg is unramified, Ry(TI1°) is crystalline at y.

(vi) For each o : F < Qy, (recall the definition of j,,5(-) from (7.1))

1, if j=juc(k) for some k € [0,m — 1]

dim gr’ Dpg o (R;(11")) = { 0 otherwise

Proof. Fix [ and ¢; : Q, = C throughout the proof. Given (E, F,TI°), define IT', Z! and n depending
on the parity of m. In particular, choose IIjs o if m is even. Let 1 be a character satisfying (i)-(iv)
of Lemma 7.2. Let £ and = be as in that lemma. Set £ := Ll_lfc and II := ¢ ® II'. With these
definitions and notations, we have put ourselves in (Case ST) (resp. (Case END)) of §6.1 when m is
odd (resp. even). The assumptions of §6.1 in each case are easily verified.

Now we can run the argument of §6 to obtain Rj(II) as in Corollary 6.8 if m is odd and R} (II) as
in Corollary 6.10 if m is even. If m is even, we may freely change the choice of Il > using Lemma
7.3, if necessary, to ensure that the case e; = ey occurs. With the definition

R;(11%) := R}(IT) (m:o0dd), and Ry(I1°):= R/(IT) (m : even), (7.4)
the condition (7.3) is already verified at every y 1 such that y|g splits in E. The properties (ii)-(v) of
R;(T1°) follow from Proposition 5.3 and (vi) from Corollaries 6.8 and 6.10. We remark that the proof
of (v), in which we suppose that [ splits in F, requires choices be made such that

e ¢ satisfies all (i)-(v) of Lemma 7.2,

e v satisfies an exact analogue of (v) of Lemma 7.2, and

e if m is even, II5 is unramified at places of F' dividing u (where u is as in Lemma 7.2).
(Obviously there exists @ which satisfies the above condition as well as the conditions in Lemma 7.1.)

It remains to prove (7.3) for y such that y|g is inert in E and y 1 I. Set p := y|lg. We can find
infinitely many real quadratic fields A not contained in F' such that p is inert in A and Ramy,,q C
Splg,g- (So Rams/q C Splg/p+ g-) Choose one such A. Let E’ be the quadratic subfield of AE
different from A and E. Then E’ is an imaginary quadratic field where p splits. Let F’ := AF
and (F')* := AFt. We claim that A can be chosen so that BCp/,p(II°) is cuspidal. To prove
the claim, assume to the contrary that BCp, #(I1%) is not cuspidal for some F’ = AF. Then by
[AC89, Thm 4.2, p.202], it must be the case that m is even and that II° is an automorphic induction
from a cuspidal automorphic representation of G'L,,/2(Aps). This can happen for only finitely many
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quadratic extensions F” of F. Hence there exists a choice of A (satisfying the previous conditions on
A) such that BCyp/r(I1°) is cuspidal.

By strong multiplicity one, we deduce that BCps,p(II°)Y ~ BCp p(II°) o c. It is easy to ver-
ify that (E',F’, BCp:,p(II°)) satisfies the assumptions in the beginning of §7.1. So there exists
Ri(BCp) #(I1%)), defined as previously in the current proof, with the property that for any place z of
F’ such that z|g splits in E’ and z {1,

[Ri(BCpyr(I))lw.] = [t L, (I12))- (7.5)
The Cebotarev density theorem implies that R;(BCp,p(I1°)) is isomorphic to the restriction of R;(I1°)

to Gal(F/F"). We know that y splits in F’ since p splits in E’. Let 3’ be a place of F' above y. Applying
(7.5) to z =y, we deduce that

(R lw,] = [t L., (IL)].
O

7.2. Removing assumptions from §7.1. We are going to improve Proposition 7.4 by removing the
first three assumptions in the beginning of §7.1.

Theorem 7.5. Let m € Z>o be an integer and F be any CM field. Let TI° be a cuspidal automorphic
representation of GL,,(Ar) satisfying

° (HO)\/ ~ HO oc,

e 119 is cohomological for some irreducible algebraic representation Z° and

e in addition, Z° is slightly regular (§7.1) if m is even.

For each prime | and an isomorphism v; : Q; — C, there exists a continuous semisimple representation

Ry(I1°) : Gal(F/F) — GL,,(Q,) such that for any place y of F not dividing I,
[Ri(I°) lw, ] = (57 Lo, e, (1) (7.6)
holds in Groth(WE,). Moreover (ii)-(vi) of Proposition 7.4 are verified, with (v) replaced by
(v) For every y|l such that Hg is unramified, Ry(T1°) is crystalline at y.

Remark 7.6. Let m € Zss. Let F be any totally real field and I1° a cuspidal automorphic repre-
sentation of GL,,(Ar) such that 11 is cohomological and TI° ~ II° ® (¢ o det) for some character
¢ AX/F* — C*. Suppose that II% is cohomological for a slightly regular representation if m is
even. (Slight regularity is defined analogously as in the case when F is a CM field.) Then a precise
analogue of Theorem 7.5 (along with Theorem 7.11 and Corollary 7.13) for F and II° can be proved
in the same way Theorem 3.6 of [Tay04] (which considers the case F' = Q for simplicity) was deduced
from [HT01, Thm VII.1.9]. See [Tay04] for more detail.

Remark 7.7. One may compare the theorem with [Clo91, Thm 5.7], [HT01, Thm VII.1.9] and [Mor10,
Cor 8.4.9]. See also [CHLa]. Refer to §1 for more details.

Remark 7.8. The method of proof is to construct Galois representations of Gal(F/F’) for many
quadratic extensions F’ of F' (for which technical assumptions are satisfied) by using Proposition 7.4,
and then to “patch” them to produce a representation of Gal(F/F). This type of argument was used
in [BR&9] and [HT01], and generalized to soluble extensions ([Sor]).

Proof. We may fix [ and ¢; : Q; = C throughout the proof. Let II° be as in the theorem. In what we
call Step (I), we prove the theorem under the following assumptions on (E, F,II"), with an exception
that (7.6) is established only at y|g ¢ Rampg,q. (We get rid of the conditions on (E, F,TI°) and y in
Step (II).)

FE is an imaginary quadratic field.

F=EFT+.

[ splits in F.

RamQ(HO) C SplE/Q'

RamF/Q - RamE/Q H SplE/Q‘

Any finite place y of F* is unramified in F if y|g is ramified in E.
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Let # (F) be the set of all imaginary quadratic extensions F’ over F'™ such that

e Any finite place y of F* splits in F” if y|g is ramified in E.

o If y € Ramp/ p+ then any place y' of F* such that y'|g = y|g splits in F.

° BCFF//F(HO) is cuspidal.
Note that the last condition excludes finitely many F’. (See the proof of Proposition 7.4 where
the cuspidality of a quadratic base change is discussed.) For each F' € % (F), it is verified that
(E,FF', BCpp p(I1)) satisfies the assumptions in the beginning of §7.1. So there exists R;(BCp g p(11°))
as in Proposition 7.4. Moreover, for any finite extension M over F', clearly it is possible to find
F' € Z(F) such that F’ is linearly disjoint from M over F. In this situation we may use the argu-
ment of [HT01, p.230-231] to construct a representation R;(I1°) : Gal(F/F) — GL,(Q;). Moreover,
there is a certain finite extension My over F' (which depends on a choice made in the course of
constructing R;(I1°)) such that for any F’ € .Z (F) which is linearly disjoint from My over F', we have

R gur )] = [Ri(BCrpr e (I))]. (7.7)

(Note that our F', FF’ and M, play the roles of L, Fy and M A; in the notation of [HT01, p.230-
231], respectively.) The properties (ii), (iii), (iv) and (vi) of R;(II°) are inherited from those of
Ri(BCpp /p(I1)). To verify (7.6) for R;(I1°), let us fix a finite place y { I of F' such that y|g does not
ramify in E. Choose F' € .%(F') such that

e F' is linearly disjoint from My over F'.
e y|p+ splits in F”.
Then y splits as y'y” in FF'. We deduce (7.6) from

[Ri(BCrr p (M), | = [ Zoprr, (BCprr p(11°))]

and the restriction of (7.7) to Wgrp/, = Wg,. To show (v)" for Ri(II°), let y be a place of F above

I. Choose F' € % (F) which satisfies the two conditions in the above bullet list so that y = y'y” in
FF’. By (7.7) we have that [R;(II)|y,] is the same as [Ri(BCrp/;r(I1°))|w, | where the latter is
crystalline by (v) of Proposition 7.4. This finishes Step (I). '

Step (I1) is to prove the theorem in general. Let F and II° be as in the theorem. Let &(F) be the
set of all imaginary quadratic fields E not contained in F' such that

[ splits in E.

Ramp,q U RamQ(HO) C SplE/Q.

If a finite place y of F'* is such that ylo € Rampg /g then y € Unrp,p+.

BC’EF/F(HO) is cuspidal.

As before, the last condition excludes only finitely many E. For each E € &(F), it is verified that
(E,EF,BCgr/p(II°)) satisfies the assumptions in Step (I) of the current proof. So there exists
Ry(BCgpp(II°)) satistying (i)-(vi) of Proposition 7.4. For any finite extension M over F, we can
find E € &(F) such that EF is linearly disjoint from M over F. As before we use the argument of
[HTO01, p.230-231] to construct R;(I1Y). A similar argument as in Step (I) shows that (7.6) and the
assertions (ii)-(vi) of Proposition 7.4 (with (v) replaced by (v)’) hold for R;(I1°), by reducing to the
case considered in Step (I). (To verify (7.6) for R;(I1°)|w,. at an arbitrary place z of F, we choose
E € &(F) such that z|g splits in E and imitate the argument in Step (I), with EF' in place of F'F'.)
(|

The Ramanujan-Petersson conjecture for GL,, states that every non-archimedean local component
of a cuspidal automorphic representation of GL,(Ar) for a number field F' is (essentially) tempered.

Corollary 7.9. Let m, F, TI° be as in Theorem 7.5. Then 112 is tempered at every finite place w of
F.

Remark 7.10. Compare the corollary with [Clo91, Cor 5.8], [HT01, Cor VII.1.11] and [Mor10, Cor
8.4.10]. (cf. Remark 7.7.)

Proof. This follows from (ii) of Theorem 7.5 and [HT01, Cor VII.2.18]. O
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7.3. Strengthening of the local-global compatibility. The aim of this last subsection is to im-
prove the identity (7.6) of Theorem 7.5 as in the following theorem. It is worth pointing out that we
make use of Corollary 7.9 in the proof, among others. Fix a prime [ and an isomorphism ¢; : Q; = C
throughout §7.3.

Theorem 7.11. In the setting of Theorem 7.5, we have the following isomorphism of Weil-Deligne
representations at every y 1 l.

WD(RI(HO)|Ga1(Fy/Fy))F_SS = Lfljn,Fy (HS) (7.8)

Taylor and Yoshida proved the above result ([TY07, Thm 1.2]) in the setting of [HTO01]. (Boyer
([Boy09]) proved the weight monodromy conjecture for the vanishing cycle complexes arising from
Shimura varieties in the same setting, providing an alternative approach to work of Taylor and
Yoshida.) To prove Theorem 7.11, it suffices to prove an analogue of [TY07, Thm 1.5] in our setting,
namely that WD(R;(HO)|Gal(fy / Fy)) is pure for every y t I, by the remark above the cited theorem.
For this, we basically repeat the argument of sections 3 and 4 of Taylor-Yoshida’s paper with only
minor changes. Note that we only need to consider the case “I # p” in that paper (except a temporary
digression to the case I = p in Lemma 7.12 and Corollary 7.13). We devote this subsection to sketch
the proof of Theorem 7.11, which amounts to explaining how their argument should be modified.
Obviously we claim no originality.

First of all, we briefly recall our Shimura varieties that were used earlier. This replaces the beginning
of section 2 of [TY07]. (We do not need the later part of that section.) We put ourselves in the situation
of §7.1. So we begin with a triple (E, F, 1) satisfying the assumptions there and choose a PEL datum
and other data. Recall that we consider (Case ST) with n = m if m is odd and (Case END) with
n=m+ 1 if m is even. In the latter case, choose Il 2 so that R} (II) has dimension m (rather than
1) in Corollary 6.10. Such a choice is possible by Lemma 7.3.

For each sufficiently small open compact subgroup K of G(A*), let X denote the Shimura variety
Shk constructed from the above PEL datum (§5.2). We list the modifications to be made in section 3
of [TYO07] so that things make sense in our setting. The notations B, Op, B°? and O% there should
be replaced by F, O, M(F) and M,(OF), respectively. Fix a prime p € Splg g and a place w of

F above p. Choose ¢, : @p 5 C such that L;17' induces the place w. We also fix ¢; : Q, = C. The
groups Uy’ (m), Ma(m) and Iw(m) can be defined as obvious analogues, as well as U := U? x Ma(m)
and U := UP x Iw(m). Set ¥4 := A[w] for abelian schemes A in the moduli problem of our Shimura
variety (without multiplying the idempotent e as in Taylor-Yoshida). Let ¢ denote the Barsotti-Tate
Op,-module associated to the universal abelian scheme for Xy, . We explained in §5.2 that X, has
a smooth projective integral model over O, . Recall that the special fiber Xy, over Spec k(w) admits

. .. —(h —(0) . . .
a stratification into X Uo) for 0 < h < n —1. Note that X (UO) is nonempty of dimension 0 as we can

- = . . . . . . . (0 . .
exhibit an IF,-point in the corresponding Igusa variety which is a covering of X gfo) , as it was done in

[HT01, Lem II1.4.3, Cor V.4.5]. By analogues of [HT01, Lem III.4.1.2] and [TYO07, Lem 3.1] in our

setting (which are proved in the same way), Yg? are of pure dimension h for 0 < h < n —1. The
integral model for Xy over Op, and the schemes Yy ;, Yi,.» and Y,?} o over Spec k(w) are defined as
in [TYO7]. Notice that m and S in their paper are denoted by m and ., respectively, in order to
avoid conflict with our notation. Apart from the changes already mentioned, the material in section
3 of Taylor-Yoshida’s paper goes through without further modification.

This is a good place to record a useful fact, which will not be needed in the proof of Theorem
7.11. Only in this paragraph, assume that w|l and | = p. We know that Xy is a proper scheme
over O, with semistable reduction ([TY07, Prop 3.4]), so the universal abelian scheme &7, over
Xy also has semistable reduction over Op,. Since H*(X XOp, Fu, %) is a direct summand of
H"™ (o X0, Fu,Q;) up to a Tate twist for an integer me ([TYO07, p.477]), we deduce that
H*(Xy X0, Fu,Z) is a semistable representation of Gal(F,/F,) ([Tsu99]). Write each m €
Irr; (G(Qy)) as m = 7,0 @ Ty @ (®i>17Tw, ), following our previous convention.

Lemma 7.12. Let 7°° € Irr;(G(A™)) and assume that WIZE £0. If my™" #0 and Rgl(w"o) #0 for
some k, then ng,l(ﬂ'oo> is a semistable representation of Gal(F/Fy).
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Proof. Recall U = UP x (Iwy, ., x U (m) X2 ). We can arrange that (7°°)% # 0 by choosing sufficiently
small U? and U}’(m). Then R’gyl(ﬂ'“) is semistable since it appears with nonzero multiplicity as a
subrepresentation of H*(Xy X0, Fu, ).

|

Corollary 7.13. In the setting of Theorem 7.5, if Hg has a nonzero Twahori fized vector at y|l then
Ry(T11Y) is semistable at y.

Proof. The proof is the same as in the crystalline case. Namely, the corollary is derived from Lemma
7.12 in the same way as the assertion (v)’ of Theorem 7.5 was deduced from Proposition 5.3.(v). O

We return to the case | # p. Now we adapt section 4 of Taylor-Yoshida to our situation. We work
under the setting of §6 of our paper, in either (Case ST) or (Case END), depending on the parity of m.
Choose a finite set S under the assumptions in the beginning of §6. (In addition, we already assumed
that the conditions (i)-(v) above Lemma 5.1 are satisfied.) All additional assumptions will be removed
at the end. In fact, let us consider only (Case ST) for now. In particular II = 1) ®I1° is cuspidal. (The
argument is essentially the same in (Case END), which will be briefly discussed in Remark 7.16.) Let
mp € Irry(G(Qp)) be such that BC(ym,) ~ I, as before. Write m, = mp 0 ® Ty @ (R4>17w,;) so that
UTpo = Py for u:=w|g and 4wy, ~ Hi}i for all 4.

Let I(U}Z,)’m be the Igusa variety of the first kind defined in [HTO01, p.121]. (Substitute our Shimura
varieties in the definition.) The Iwahori-Igusa variety Il(]h) over Yg;) is defined as on page 487 of
[TYO07]. The results of page 487 carry over without change. If 0 < h < n — 1 corresponds to b as in
(5.3), we will write Ig") for Ig, and J)(Q,) for J,(Q,).

At this point we need to mention that we will follow the sign convention of [TY07] in order to
minimize confusion. This means that the signs of H.(I"), %) (and its variants) and H(X,.%;) differ
from the usual convention by (—1)* and (—1)"~!, respectively. Accordingly, we change the definition
of HC(Ig(h),fg) by multiplying (—1)".

One major change occurs in the middle of page 488 where theorem V.5.4 of [HTO01] is cited. Let
us elaborate on this point. Put D := Dp,_ 1/(n—pn). Write Op for the maximal order in D. It follows

from the definition of H.(I'™, %) that "
H (I, %) = H.(1g™), Z)% *©p
where 7 x OF; is viewed as the subgroup Z) x (Of x (1)) x [[,5(1) of J"M(Q,) via the expression
(5.4). Applying Theorem 6.1, we have that (cf. (5.16))
BOP(HA(I", ZoI1)) = (<1 Calyy T [ry @ Red” ™ () %6 © (@151,

in Groth(G(A>"?) x J")(Q,)), where BC? denotes the local base change at the places away from p
and oo (§4.2). We remark that e,(J) does not show up in the formula as we are following the sign
convention of [TY07]. According to page 488, Frob,, acts on H.(I"), %) as

(1,p~ ] 571 1,1) € G(A™P) x (QF JZX) x (D*/O) x GLy(F,) x <H GLn(Fwi)>
i>1
where wp is any uniformizer of D. It is easy to check that
BOP(H (1), Z]) = BCP(H,(IM, Z)[I1S))Vs (m)X 1
— (1)l IR Red® (7 © 7o) - dim{(@1517, ) )

in Groth(G(A®®) x Frob%) where Red™ is defined on page 488.
It is easy to deduce the following analogue of [TY07, Lem 4.3].

BCP(H(Vig(m),7, L)1) = (=1)" ' Cgy ' TIP] dim[(®i5170,)Vr ™] x (7.9)

n—#5
( Z (=) #7=h <n _:&y> ! [Red™ (11}, ® wu)})

h=0
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We proceed to prove the following analogue of [TY07, prop 4.4] by imitating the original argument.

Iw(m)

Proposition 7.14. Keep the previous notation. Suppose that mp, #0. Then
Bcp(Hj(S/iW(m),y7 gg)[HS]) =0
forj#n—#7.

Proof. Let D(IT) := (=1)""'Cq - dim(®;>111, ;)Y ™ for each 7> € %,(11). (Note that our D(II)
differs from D of [TY07] by the dimension of the Iwahori invariants at w.) The assumption implies
that D(IT) # 0. By (7.9),
n—# n— #,7
BOPH Vi NI} = D1 S (1 #7 (" ) Raa® )
h=0

in Groth(Frob”). We will be done if the above expression is shown to be zero.

The initial assumption says that II}, has a nonzero Iwahori fixed vector. Moreover I} is tempered
by Corollary 7.9. So IIL has the form
GLy(Fy
S (Spy, (m1) @ -+ @ Sp, (1))
for unramified characters 7; : F} — C* and ), s; = n. Then Red ™ (111, @ 1b,) can be computed as
in [TY07]. We obtain

BOP(H Yiw(oy LI} = D) 32 P2
si=# e

where V; is defined on page 490 of [TY07]. Since V; are strictly pure of weight mg — 2t + (n — #.%)
(me and t¢ are defined in [HTO01, p.98]), the Weil conjecture implies that

BCP(HO/IW(m),.Y’v Dg&)){HOO,p} =0

n-ind

[Vi] (7.10)

for j #n —#7.
O

So far we have considered BC? on the level of Grothendieck groups. Now we work with genuine
admissible representations. For each k > 0, define (cf. (5.5))

BCP(HM( Xt (m),-Ze)[11°]) := P dim(mp"™) - BO(n™) © R, (n™)
where the sum runs over 7% € Irr;(G(A>)) such that 7° is unramified and BC(y7°) ~ II°. Theorem
6.4 and its proof show that

BCP(H" ™ (X (my> Ze) 1)) = (dim (™) - o7 0P @ Ry~ (11) (7.11)
as admissible representations of G(A>?) x Gal(F/F).

Corollary 7.15. In the setting of Proposition 7.14, WD(}Nfol(HMGaI@W/Fw)) is pure of weight mg¢ —
2 +n— 1.

Proof. In view of [TY07, Lem 1.4.(1), Lem 1.7], it suffices to show that WD(ﬁffl(H)SS|Ga1(fw/Fw))F’SS

“ 7

is pure of the designated weight. Here the superscript “ss” means the semisimplification of the
Gal(F/F)-action.

We use a slightly different form of the spectral sequence of [TYO07, Prop 3.5], which can be derived
from its proof. With the notation of that proposition, consider the spectral sequence

BCP(E}? (Tw(m), €)[11%]) = BCP(W D(H'™ (X1w(m)» Ze)* g, )" )- (7.12)

Here each side is viewed as a semisimple representation of G(A*?) x Frob,, (after semisimplifying the
action of G(A*P) x Frob,, on the left hand side) with a nilpotent operator N. The above spectral
sequence can be obtained in the following way. First, we semisimplify the action of G(A®P) x Frob,,
in the Rapoport-Zink weight spectral sequence, which is the second last formula of [TY07, p.485].
Next, separate the [II¥]-part and apply BCP to the spectral sequence.
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Proposition 7.14 tells us that BC?(EY’ (Iw(m), £)[IT5]) vanishes unless i +j = n — 1. So the
semisimplified spectral sequence (7.12) degenerates at E; and

WD(BC?(H"™ (Xt > ZOM) i, ) (7.13)

is pure of the desired weight. This concludes the proof in view of (7.11).
O

Remark 7.16. So far we have been dealing with (Case ST) and odd m. In (Case END) with even
m, Proposition 7.14 and Corollary 7.15 are still valid. In (7.9) and the proof of Proposition 7.14,
we apply (ii) of Theorem 6.1 to compute BCP(H(Y&W(m)’y,gg)[HS]). The proof of Proposition 7.14
mostly goes through except that one of the V;’s will be missing on the right side of (7.10). Corollary
7.15 in (Case END) is proved similarly as in (Case ST).

We are ready to complete the proof of Theorem 7.11. Allow m to be either odd or even. Let
us forget the additional assumptions of §5-§6 and put ourselves in the situation of §7.2, but let L
denote the CM field to begin with, instead of F. So II' is a cuspidal automorphic representation
of GL,(AL). (Of course, unlike [TY07], we do not assume that II° is square integrable at a finite
place.) Let R;(I1°) : Gal(L/L) — GL,,(Q;) be given by Theorem 7.5. Our plan is to imitate page
492 of [TY07] to find a certain finite soluble extension F over L so that the proof for L and II° can
be reduced to the proof for F and BC ., (II°).

Fix a place v of L above p where p # [. Recall the remark below the statement of Theorem
7.11 that it suffices to prove WD(Rl(HO)|GaI(E /F,)) is pure. Find a CM field F such that (as usual
Ft .= Fe=t
[F*:Q] is even,

F = EFT for an imaginary quadratic field F in which p splits,

F is soluble and Galois over L,

Ram /g U Ramg(I1°) C SPlg) e+ @

1% := BCp/,(I1°) is a cuspidal automorphic representation of GLy,(Ar), and
there is a place w of F above v such that H%’w has an Iwahori fixed vector.

We justify that it is possible to choose F' as above. As a first step, we find a CM field Fy which is
soluble and Galois over L and a place wg of Fjy above v such that the last two conditions in the list are
satisfied for Fy and wy in place of F' and w. Next we find F' from F by taking quadratic extensions
of Fy twice as in the proof of Theorem 7.5. We elaborate on this point. Choose E € & (Fp) such that
psplits in F and E C Fy. Since EF} verifies the assumptions of Step (I) in that proof, we may choose
F' € Z(EFy) different from EFy and take F := F'EFy. Let w be any place of F' above wg. It is easy
to see that F' satisfies every condition in the above list.

With (E, F,11%) in hand, consider the setting of §7.1. Let Iz denote the representation II of §7.1
obtained by substituting I1% for I1° in that section. The proofs of Corollaries 6.8 and 6.10 tell us that

Co - Ri(%)| g7y = Co - Ri(TTg) ~ Ry (Ip)™ @ Ri(y) ™"

It follows from Corollary 7.15 and [TY07, Lem 1.7] that WD(Rl(HONGaI(fv/LU)) is pure. The proof of
Theorem 7.11 is concluded.
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