2 Let K be a number field with an algebraic closure \bar{K}. Let L and L^{\prime} be finite extensions of K in \bar{K}. Prove or disprove: If a prime \mathfrak{p} of \mathcal{O}_{K} is totally ramified in L and L^{\prime} then it is totally ramified in the composite field $L L^{\prime}$.
Example 1. Let p be an odd prime and take $L=\mathbb{Q}(\sqrt{p}), L^{\prime}=\mathbb{Q}(\sqrt{-p})$. Clearly p is totally ramified in L and L^{\prime}. Since p is unramified in the subextension $\mathbb{Q}(i)$ of $L L^{\prime}$, it is not totally ramified in $L L^{\prime}$.
Example 2. Let $p=2, L=\mathbb{Q}(\sqrt[3]{2}), L^{\prime}=\mathbb{Q}\left(\sqrt[3]{2} \cdot \zeta_{3}\right)$. Then p is totally ramified in L and L^{\prime} but not in the subextension $\mathbb{Q}\left(\zeta_{3}\right)$ of $L L^{\prime}$.

4 Let $n \geq 3$. We have seen that a prime p is ramified in $\mathbb{Q}\left(\zeta_{n}\right)$ if and only if $p \mid n$. (You need not prove this.) Describe the set of all primes p which split completely in $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$ in terms of a congruence condition on p.
When K is a finite Galois extension of \mathbb{Q} in which p is unramified, let $\operatorname{Frob}_{K, p} \in \operatorname{Gal}(K / \mathbb{Q})$ denote the Frob element. Then one proves

- $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$ is a (totally real) subfield of $\mathbb{Q}\left(\zeta_{n}\right)$ of index 2 fixed under $\{1, c\} \subset \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$, where c is the complex conjugation (w.r.t any embedding $\mathbb{Q}\left(\zeta_{n}\right) \hookrightarrow \mathbb{C}$).
- $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)\right) \simeq\{1, c\}$ maps to $\{ \pm 1\}$ under the canonical isom

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \simeq(\mathbb{Z} / n \mathbb{Z})^{\times}, \quad \forall p \nmid n, \operatorname{Frob}_{\mathbb{Q}\left(\zeta_{n}\right), p} \leftrightarrow p
$$

- The natural projection $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right) / \mathbb{Q}\right)$ carries $\operatorname{Frob}_{\mathbb{Q}\left(\zeta_{n}\right), p}$ to $\operatorname{Frob}_{\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right), p}$. This implies that

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right) / \mathbb{Q}\right) \simeq(\mathbb{Z} / n \mathbb{Z})^{\times} /\{ \pm 1\}, \quad \forall p \nmid n, \operatorname{Frob}_{\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right), p} \leftrightarrow p
$$

One concludes that p splits completely in $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$
$\Leftrightarrow \operatorname{Frob}_{\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right), p}$ is trivial $\Leftrightarrow p \equiv \pm 1(\bmod n)$.

