18.786. (Fall 2011) Midterm Exam, Tuesday Oct 25, 11-12:30

- * Each problem is worth 20 points. Write your solutions clearly.
- 1. Give the definitions of the following. (Any one of the equivalent definitions is fine.) Five points for each item.
 - (a) a Dedekind domain
 - (b) a fractional ideal of K, which is the fraction field of a Dedekind domain A
 - (c) a complete lattice in a finite dimensional \mathbb{R} -vector space (with the usual topology)
 - (d) the inertia group of \mathfrak{P} over K, where L is a finite Galois extension of a number field K and \mathfrak{P} is a nonzero prime ideal of \mathcal{O}_L
- 2. Let K be a number field with an algebraic closure \overline{K} . Let L and L' be finite extensions of K in \overline{K} . Prove or disprove: If a prime \mathfrak{p} of \mathcal{O}_K is totally ramified in L and L' then it is totally ramified in the composite field LL'.
- 3. Let K be a number field with ring of integers \mathcal{O}_K , and L be a finite Galois extension over K. Let \mathfrak{p} be a nonzero prime ideal of \mathcal{O}_K . Prove that the Galois group $\operatorname{Gal}(L/K)$ acts transitively on the set of prime ideals of \mathcal{O}_L containing \mathfrak{p} .
- 4. Let $n \ge 3$. We have seen that a prime p is ramified in $\mathbb{Q}(\zeta_n)$ if and only if p|n. (You need not prove this.) Describe the set of all primes p which split completely in $\mathbb{Q}(\zeta_n + \zeta_n^{-1})$ in terms of a congruence condition on p.
- 5. Find the class number of $\mathbb{Q}(\sqrt{7})$ and the group of units of its ring of integers (with a fundamental unit). Proof should be provided. Feel free to use the following fact: In every ideal class of an algebraic number field K of degree n, there exists an integral ideal \mathfrak{a} such that

$$\mathfrak{N}(\mathfrak{a}) \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|d_K|}.$$

(Here s is the number of complex places.)