18.786. On lattices

Here is a leftover from the Thursday class.
Proposition 0.1. Let $\Gamma^{\prime} \subset \Gamma$ be complete lattices in V with $\left[\Gamma: \Gamma^{\prime}\right]<\infty$. Then

$$
\frac{\operatorname{vol}\left(\Gamma^{\prime}\right)}{\operatorname{vol}(\Gamma)}=\left(\Gamma: \Gamma^{\prime}\right) .
$$

Sketch of proof. Choose a large enough $R>0$ and consider a ball $B_{R}=B(0 ; R)$ of radius R and centered at 0 . Let

$$
m:=\left(\Gamma: \Gamma^{\prime}\right)
$$

and choose a set of representatives $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ for Γ / Γ^{\prime}, which you can find in the fundamental mesh $\mathcal{F}\left(\Gamma^{\prime}\right)$ (any point in V can be translated by an element of Γ^{\prime} into $\mathcal{F}\left(\Gamma^{\prime}\right)$). Since γ_{i} are close to 0 , if $R \gg 0$ then

$$
\frac{\left|\Gamma \cap B_{R}\right|}{\left|\Gamma^{\prime} \cap B_{R}\right|}=\frac{\sum_{i=1}^{m}\left|\left(\left(\gamma_{i}+\Gamma^{\prime}\right) \cap B_{R}\right)\right|}{\left|\Gamma^{\prime} \cap B_{R}\right|} \sim \frac{\sum_{i=1}^{m}\left|\left(\Gamma^{\prime} \cap B_{R}\right)\right|}{\left|\Gamma^{\prime} \cap B_{R}\right|}=m .
$$

On the other hand,

$$
\frac{\operatorname{vol}\left(\Gamma^{\prime}\right)}{\operatorname{vol}(\Gamma)}=\frac{\operatorname{vol}\left(B_{R}\right) / \operatorname{vol}(\Gamma)}{\operatorname{vol}\left(B_{R}\right) / \operatorname{vol}\left(\Gamma^{\prime}\right)} \sim \frac{\left|\left\{\gamma \in \Gamma: \gamma+\mathcal{F}(\Gamma) \subset B_{R}\right\}\right|}{\left|\left\{\gamma^{\prime} \in \Gamma^{\prime}: \gamma^{\prime}+\mathcal{F}\left(\Gamma^{\prime}\right) \subset B_{R}\right\}\right|} \sim \frac{\left|\Gamma \cap B_{R}\right|}{\left|\Gamma^{\prime} \cap B_{R}\right|}
$$

In the first approximation above, use the fact that such $\gamma+\mathcal{F}(\Gamma)$ cover B_{R} modulo a thin layer (of constant thickness) around the boundary of B_{R} without overlap. The error term for each \sim is bounded by $O\left(R^{n-1}\right)$ (which is ignorable relative to the n-dimensional ball $\operatorname{vol}\left(B_{R}\right)$), and one concludes the proof by taking $R \rightarrow \infty$.

