### 18.786. Separability of $f_{m}$

Recall that $(\pi, f)$ is as usual:
(i) $\pi$ is a uniformizer of a complete unramified extension $L$ over $K$,
(ii) $f \in \mathcal{O}_{L}[X]$ is a monic polynomial such that $f \equiv \pi X \bmod X^{2}$ and $f \equiv X^{q} \bmod \pi$. (In particular $f$ has degree $q$.)
We defined

- $\pi_{m}:=\pi^{\varphi^{m-1}} \pi^{\varphi^{m-2}} \cdots \pi^{\varphi} \pi=\pi^{(m-1)} \cdots \pi^{(1)} \pi$,
- $f_{m}:=f^{\varphi^{m-1}} \circ \cdots \circ f^{\varphi} \circ f=f^{(m)} \circ \cdots \circ f^{(1)} \circ f$.

I should have proved the following at the very beginning of the section on Lubin-Tate extensions.
Proposition 0.1. $f_{m}$ is a separable polynomial, i.e. the roots of $f_{m}$ are mutually distinct.
Proof. Recall that every $\alpha \in \mu_{f, m}$ satisfies

$$
v(\alpha)>0
$$

since $0=f_{m}(\alpha) \equiv \alpha^{q^{m}} \bmod \pi$.
Let's start with the $m=0$ case. Since $f_{m}(X)=\pi X+X^{q}+\pi g(x)$ for some $g(X) \in X^{2} \mathcal{O}_{L}[X]$. The derivative $f^{\prime}(X)$ has the form

$$
f^{\prime}(X)=\pi\left(1+(q / \pi) X^{q-1}+g^{\prime}(X)\right)
$$

From this it's clear that any $\alpha$ such that $v(\alpha)>0$ cannot be a root. (For such an $\alpha, v\left((q / \pi) \alpha^{q-1}+\right.$ $\left.\pi g^{\prime}(\alpha)\right)>0$.) Thus $f(X)$ and $f^{\prime}(X)$ have no common factor.

Now proceed by induction on $m$. Suppose the assertion is true up to $m-1$. Note

$$
f_{m}(X)=f^{(m-1)}\left(f_{m-1}(X)\right), \quad f_{m}^{\prime}(X)=\left(f^{(m-1)}\right)^{\prime}\left(f_{m-1}(X)\right) \cdot f_{m-1}^{\prime}(X) .
$$

For any root $\alpha$ of $f_{m}(X)$ it suffices to show that

$$
\begin{equation*}
f_{m}^{\prime}(\alpha) \neq 0 \tag{0.1}
\end{equation*}
$$

By the way $\alpha$ is chosen, $f_{m-1}(\alpha)$ is a root of $f^{(m-1)}$. Thus $f_{m-1}(\alpha)$ cannot be a root of $\left(f^{(m)}\right)^{\prime}$ by the $m=0$ case applied to $f^{(m-1)}$. On the other hand, $f_{m-1}^{\prime}(\alpha) \neq 0$ by the induction hypothesis. Hence (0.1) is verified.

Recall that $\mu_{f, m}$ is the set of roots of $f_{m}$ and that $f_{m}^{\times}:=f_{m} / f_{m-1}$.
Corollary 0.2. $\left|\mu_{f, m}\right|=q^{m}$ and $f_{m}^{\times} \in \mathcal{O}_{L}[X]$.
Proof. The former is immediate from the proposition. For the latter, obviously $f_{m}^{\times}$is monic and belongs to $L[X]$ by the proposition. Since its roots are all integral, the coefficients are in $\mathcal{O}_{L}$.

