18.786. Some clarifications

For a lattice X of a K-vector space V, we have shown (cf. Serre Prop III.1.2)
Proposition 0.1. $\chi(X, u X)=(\operatorname{det} u)$ for $u \in \operatorname{Aut}_{K}(V)$.
The idea was to reduce to the case where A is a DVR by localization and where $u(X) \subset X$ by scaling u, as the effect of scaling is easy to keep track of in the identity. With a choice of $X \simeq A^{n}$ as A-modules, u is represented by an $n \times n$ matrix with entries in A. Then I explained that u can be "diagonalized" by elementary row-column operations. I should have clarified that this is not the usual diagonalization by a suitable choice of basis. Rather, each row-column operation multiplies u by a simple invertible matrix (which is justified since both sides of the above equality remain the same). In other words, u is made diagonal by multiplying (rather than conjugating by) a product of invertible matrices.

In the proof of
Proposition 0.2. $\mathfrak{D}_{B / A}=\left(f_{\beta}^{\prime}(\beta)\right)$, where $f_{\beta}(x) \in A[x]$ is the minimal polynomial of $\beta \in B$ such that $B=A[\beta]$,

I used the fact that $\operatorname{tr}_{L / K}\left(\beta^{i} / f_{\beta}^{\prime}(\beta)\right)$ equals 0 if $0 \leq i \leq n-2$ and 1 if $i=n-1$, where $n=[L: K]$. (See Serre's Lemma III.6.2 for this.) The heart of the proof was that for an element of L written as

$$
b=\sum_{i=0}^{n-1} a_{i} \frac{\beta^{i}}{f_{\beta}^{\prime}(\beta)}, \quad a_{i} \in K
$$

and compute

$$
\operatorname{tr}_{L / K}\left(b \beta^{j}\right)=\sum_{i=0}^{n-1} a_{i} \operatorname{tr}_{L / K}\left(\frac{\beta^{i+j}}{f_{\beta}^{\prime}(\beta)}\right)=a_{n-1-j}+\left(A \text {-lin. combination of } a_{n-j}, \ldots, a_{n-1}\right)
$$

(I missed the "error terms" in the first attempt; these come from the coefficients of f_{β} as β^{n}, β^{n+1}, ... are written in the basis $\left\{1, \beta, \ldots, \beta^{n-1}\right\}$.) From this it is easy to deduce (by induction on j) that

$$
\operatorname{tr}_{L / K}\left(b \beta^{j}\right), \forall 0 \leq j \leq n-1 \quad \Leftrightarrow \quad a_{0}, \ldots, a_{n-1} \in A
$$

and thus the codifferent $B^{*}=\left(f_{\beta}^{\prime}(\beta)^{-1}\right)$.

