Problem 4 (Neukirch II.4.1)

We assume the valuation is not trivial. First note K cannot be a finite field: There is no non-trivial homomorphism from \mathbb{F}_{q}^{\times}to $\mathbb{R}_{>0}^{\times}$, since the latter is torsion-free.

The conclusion then follows from the following cardinality calculations.
Lemma 4.1: Let L / K be an infinite algebraic extension, with K infinite. Then

$$
|L| \leq|K| .
$$

Proof. The number of polynomials with degree n with coefficients in K is $\left|K^{\times} \| K\right|^{n}=|K|^{n+1}$. Since K is infinite,

$$
|K[x]|=|K|+|K|^{2}+\cdots=|K|
$$

Each element of L is the root of some polynomial in $K[x]$, and each polynomial has finitely many roots, so $|L| \leq|K|$.
Lemma 4.2: Suppose L / K is an extension of complete fields and $[L: K]$ is infinite. Then

$$
|L|>|K| .
$$

Proof. Take an infinite number of linearly independent elements $\left\{a_{j}\right\}_{j \in \mathbb{N}}$ of L as a vector space over K. Note there are elements of K with arbitrarily small norm: take an arbitrary element with norm not equal to 1 and take an appropriate power. Thus by scaling we may assume $\left|a_{j+1}\right|<\frac{\left|a_{j}\right|}{2}$ for all j. We claim that the elements

$$
s(\varepsilon):=\sum_{j=1}^{\infty} \varepsilon_{j} a_{j}
$$

are distinct for all $\varepsilon=\left(\varepsilon_{j}\right)_{j \in \mathbb{N}} \in\{0,1\}^{\mathbb{N}}$. (The sum is defined in L because the condition ensures that the partial sums form a Cauchy sequence.)

If $s(\varepsilon)=s\left(\varepsilon^{\prime}\right)$ for $\varepsilon \neq \varepsilon^{\prime}$, consider

$$
\sum_{j=1}^{\infty}\left(\varepsilon_{j}-\varepsilon_{j}^{\prime}\right) a_{j}=0
$$

Each of the coefficients is 0 or ± 1, with at least one nonzero. Take the first such index k; we have

$$
\left|a_{k}\right|=\left|\left(\varepsilon_{k}-\varepsilon_{k}^{\prime}\right) a_{k}\right|=\left|\sum_{j=k+1}^{\infty}\left(\varepsilon_{j}^{\prime}-\varepsilon_{j}\right) a_{j}\right|<\sum_{j=1}^{\infty} \frac{\left|a_{k}\right|}{2^{j}}=\left|a_{k}\right|,
$$

contradiction. (More precisely, by the triangle inequality $\left|\sum_{j=k+1}^{l}\left(\varepsilon_{j}-\varepsilon_{j}^{\prime}\right) a_{j}\right|<\left|a_{k+1}\right|+$ $\frac{\left|a_{k}\right|}{2}<\left|a_{k}\right|$ for any l; now take the limit as $l \rightarrow \infty$.)

The number of sums $s(\varepsilon)$ is $2^{|K|}>|K|$, so $|L| \geq 2^{|K|}>|K|$.

