18.786. (Fall 2011) Homework \# 9 (due Thu Dec 08)

Let K be a finite extension of \mathbb{Q}_{p} with residue field \mathbb{F}_{q}. Fix an algebraic closure \bar{K} of K. All formal groups are assumed to be 1-dimensional and commutative.

1. The existence theorem of LCFT (which especially concerns surjectivity) asserts the following: The map from the set of finite abelian extensions of K (in \bar{K}) to the set of open subgroups of K^{\times}of finite index given by $L \mapsto N_{L / K}\left(L^{\times}\right)$is a bijection. (You may skip proving that $N_{L / K}\left(L^{\times}\right)$is open and of finite index in K^{\times}. Try it on your own, or see Serre's local fields p. 172 or [CF67] p.143, Th 3, for instance.) Deduce the existence theorem from the main statements of LCFT as stated in class, cf. Theorem A of $[\mathrm{Y}]$.

Remark 0.1. Notice that "open subgroups of $K^{\times "}$ are objects intrinsic to K. (For instance, there's no need to talk about elements external to K.) This shows one aspect of CFT: to classify abelian extensions of K in terms of intrinsic data for K.
2. Consider a ring A and an A-algebra B with an ideal \mathfrak{m}. Suppose that B is \mathfrak{m}-adically complete, i.e. the canonical map from B to the inverse limit of B / \mathfrak{m}^{n} over $n \geq 1$ is an isomorphism. Let $F \in A[[X, Y]]$ be a formal group over A. Define a binary operation $+_{F}$ on the set \mathfrak{m} by

$$
\alpha+_{F} \beta:=F(\alpha, \beta), \quad \alpha, \beta \in \mathfrak{m} .
$$

Show that this is again an element of \mathfrak{m} and that $\left(\mathfrak{m},+_{F}\right)$ is an abelian group. Moreover if F^{\prime} is another formal group over A and $f \in \operatorname{Hom}_{A}\left(F, F^{\prime}\right)$ then verify that f induces a group homomorphism from $\left(\mathfrak{m},+_{F}\right)$ to $\left(\mathfrak{m},+_{F}^{\prime}\right)$.
Remark 0.2 . We may interpret \mathfrak{m} as the set of " B-points" of F, whose underlying space is the formal scheme attached to $(A[[T]],(T))$. The problem says that F induces a group structure on the set of B-points of F. In fact, F can be viewed as a functor from an appropriate category of algebras to the category of groups.
3. Let $k \subset \overline{\mathbb{F}}_{q}$ be an extension of \mathbb{F}_{q}. Let $\varphi \in \operatorname{Gal}\left(k / \mathbb{F}_{q}\right)$ denote the arithmetic Frobenius $x \mapsto x^{q}$. Let $F \in k[[X, Y]]$ be any formal group over k and write F^{φ} for $\varphi(F) \in k[[X, Y]]$ ("Frobenius twist of F "). Show that $f(X)=X^{q}$ defines a homomorphism from F to F^{φ}.
4. (Proof of the global Kronecker-Weber theorem) Assume the following:
(a) local K-W: $\mathbb{Q}_{p}^{\mathrm{ab}}=\cup_{n \geq 1} \mathbb{Q}_{p}\left(\zeta_{n}\right)$.
(b) There is no nontrivial finite extension of \mathbb{Q} unramified at every prime. (This follows from a discriminant bound. See Neukirch Theorem III.2.18 for instance.)

Prove the global K-W theorem, namely that $\mathbb{Q}^{\text {ab }}=\cup_{n \geq 1} \mathbb{Q}\left(\zeta_{n}\right)$, or equivalently that any finite abelian extension F of \mathbb{Q} is contained in $\mathbb{Q}\left(\zeta_{n}\right)$ for some n. (Hint: Neukirch V.1.10; try to do as much as possible on your own.)
5. Recall that $G(\bar{K} / K)$ has profinite (Krull) topology. Topologically $W(\bar{K} / K)$ is a \mathbb{Z}-disjoint union of $G(\bar{K} / K)_{0}$-cosets $G(\bar{K} / K)_{0} \sigma_{n}$ (where σ_{n} is any lift of $\operatorname{Frob}_{q}^{n}, n \in \mathbb{Z}$), where each $G(\bar{K} / K)_{0} \sigma_{n}$ is given the same topology as the profinite topology on $G(\bar{K} / K)_{0}$ via translation by σ_{n}. (It is easy to see that the topology on $W(\bar{K} / K)$ is independent of choices of σ_{n} 's.) Show that the natural inclusion $\iota: W(\bar{K} / K) \rightarrow G(\bar{K} / K)$ is continuous and has dense image. Check that ι is not a topological isomorphism onto $\iota(W(\bar{K} / K))$, where the latter is equipped with the topology induced by that of $G(\bar{K} / K)$.
6. (A rephrase of LCFT) Using the topological isomorphism Art_{K}, construct a natural bijection between the following two sets

- set of continuous characters(=group homomorphisms) $W(\bar{K} / K) \rightarrow \mathbb{C}^{\times}$
- set of continuous characters $K^{\times} \rightarrow \mathbb{C}^{\times}$
and show that it is indeed a bijection. (Note that $W(\bar{K} / K)$ is used, although $W\left(K^{\text {ab }} / K\right)$ could be used as well.)
Remark 0.3. One can show that a continuous character $G(\bar{K} / K) \rightarrow \mathbb{C}^{\times}$should always have finite image whereas $K^{\times} \rightarrow \mathbb{C}^{\times}$and $W(\bar{K} / K) \rightarrow \mathbb{C}^{\times}$can have infinite images. This is another indication that $W(\bar{K} / K)$ is more natural.
Remark 0.4. The above bijection is the "local Langlands correspondence for $G L_{1}$ over K ". The presence of $G L_{1}$ is clearer if we rewrite the objects as $W(\bar{K} / K) \rightarrow G L_{1}(\mathbb{C})$ and $G L_{1}(K) \rightarrow G L(V)$ (with a one-dim complex vector space V). I am not going to state the local Langlands correspondence for $G L_{n}$ over K (which started as a conjecture and became a theorem by Harris-Taylor and Henniart about $10+$ years ago) but merely remark that LCFT generalizes more naturally (in retrospect; there were quite a few unsuccessful attempts) in the rephrased form as above.

