18.786. (Fall 2011) Homework # 7 (due Tue Nov 15)

* The following apply to Problems 1-3 and 6: Let L/K be a finite separable extension of CDVFs with ramification index e and separable residue field extensions. Normalize an additive valuation $v_L : L^{\times} \to \mathbb{Z}$ such that $v_L(\pi_L) = 1$ for any uniformizer $\pi_L \in \mathcal{O}_L$, and similarly v_K such that $v_K(\pi_K) = 1$. Assume that $p \neq 0$ is the characteristic of the residue fields. If L/K is Galois, write G = Gal(L/K) and G_i for the *i*-th ramification group.

- 1. (Serre, IV.2.4) Suppose that K contains a primitive p-th root of unity. Let L be the extension of K obtained by adjoining a p-th root of a uniformizer π_L . Show that L is a cyclic totally ramified Galois extension of K. If σ is a generator of G = Gal(L/K), show that $\sigma \in G_i$, $\sigma \notin G_{i+1}$, where i = e/(p-1), with $e = v_L(p)/p 1$.
- 2. (Serre, IV.2.5) Suppose that $p \nmid n$ and $n < pv_K(p)/(p-1)$. Let $\alpha \in K$ be an element of valuation -n. Show that the Artin-Schreier equation $x^p - x = \alpha$ is irreducible over K, and defines an extension L/K which is Galois with Galois group $\simeq \mathbb{Z}/p\mathbb{Z}$. (Hint: Show that if x is a root of this equation, then the other roots have the form $x + z_i$ ($0 \leq i < p$), with $z_i \in A_L$ and $z_i \equiv i \mod \mathfrak{p}_L$.)
- 3. Continuing Problem 2, show that $G_n = G$ and $G_{n+1} = \{1\}$.
- 4. Let $L = \mathbb{Q}_p(\zeta_{p^n})$ and $K = \mathbb{Q}_p$. Let \mathfrak{P} denote the maximal ideal of $\mathcal{O}_L = \mathbb{Z}_p[\zeta_{p^n}]$. Compute $v_L(\mathcal{D}_{L/K})$ (= $\operatorname{ord}_{\mathfrak{P}}(\mathcal{D}_{L/K})$) in at least two different ways. (One way uses the derivative of the minimal polynomial of a generator of \mathcal{O}_L over \mathcal{O}_K . The other combines higher ramification groups with HW 6, Problem 1.)
- 5. (Serre, III.6.3) Suppose that A is a DVR and that B is "completely decomposed" in the sense that there are n = [L : K] prime ideals of B above the prime ideal \mathfrak{p} of A. Show that in order for there to exist an $x \in B$ such that B = A[x], it is necessary and sufficient that $n \leq |A/\mathfrak{p}|$. (Note: When A and B are CDVRs, we remarked that such an x always exists, cf. Prop III.12.)
- 6. (Serre, IV.2.1) Assume that L/K is finite Galois. If G' is a quotient group of G, show that G'_0 and G'_1 are the images in G' of G_0 and G_1 . Deduce from this (by passage to the limit) a definition of G_0 and G_1 when G is the Galois group of an *infinite* extension.