18.786. (Fall 2011) Homework \# 6 (due Tue Nov 08)

1. (Neu II.10.2) Let $K=\mathbb{Q}_{p}$ and $K_{n}=K(\zeta)$ where ζ is a primitive p^{n}-th root of unity. Show that the ramification groups of K_{n} / K are given as follows $(s \in \mathbb{Z})$:

$$
\begin{gathered}
G_{s}=G\left(K_{n} / K\right), \quad s=0, \\
G_{s}=G\left(K_{n} / K_{1}\right), \quad 1 \leq s \leq p-1, \\
G_{s}=G\left(K_{n} / K_{2}\right), \quad p \leq s \leq p^{2}-1, \\
\cdots \\
G_{s}=1, \quad p^{n-1} \leq s .
\end{gathered}
$$

(Hint: We have shown that $(1-\zeta)^{\varphi\left(p^{n}\right)}=(p)$.)
2. Let F be a number field with a nontrivial valuation $|\cdot|_{v}$. Denote by F_{v} its completion. Fix algebraic closures \bar{F} and \bar{F}_{v} of F and F_{v}, resp. Consider any field embedding $\iota: \bar{F} \hookrightarrow \bar{F}_{v}$ and the map $r: \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right) \rightarrow \operatorname{Gal}(\bar{F} / F)$ given by restricting $\sigma \in \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$ to (an automorphism of) \bar{F} via ι. Check that r is an injective group homomorphism. For any ι and ι^{\prime}, show that the induced r and r^{\prime} are conjugate in the sense that there exists $\gamma \in \operatorname{Gal}(\bar{F} / F)$ such that $r^{\prime}=\gamma r \gamma^{-1}$. (Hence the $\operatorname{Gal}(\bar{F} / F)$-conjugacy class of r is independent of the choice of ι.)

* Note: When v is an infinite place such that $F_{v} \simeq \mathbb{R}$ (rather than \mathbb{C}), the above map defines a well-defined conjugacy class of "complex conjugation" c_{v} in $\operatorname{Gal}(\bar{F} / F)$. For instance if $[F: \mathbb{Q}]=n$ and $F \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^{n}$ then the full Galois group over F possesses (essentially) n complex conjugations corresponding to the real infinite places.

3. Keep the notation of the previous problem. Consider the set of F-algebra homomorphisms $\operatorname{Hom}_{F}\left(\bar{F}, \bar{F}_{v}\right)$ equipped with an action by $\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$ via $\sigma: \tau \mapsto \sigma \circ \tau$. Let $|\cdot|_{\bar{v}}$ be the unique valuation on \bar{F}_{v} extending $|\cdot|_{v}$ on F_{v}. Let $|\cdot|_{v(\tau)}$ be the valuation on \bar{F} defined by $|a|_{v(\tau)}=|\tau(a)|_{\bar{v}}$. Show that the map $\tau \mapsto|\cdot|_{v(\tau)}$ induces a bijection between

$$
\left.\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right) \backslash \operatorname{Hom}_{F}\left(\bar{F}, \bar{F}_{v}\right) \leftrightarrow \text { \{valuations on } \bar{F} \text { extending } v \text { up to equiv. }\right\}
$$

4. (Product formula) Let $|\cdot|_{p}$ and $|\cdot|_{\infty}$ be p-adic and arch valuations on \mathbb{Q} (where p is a prime) normalized so that $|p|_{p}=p^{-1}$ and $|\cdot|_{\infty}$ is the usual absolute value. Let V be the set of all $|\cdot|_{p}$ and $|\cdot|_{\infty}$, which is in bijection with the set of all places of \mathbb{Q}. Show that

$$
\prod_{v \in V}|a|_{v}=1, \quad \forall a \in \mathbb{Q}^{\times} .
$$

Moreover, let K be a finite extension of \mathbb{Q} and denote by V_{K} the set of places of K. Find a suitable normalization of $|\cdot|_{w}$ for each $w \in V_{K}$ (within its equivalence class of valuations) such that

$$
\prod_{w \in V_{K}}|a|_{w}=1, \quad \forall a \in K^{\times} .
$$

* The following are problems from Serre III.§4.

5. Let A be a Dedekind domain with fraction field K. Let L be a finite separable extension of K and B the integral closure of A in L. Let C be a subring of B, containing A, and having the same field of fractions as $B .{ }^{1}$ Show that among all the ideals of B contained in C, there is a largest one, an d that it is the annihilator of the C-module B / C; it is denoted $\mathfrak{f}_{C / B}$ (the "conductor" of B in C). Moreover show that $\mathfrak{f}_{C / B}=\left\{x \in L: x C^{*} \subset B^{*}\right\}$.
(Recall that $B^{*}:=\left\{y \in L: \operatorname{tr}_{L / K}(x y) \in A, \forall x \in B\right\}$ and C^{*} is defined similarly.)
6. In problem 5, suppose that there exists an ideal \mathfrak{c} of C such that $\mathfrak{c} C^{*}=C$. Prove that $\mathfrak{f}_{C / B}=\mathfrak{c} \cdot \mathfrak{D}_{B / A}^{-1}$.
[^0]
[^0]: ${ }^{1}$ For a simple example, take $K=\mathbb{Q}, A=\mathbb{Z}, L=\mathbb{Q}(\sqrt{D})$ for a square-free $D, B=\mathcal{O}_{L}$ and $C=\mathbb{Z}+\mathbb{Z} f \sqrt{D}$ for some $f \in \mathbb{Z} \geq 1$.

