18.786. (Fall 2011) Homework \#5 (due Tue Oct 25)

1. (Neukirch II.1.5) The field \mathbb{Q}_{p} of p-adic numbers has no field automorphisms except the identity.
2. (Neukirch II.2.6) The fields \mathbb{Q}_{p} and \mathbb{Q}_{q} are not isomorphic unless $p=q$.
3. (Neukirch II.3.3) Let k be a field and $K=k(t)$ the function field in one variable. Show that the valuations $v_{\mathfrak{p}}$ associated to the prime ideals $\mathfrak{p}=(p(t))$ of $k[t]$, together with the degree valuation v_{∞}, are the only valuations of K, up to equivalence.
4. (Neukirch II.4.1) An infinite algebraic extension of a complete field K is never complete.
5. (Neukirch II.4.2) Let X_{0}, X_{1}, \ldots be an infinite sequence of unknowns, p a fixed prime number and

$$
W_{n}=X_{0}^{p^{n}}+p X_{1}^{p^{n-1}}+\cdots+p^{n} X_{n}, \quad n \geq 0
$$

Show that there exist polynomials

$$
S_{0}, S_{1}, \ldots ; P_{0}, P_{1}, \ldots \in \mathbb{Z}\left[X_{0}, X_{1}, \ldots ; Y_{0}, Y_{1}, \ldots\right]
$$

such that

$$
\begin{aligned}
& W_{n}\left(S_{0}, S_{1}, \ldots\right)=W_{n}\left(X_{0}, X_{1}, \ldots\right)+W_{n}\left(Y_{0}, Y_{1}, \ldots\right) \\
& W_{n}\left(P_{0}, P_{1}, \ldots\right)=W_{n}\left(X_{0}, X_{1}, \ldots\right) \cdot W_{n}\left(Y_{0}, Y_{1}, \ldots\right) .
\end{aligned}
$$

6. (Neukirch II.4.3) Let A be a commutative ring. For

$$
a=\left(a_{0}, a_{1}, \ldots\right), \quad b=\left(b_{0}, b_{1}, \ldots\right), \quad a_{i}, b_{i} \in A,
$$

put

$$
a+b=\left(S_{0}(a, b), S_{1}(a, b), \ldots\right), \quad a \cdot b=\left(P_{0}(a, b), P_{1}(a, b), \ldots\right)
$$

Show that with these operations the vectors $a=\left(a_{0}, a_{1}, \ldots\right)$ form a commutative ring $W(A)$ with 1 . It is called the ring of Witt vectors over A.

