18.786. (Fall 2011) Homework # 4 (due Thu Oct 13)

- 1. (Neukirch I.9.1) If L/K is a finite Galois extension of algebraic number fields with noncyclic Galois group, then there are at most finitely many nonsplit prime ideals of \mathcal{O}_K . (A prime ideal \mathfrak{p} of \mathcal{O}_K is nonsplit if there is only one prime of \mathcal{O}_L dividing \mathfrak{p} .)
- 2. (Neukirch I.9.3) Every quadratic number field $\mathbb{Q}(\sqrt{d})$ is contained in some cyclotomic field $\mathbb{Q}(\zeta_n)$, ζ_n a primitive *n*-th root of unity.
- 3. (Neukirch I.10.2) For every finite abelian group A there exists a Galois extension L/\mathbb{Q} with Galois group $\operatorname{Gal}(L/\mathbb{Q}) \simeq A$. (Hint: Prove and use the fact that for every $n \ge 1$, there are infinitely many prime numbers $p \equiv 1 \mod n$.)
- 4. Let L and L' be finite (not necessarily Galois) extensions of a number field K (in the algebraic closure of K). Let \mathfrak{p} be a prime of K. Prove that \mathfrak{p} is unramified in both L and L' if and only if \mathfrak{p} is unramified in the composite field LL'.
- 5. Let L/K be a finite Galois extension of number fields. Let \mathfrak{p} be a prime of K unramified in L. Show that the following are equivalent.
 - p splits completely in L.
 - For some prime \mathfrak{P} of L above \mathfrak{p} , the Frobenius element $\operatorname{Frob}_{\mathfrak{P}/\mathfrak{p}}$ is the identity element of $\operatorname{Gal}(L/K)$.
- 6. Let L/K be a finite Galois extension of number fields again, and let \mathfrak{p} be a prime of K and \mathfrak{P} a prime of L dividing \mathfrak{p} . Recall we write $k(\mathfrak{p}) := \mathcal{O}_K/\mathfrak{p}$. For each integer $s \ge 0$, define

$$I_s := \{ \sigma \in D_{\mathfrak{P}} : \sigma(a) \equiv a \pmod{\mathfrak{P}^{s+1}}, \ \forall a \in \mathcal{O}_L \}.$$

(Note that I_0 is the inertia group for \mathfrak{P} over K.) Show that I_s is a normal subgroup of $D_{\mathfrak{P}}$ and that there exists N > 0 such that $I_s = \{1\}$ for all $s \geq N$.