18.786. (Fall 2011) Notes on splitting primes

Proposition 0.1. (a variant of Neukirch I.8.3) Let L/K and L'/K be finite extensions of number fields. (One could consider the case where K is the field of fractions of a Dedekind domain and L, L' are finite separable over K.) Show that a prime ideal \mathfrak{p} of K (of \mathcal{O}_K , to be precise) is totally split in both L/K and L'/K if and only if it is totally split in the composite extension LL'/K.

Proof of the "only if" part. Consider the \mathcal{O}_K -algebra map

 $\phi: \mathcal{O}_L \otimes_{\mathcal{O}_K} \mathcal{O}_{L'} \to \mathcal{O}_{LL'}, \qquad a \otimes b \mapsto ab.$

Let A be the image of ϕ . Note that \mathcal{O}_L and $\mathcal{O}_{L'}$ together generate LL' over K.

In fact it is simpler to argue after localization. Note that $\mathcal{O}_{K,\mathfrak{p}}$ is a PID as \mathcal{O}_K is Dedekind. By localizing all \mathcal{O}_K -algebras at \mathfrak{p} , we obtain a surjection

$$\phi_{\mathfrak{p}}: \mathcal{O}_{L,\mathfrak{p}} \otimes_{\mathcal{O}_{K,\mathfrak{p}}} \mathcal{O}_{L',\mathfrak{p}} \twoheadrightarrow A_{\mathfrak{p}} \quad (\subset \mathcal{O}_{LL',\mathfrak{p}}).$$

It suffices to show that $\mathcal{O}_{LL',\mathfrak{p}}$ contains at least [LL':K] prime ideals containing \mathfrak{p} (or equivalently $\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}}$). Since $\mathcal{O}_{L,\mathfrak{p}}$ and $\mathcal{O}_{L',\mathfrak{p}}$ generate LL' over K, it follows that their image $A_{\mathfrak{p}}$ also generates LL' over K. Then

it is easy to see that $A_{\mathfrak{p}}$ is an $\mathcal{O}_{K,\mathfrak{p}}$ -algebra which is free of rank [LL':K] as an $\mathcal{O}_{K,\mathfrak{p}}$ -module. ...(*)

The map $\phi_{\mathfrak{p}}$ modulo \mathfrak{p} is a surjective $\mathcal{O}_K/\mathfrak{p}$ -algebra map

$$\mathcal{O}_{L,\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{L,\mathfrak{p}}\otimes_{\mathcal{O}_{K,\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}}}\mathcal{O}_{L',\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{L',\mathfrak{p}}\twoheadrightarrow A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}.$$

As \mathfrak{p} splits completely in L and L', the left hand side is isomorphic to $(\mathcal{O}_K/\mathfrak{p})^{[L:K]} \otimes_{\mathcal{O}_K/\mathfrak{p}} (\mathcal{O}_K/\mathfrak{p})^{[L':K]} \simeq (\mathcal{O}_K/\mathfrak{p})^{[L:K][L':K]}$. Therefore the quotient $A_\mathfrak{p}/\mathfrak{p}A_\mathfrak{p}$ is isomorphic to $(\mathcal{O}_K/\mathfrak{p})^m$ for some m. By (*),

$$A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}\simeq (\mathcal{O}_K/\mathfrak{p})^{[LL':K]}$$

as an $\mathcal{O}_K/\mathfrak{p}$ -algebra. In particular $A_\mathfrak{p}$ contains [LL':K] maximal ideals, say $\mathfrak{P}_1, ..., \mathfrak{P}_{[LL':K]}$, containing \mathfrak{p} .

This together with the fact that $\mathcal{O}_{LL',\mathfrak{p}} \supset A_{\mathfrak{p}}$, implies that $\mathcal{O}_{LL',\mathfrak{p}}$ has at least [LL':K] maximal ideals containing \mathfrak{p} . Indeed, for each i we choose any maximal ideal \mathfrak{P}'_i of $\mathcal{O}_{LL',\mathfrak{p}}$ containing \mathfrak{P}_i (you can check that $\mathfrak{P}_i \mathcal{O}_{LL',\mathfrak{p}} \neq \mathcal{O}_{LL',\mathfrak{p}}$ so such a \mathfrak{P}'_i can be chosen), and it is enough to note that $\mathfrak{P}'_i \neq \mathfrak{P}'_j$ if $i \neq j$. (If $\mathfrak{P}'_i = \mathfrak{P}'_j$ happened, then their intersection with $A_{\mathfrak{p}}$ contains distinct maximal ideals \mathfrak{P}_i and \mathfrak{P}_j , which generate the whole $A_{\mathfrak{p}}$. This is absurd.)

Remark 0.2. An alternative approach is to use completions at prime ideals, which is conceptually easier. (One of you used this.) One can show that \mathfrak{p} splits (completely) in L if and only if $L \otimes_K K_{\mathfrak{p}}$ is isomorphic to a finite product of $K_{\mathfrak{p}}$'s as a $K_{\mathfrak{p}}$ -algebra. (If so, the number of copies must be [L : K] by counting the vector space dimension over $K_{\mathfrak{p}}$.) We will get to this kind of business later in class, so let's take it on faith for the moment. Now suppose that \mathfrak{p} splits in L and L'. It is easy to see that the natural $K_{\mathfrak{p}}$ -algebra map

$$(L \otimes_K K_{\mathfrak{p}}) \otimes_{K_{\mathfrak{p}}} (L' \otimes_K K_{\mathfrak{p}}) \to LL' \otimes_K K_{\mathfrak{p}}, \quad (a \otimes b) \otimes (a' \otimes b') \mapsto aa' \otimes bb'$$

is onto. Since the assumption implies that the LHS is a product of $K_{\mathfrak{p}}$'s, it follows that the RHS has the same form. Therefore \mathfrak{p} splits in LL'.

Proposition 0.3. Let L/K be a finite Galois extension. Let \mathfrak{P} be a prime of L above a prime \mathfrak{p} of K, and denote by $D_{\mathfrak{P}}$ the decomposition group. Write $\mathfrak{P}_D := \mathfrak{P} \cap \mathcal{O}_{L^{D_{\mathfrak{P}}}}$ and $e = e_{\mathfrak{P}/\mathfrak{p}}$, $f = f_{\mathfrak{P}/\mathfrak{p}}$ as usual (which depend only on \mathfrak{p} and not on \mathfrak{P}). TFAE. (The Following Are Equivalent.)

- (i) $L^{D_{\mathfrak{P}}}$ is a Galois extension of K.
- (ii) \mathfrak{p} splits completely in $L^{D_{\mathfrak{P}}}$.

Proof of $(i) \Rightarrow (ii)$. Previously we have shown that \mathfrak{P}_D is non-split in L and that $e_{\mathfrak{P}/\mathfrak{P}_D} = e$, $f_{\mathfrak{P}/\mathfrak{P}_D} = f$ (also $|D_{\mathfrak{P}}| = ef$). Since

$$e = e_{\mathfrak{P}/\mathfrak{P}_D} e_{\mathfrak{P}_D/\mathfrak{p}},\tag{0.1}$$

we have $e_{\mathfrak{P}_D/\mathfrak{p}} = 1$. Similarly $f_{\mathfrak{P}_D/\mathfrak{p}} = 1$. Now if $L^{D_{\mathfrak{P}}}$ is Galois over K then the Galois group permutes all prime ideals of $L^{D_{\mathfrak{P}}}$ above \mathfrak{p} . Hence for every \mathfrak{q} of $L^{D_{\mathfrak{P}}}$ above \mathfrak{p} , $e_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{q}/\mathfrak{p}} = 1$. Hence \mathfrak{p} splits in $L^{D_{\mathfrak{P}}}$. \Box

¹In a fancy language, tensoring $\otimes_{\mathcal{O}_{K,\mathfrak{p}}} \mathcal{O}_{K,\mathfrak{p}}/\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}}$ is a right exact functor, which preserves surjectivity.

First Proof of $(ii) \Rightarrow (i)$. Let L' be the Galois closure of $L^{D_{\mathfrak{P}}}$ in L. By Proposition 0.1, L' is Galois over L. If $L' \neq L$ then $[L':K] > [L^{D_{\mathfrak{P}}}:K] = r$. However Proposition 0.1 tells us that \mathfrak{p} splits in L', so \mathfrak{p} splits into at least r+1 primes in L' and so also in L. This is a contradiction, as r was the number of primes of L dividing \mathfrak{p} .

Second Proof of $(ii) \Rightarrow (i)$. Let \mathfrak{Q} be any prime of L above \mathfrak{p} and let \mathfrak{q} be the unique prime of $L^{D_{\mathfrak{P}}}$ dividing \mathfrak{Q} . By assumption $e_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{q}/\mathfrak{p}} = 1$. Thanks to an identity like (0.1), $e_{\mathfrak{Q}/\mathfrak{q}} = e$ and similarly $f_{\mathfrak{Q}/\mathfrak{q}} = f$. From this we have $[L:L^{D_{\mathfrak{P}}}] = e_{\mathfrak{Q}/\mathfrak{q}}f_{\mathfrak{Q}/\mathfrak{q}}$, and it follows that \mathfrak{Q} is the unique prime above \mathfrak{q} and that $D_{\mathfrak{P}} \subset D_{\mathfrak{Q}}$ (i.e. every element of $D_{\mathfrak{P}}$ fixed \mathfrak{Q}). Since $|D_{\mathfrak{P}}| = |D_{\mathfrak{Q}}| = ef$, they are equal.

In particular, for any $\sigma \in G$, applying the above to $\mathfrak{Q} = \sigma(\mathfrak{P})$, we obtain

$$D_{\mathfrak{P}} = D_{\sigma(\mathfrak{P})} = \sigma D_{\mathfrak{P}} \sigma^{-1}$$

Therefore $D_{\mathfrak{P}}$ is normal in G, which implies that $L^{D_{\mathfrak{P}}}$ is Galois over K.