
18.786. (Fall 2011) Notes on splitting primes

Proposition 0.1. (a variant of Neukirch I.8.3) Let L/K and L′/K be finite extensions of number fields.
(One could consider the case where K is the field of fractions of a Dedekind domain and L, L′ are finite
separable over K.) Show that a prime ideal p of K (of OK , to be precise) is totally split in both L/K and
L′/K if and only if it is totally split in the composite extension LL′/K.

Proof of the “only if” part. Consider the OK-algebra map

φ : OL ⊗OK
OL′ → OLL′ , a⊗ b 7→ ab.

Let A be the image of φ. Note that OL and OL′ together generate LL′ over K.
In fact it is simpler to argue after localization. Note that OK,p is a PID as OK is Dedekind. By localizing

all OK-algebras at p, we obtain a surjection

φp : OL,p ⊗OK,p
OL′,p � Ap (⊂ OLL′,p).

It suffices to show that OLL′,p contains at least [LL′ : K] prime ideals containing p (or equivalently pOK,p).
Since OL,p and OL′,p generate LL′ over K, it follows that their image Ap also generates LL′ over K. Then

it is easy to see that Ap is an OK,p-algebra which is free of rank [LL′ : K] as an OK,p-module. ...(∗)
The map φp modulo p is a surjective1 OK/p-algebra map

OL,p/pOL,p ⊗OK,p/pOK,p
OL′,p/pOL′,p � Ap/pAp.

As p splits completely in L and L′, the left hand side is isomorphic to (OK/p)[L:K] ⊗OK/p (OK/p)[L
′:K] '

(OK/p)[L:K][L′:K]. Therefore the quotient Ap/pAp is isomorphic to (OK/p)m for some m. By (∗),

Ap/pAp ' (OK/p)[LL
′:K]

as an OK/p-algebra. In particular Ap contains [LL′ : K] maximal ideals, say P1, ...,P[LL′:K], containing p.
This together with the fact that OLL′,p ⊃ Ap, implies that OLL′,p has at least [LL′ : K] maximal ideals

containing p. Indeed, for each i we choose any maximal ideal P′i of OLL′,p containing Pi (you can check that
PiOLL′,p 6= OLL′,p so such a P′i can be chosen), and it is enough to note that P′i 6= P′j if i 6= j. (If P′i = P′j
happened, then their intersection with Ap contains distinct maximal ideals Pi and Pj , which generate the
whole Ap. This is absurd.)

�

Remark 0.2. An alternative approach is to use completions at prime ideals, which is conceptually easier.
(One of you used this.) One can show that p splits (completely) in L if and only if L⊗K Kp is isomorphic
to a finite product of Kp’s as a Kp-algebra. (If so, the number of copies must be [L : K] by counting the
vector space dimension over Kp.) We will get to this kind of business later in class, so let’s take it on faith
for the moment. Now suppose that p splits in L and L′. It is easy to see that the natural Kp-algebra map

(L⊗K Kp)⊗Kp (L′ ⊗K Kp)→ LL′ ⊗K Kp, (a⊗ b)⊗ (a′ ⊗ b′) 7→ aa′ ⊗ bb′

is onto. Since the assumption implies that the LHS is a product of Kp’s, it follows that the RHS has the
same form. Therefore p splits in LL′.

Proposition 0.3. Let L/K be a finite Galois extension. Let P be a prime of L above a prime p of K, and
denote by DP the decomposition group. Write PD := P ∩ O

L
DP and e = eP/p, f = fP/p as usual (which

depend only on p and not on P). TFAE. (The Following Are Equivalent.)

(i) LDP is a Galois extension of K.
(ii) p splits completely in LDP.

Proof of (i)⇒(ii). Previously we have shown that PD is non-split in L and that eP/PD
= e, fP/PD

= f (also
|DP| = ef). Since

e = eP/PD
ePD/p, (0.1)

we have ePD/p = 1. Similarly fPD/p = 1. Now if LDP is Galois over K then the Galois group permutes all

prime ideals of LDP above p. Hence for every q of LDP above p, eq/p = fq/p = 1. Hence p splits in LDP . �

1In a fancy language, tensoring ⊗OK,pOK,p/pOK,p is a right exact functor, which preserves surjectivity.
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First Proof of (ii)⇒ (i). Let L′ be the Galois closure of LDP in L. By Proposition 0.1, L′ is Galois over L.
If L′ 6= L then [L′ : K] > [LDP : K] = r. However Proposition 0.1 tells us that p splits in L′, so p splits into
at least r + 1 primes in L′ and so also in L. This is a contradiction, as r was the number of primes of L
dividing p. �

Second Proof of (ii)⇒ (i). Let Q be any prime of L above p and let q be the unique prime of LDP dividing
Q. By assumption eq/p = fq/p = 1. Thanks to an identity like (0.1), eQ/q = e and similarly fQ/q = f . From

this we have [L : LDP ] = eQ/qfQ/q, and it follows that Q is the unique prime above q and that DP ⊂ DQ

(i.e. every element of DP fixed Q). Since |DP| = |DQ| = ef , they are equal.
In particular, for any σ ∈ G, applying the above to Q = σ(P), we obtain

DP = Dσ(P) = σDPσ
−1.

Therefore DP is normal in G, which implies that LDP is Galois over K.
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