18.786. (Fall 2011) Homework \# 3 (due Tue Oct 4)

1. (Neukirch I.7.1) Let $D>1$ be a square-free integer and d the discriminant of the real quadratic number field $K=\mathbb{Q}(\sqrt{D})$. Let x_{1}, y_{1} be the uniquely determined rational integer solution of the equation

$$
x^{2}-d y^{2}=-4 \quad\left(\text { resp. } x^{2}-d y^{2}=4\right)
$$

for which $x_{1}, y_{1}>0$ are as small as possible if $x^{2}-d y^{2}=-4$ has rational integer solutions (resp. otherwise). Then show that

$$
\epsilon_{1}=\frac{x_{1}+y_{1} \sqrt{d}}{2}
$$

is a fundamental unit of K. (The pair of equations $x^{2}-d y^{2}= \pm 4$ is called Pell's equation.)
2. (Neukirch I.7.4) Let ζ be a primitive 5 -th root of unity. Show that the units in $\mathbb{Z}[\zeta]$ are

$$
\left\{ \pm \zeta^{k}(1+\zeta)^{n} \mid 0 \leq k<5, n \in \mathbb{Z}\right\}
$$

3. Find a unit in $\mathbb{Q}(\sqrt[3]{6})$. Find a unit in $\mathbb{Q}(\sqrt[3]{22})$ as well. (I mean, a unit in the ring of integers for each field different from $\{ \pm 1\}$. You may get help from a computer/calculator if you like, but be sure to explain your method whether it's based on theory, algorithm, or something else.)
4. Prove that $h_{\mathbb{Q}(\sqrt{-5})}=2$ and that $h_{\mathbb{Q}(\sqrt{-23})}=3$. (A similar problem is in Milne's Exercise 4.4. Let me cite his hint for you: Compute the Minkowski bound to find a small set of generators for the class group. In order to show that two ideals \mathfrak{a} and \mathfrak{b} are equivalent, it is often easiest to verify that $\mathfrak{a b}{ }^{m-1}$ is principal, where m is the order of \mathfrak{b} in the class group.)
5. Let ζ be a primitive p-th root of unity. We accept that $\mathbb{Z}[\zeta]$ is the ring of integers for $\mathbb{Q}(\zeta)$. Show that $\frac{\zeta^{s}-1}{\zeta^{t}-1} \in \mathbb{Z}[\zeta]^{\times}$(where $s, t \geq 1$ and p does not divide $s t$) and that the prime ideal $(p) \subset \mathbb{Z}$ is totally ramified in $\mathbb{Q}(\zeta)$. (You may try to show $(p)=(1-\zeta)^{p-1}$ as ideals of $\mathbb{Z}[\zeta]$. Don't forget to check that $(1-\zeta)$ is a prime ideal of $\mathbb{Z}[\zeta]$.
6. (a variant of Neukirch I.8.3) Let L / K and L^{\prime} / K be finite extensions of number fields. (One could consider the case where K is the field of fractions of a Dedekind domain and L, L^{\prime} are finite separable over K.) Show that a prime ideal \mathfrak{p} of K (of \mathcal{O}_{K}, to be precise) is totally split in both L / K and L^{\prime} / K if and only if it is totally split in the composite extension $L L^{\prime} / K$. (Note: By using this you can easily solve Neukirch I.8.4, which is sometimes useful. You need not write the solution for I.8.4.)
$* * *$ As I did not have enough time to set up terminology, let me do it here. The setup is that we have $A \subset K, B \subset L$ as in class, where L is a finite separable extension of L, A is Dedekind and B is the integral closure of A in L. Let \mathfrak{p} be a nonzero prime of A and $\mathfrak{P} \supset \mathfrak{p}$ a prime of B. We say

- \mathfrak{p} is ramified in $L($ or in $B)$ if $e_{\mathfrak{P}}=1$ for some $\mathfrak{P} \supset \mathfrak{p}$.
- \mathfrak{p} splits completely (or totally split) in L if $e_{\mathfrak{P}}=f_{\mathfrak{P}}=1$ for all $\mathfrak{P} \supset \mathfrak{p}$.
$* * *$ For problem 4, here is another hint. By applying the Minkowski bound, it boils down to examining ideals \mathfrak{a} of \mathcal{O}_{F} (the ring of integers) with bounded norm. As long as you can find all primes of \mathcal{O}_{F} with small norms, you can list the finitely many possibilities for \mathfrak{a} by using the fact that if $\mathfrak{a}=\prod_{i=1}^{r} \mathfrak{P}_{i}^{e_{i}}$ then $N(\mathfrak{a})=\prod_{i=1}^{r} N\left(\mathfrak{P}_{i}\right)^{e_{i}}$. The primes of \mathcal{O}_{F} with small norms can be identified by examining how the ideals $(2),(3), \ldots$ factorize in \mathcal{O}_{F}.

