18.786. (Fall 2011) Homework \# 1 (due Tue Sep 20)

1. Let $F=\mathbb{Q}(\sqrt{D})$, where $0 \neq D \in \mathbb{Z}$ is a square-free integer such that $D \neq \pm 1$. According to what we have learned, the ring of integers \mathcal{O}_{F} is a free \mathbb{Z}-module of rank $[F: \mathbb{Q}]=2$. Exhibit \mathcal{O}_{F} by writing down a \mathbb{Z}-basis for \mathcal{O}_{F} and checking that it is indeed a \mathbb{Z}-basis. Compute d_{F}, the discriminant of F. (Remark: You may need to do some case-by-case analysis.)
2. Let ζ_{n} be a primitive n-th root of unity $\left(n \in \mathbb{Z}_{>2}\right)$ in an algebraic closure of \mathbb{Q}, i.e. $\left(\zeta_{n}\right)^{n}=1$ and $\zeta_{m} \neq 1$ for any $1<m<n$. Let $F=\mathbb{Q}\left(\zeta_{n}\right)$. Then it turns out that $\mathcal{O}_{F}=\mathbb{Z}\left[\zeta_{n}\right]$ (the subring of F generated by \mathbb{Z} and ζ_{n}). Compute d_{F}. (You need not prove that $\mathcal{O}_{F}=\mathbb{Z}\left[\zeta_{n}\right]$, which will be treated later in the course, but you may give it a try.)
3. Let k be a field. Let A be a k-algebra which is an integral domain. If A is finitely generated as a k-module then show that A is a field. (This fact was used in class.)
4. (Neukirch I.2.7) For any number field K, prove that d_{K} is either 0 or 1 modulo 4. (Hint ${ }^{1}$: The determinant $\operatorname{det}\left(\sigma_{i} \omega_{j}\right)$ of an integral basis ω_{j} is a sum of terms, each prefixed by a positive or a negative sign. Writing P, resp. N, for the sum of the positive, resp. negative terms, one finds $\left.d_{K}=(P-N)^{2}=(P+N)^{2}-4 P N.\right)$
5. (Neukirch I.3.4) Prove that a Dedekind domain with a finite number of prime ideals is a principal ideal domain. (Hint: If $\mathfrak{a}=\mathfrak{p}_{1}^{\nu_{1}} \cdots \mathfrak{p}_{r}^{\nu_{r}} \neq 0$ is an ideal, then choose elements $\pi_{i} \in \mathfrak{p}_{i} \backslash \mathfrak{p}_{i}^{2}$ and apply the Chinese remainder theorem for the cosets $\pi_{i}^{\nu_{i}} \bmod \mathfrak{p}_{i}^{\nu_{i}+1}$.)
6. (Neukirch I.3.6) Show that every ideal of a Dedekind domain can be generated by two elements. (Hint: It would be useful to show that A / \mathfrak{a} is a PID for an ideal $0 \neq \mathfrak{a}$ of a Dedekind domain A. For this the following hint applies: For $\mathfrak{a}=\mathfrak{p}^{n}$ the only proper ideals of A / \mathfrak{a} are given by $\mathfrak{p} / \mathfrak{p}^{n}, \ldots, \mathfrak{p}^{n-1} / \mathfrak{p}^{n}$. Choose $\pi \in \mathfrak{p} \backslash \mathfrak{p}^{2}$ and show that $\mathfrak{p}^{\nu}=\left(\pi^{\nu}\right)+\mathfrak{p}^{n}$.)
[^0]
[^0]: ${ }^{1}$ This is copied from Neukirch so as not to give disadvantage to those who do not own a copy. The same principle applies to the hints for other exercise taken from Neukirch.

