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Electromagnetic cavity with arbitrary Q and small modal
volume without a complete photonic bandgap
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We show how an electromagnetic cavity with arbitrarily high Q and small (bounded) modal volume can be
formed in two or three dimensions with a proper choice of dielectric constants. Unlike in previous work,
neither a complete photonic bandgap nor a trade-off in mode localization for Q is required. Rather, scattering
and radiation are prohibited by a perfect mode match of the TE-polarized modes in each subsection of a Bragg
resonator. Q values in excess of 105 are demonstrated through finite-difference time-domain simulations of
two- and three-dimensional structures with modal areas or volumes of the order of the wavelength squared
or cubed. © 2002 Optical Society of America

OCIS codes: 050.2230, 230.5750.
Electromagnetic resonant cavities, which trap light
within a finite volume for many optical periods, are an
essential component of many important optical devices
and effects, from lasers to f ilters to nonlinear switches.
Cavities are characterized by two quantities: the
modal volume, V ,1,2 and the quality factor, Q [the
number of optical periods to decay by e22p (Refs. 3 and
4)]. In many applications (e.g., lasers, f ilters, and
nonlinear devices), high Q and small V are desirable.
We describe an analytical mode-matching mechanism
in two and three dimensions that, in principle, allows
arbitrarily high Q to be achieved with a bounded
modal area or volume of the order of the wavelength
squared or cubed. Our mechanism does not employ
a complete photonic bandgap,5 which, at the expense
of complex structures in three dimensions, was the
only previously known route to such results.6 Unlike
with other designs to improve cavity Q in the absence
of a complete bandgap,4,7 –11 we need not increase the
modal volume V as a trade-off for arbitrarily high
Q—indeed, our V is roughly independent of Q.

When a waveguide mode encounters an interface,
there are normally radiation losses. However, if the
guided mode in one section can be expressed purely
as a linear combination of the forward and backward
guided modes of the other section, there will be ref lec-
tions without scattering or radiation. A quarter-wave
stack and a Fabry–Perot cavity (as in Fig. 2, below)
can then be constructed through a series of such junc-
tions to trap a mode that decays exponentially in all
directions. The operating characteristics of the cavity
are then completely described by an equivalent one-
dimensional system. In this Letter we demonstrate
how to achieve such mode matching with a simple an-
alytic condition on the dielectric constants and present
examples of such high-Q cavities in two and three
dimensions. (A similar mode-matching proof, in
two dimensions only and without application to
cavities, was given in Ref. 12 to eliminate losses
from index-confined Bragg mirrors.) To demonstrate
this result, we begin by using the wave equation to
develop necessary conditions on both the materials
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and the modes for the junction of two step-index
waveguides (depicted in Fig. 1) to be radiation free.
We then show that a superposition of forward- and
backward-propagating guided modes entirely satisfies
the boundary conditions, precluding any coupling to
radiation modes.

For guided modes propagating along ẑ, the electric
field E in a waveguide has z dependence exp�2jbz�
and obeys the wave equation

�=2
T 1 m0eiv

2 2 b2�E � 0 , (1)

in the piecewise-uniform regions i, where =2
T � =2 2 ≠2

z
denotes the transverse Laplacian (similarly for Ẽ, b̃,
and ẽi and in the second waveguide). Since the mag-
netic and transverse electric f ields must be continuous
across the junction, the transverse-mode profiles ET
and ẼT must be at least componentwise proportional if
the field solutions are to be composed solely of guided
modes, so we require that Eq. (1) be the same for both
waveguides. Thus, eiv

2 2 b2�m0 � ẽiv
2 2 b̃2�m0,

which implies that

e1 2 e2 � ẽ1 2 ẽ2 . (2)

Equation (2), however, is incompatible with the con-
dition of continuity on n̂ ? �eiEi�, except in the trivial
case of ei � ẽi or when the normal component of the

Fig. 1. Schematic junction of two step-index waveguides.
© 2002 Optical Society of America
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Ei is zero. Therefore, we immediately restrict our at-
tention to the case in which Eq. (2) is satisfied and the
electric field is TE (transverse electric, i.e., purely par-
allel to the waveguide walls).

Under these conditions, the TE fields in the two
waveguides satisfy the same differential equations and
have the same boundary conditions and therefore per-
mit identical (or proportional) solutions. It remains
to be shown that a superposition of only these guided
modes satisfies all the boundary conditions at the junc-
tion. For this to hold, we must include the magnetic
field, whose transverse components are given by Fara-
day’s law in the TE case:

ẑ
≠

≠z
3 ET � 2jvm0HT � 2jbẑ 3 ET . (3)

Now, we take as a trial solution a superposition of
a forward- and a backward-propagating mode in the
left-hand waveguide and a single forward-propagating
mode in the right-hand waveguide. At the boundary,
it is necessary and suff icient that the transverse f ield
profiles be continuous, and thus

ET �1 1 r� � t ? ẼT , (4)

HT �1 2 r� � t ? H̃T , (5)

where jrj2 and jtj2 are the ref lection and transmis-
sion coeff icients, respectively. By applying Eq. (3) to
Eq. (5) and solving for r, given from above that the TE
field profiles are proportional, we find that all bound-
ary conditions are satisfied with the usual ref lection
coeff icient7:

r �
neff 2 ñeff

neff 1 ñeff

, (6)

for the effective indices neff � bC�v. That is, the
unique solution of Maxwell’s equations consists of
forward- and backward-propagating modes of normal-
ized amplitudes 1 and r, respectively, in the left-hand
guide and a single forward-propagating mode in the
right-hand guide of normalized amplitude t � 1 1 r.

In summary, we have shown that if Eq. (2) is satis-
fied and the excited mode is purely TE, all boundary
conditions at the junction are necessarily satisfied by
guided-mode solutions and the junction is radiation
free. In two dimensions, one can always choose
the electric field to be TE polarized (polarization
everywhere out of the plane in Fig. 1). In three di-
mensions, for cylindrical waveguides, the azimuthally
polarized TE0l modes are purely TE: Their po-
larization is everywhere directed along f̂ (parallel
to the walls). Because there are only ref lections,
the system is effectively one dimensional and so a
quarter-wave stack (thicknesses p�2b and p�2b̃)
with a quarter-wave defect13 can be used to opti-
mally confine light in the axial direction without
sacrif icing lateral conf inement or Q. In fact, the
only limitations on the cavity Q will result from
the limited number of Bragg layers and the fi-
nite extent of the cladding, as well as fabrication
imperfections.

The theory presented above is exact, but we also
present numerical results to illustrate the theory
and the effects of finite system size. We consider
the structure, depicted in Fig. 2, comprising a quar-
ter-wave stack of waveguides with a quarter-wave
Fabry–Perot defect in the center of the structure,
with N Bragg bilayers on either side. The core
width a is arbitrary, but here it was chosen to ensure
single-mode guidance and satisfies a�l � 0.2839.
The indices were chosen to satisfy Eq. (2), with indices
n1 � 3, n2 �

p
6, ñ1 � 2, and ñ2 � 1; the associated

effective indices of the guide sections were calcu-
lated to be neff�2.8141 and ñeff� 1.7086. The f ield
(Fig. 2) and its Q were computed by finite-difference
time-domain simulation.14 Two variations of the
structure were considered: one with N � 10 bilayers
and the other with N � 15 bilayers. In each case,
the cladding width T was varied and the cavity Q
was determined from the energy decay in the cavity.
The values of Q increase nearly expontially with the
cladding width (Fig. 3) until maxima are reached.
Comparisons with Q of one-dimensional stacks with

Fig. 2. Two dimensional �x 2 z� Fabry–Perot cavity,
with e in gray scale, confining a TE mode whose field
Ey is shown as blue (red) for negative (positive). The
cavity consists of alternating index-guided waveguides
with core�cladding indices n1�n2 and ñ1�ñ2, where the core
has width a and the n2 regions have f inite width T . The
indices satisfy Eq. (2), which ensures zero radiation losses
at the waveguide interfaces.

Fig. 3. Q as a function of cladding thickness T for the
two-dimensional cavity of Fig. 2 and the three-dimensional
cavity for Fig. 4, below, for different numbers N of Bragg
periods on either side of the cavity. Q increases exponen-
tially with T or N , depending on which one is limiting
the Q.
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Fig. 4. Schematic of a three-dimensional Fabry–Perot
cavity consisting of alternating index-guide cylindrical
waveguides stacked in the z direction with core�cladding
indices n1�n2 and ñ1�ñ2, where the core (seen in cutaway
at the bottom) has diameter a and the cladding has
diameter T . When the indices satisfy Eq. (2), the TE01
mode does not radiate at the waveguide interfaces.

the same effective indices reveal that maximum Q
obtained in the simulations are precisely those of
the equivalent one-dimensional structures, thereby
demonstrating that Q are limited only by N when
the lateral extent of the structure is sufficient. In
addition to Q, the modal area of this structure,
A � �0.31l�2, was calculated according to the defini-
tion A �

R
ejEj2dA�max�ejEj2�.1,2

Similar results are possible in three dimensions if
one employs, e.g., the TE01 mode of cylindrical struc-
ture. A schematic of such a structure is depicted in
Fig. 4. Here, again, we consider a quarter-wave stack
with a quarter-wavelength defect and the same indices
as in our two-dimensional example. In this case we
employ a shorter wavelength (or a larger core diameter
a) with a�l � 0.5182 to support a TE01 mode, since this
mode is not fundamental. The effective indices of the
TE01 mode are then neff�2.518 and ñeff� 1.158. We
again measure the cavity Q as a function of N and T
by finite-difference time-domain simulations, and the
results are shown in Fig. 3. On account of the higher
effective-index contrast, only N � 10 is required for Q
of greater than 105 (with a cladding diameter T � 6a).
The modal volume, V ,1,2 of the structure was calculated
and found to be V � �0.406l�3.

In summary, we have shown that by satisfying a
simple criterion on the indices and employing pure
TE modes, we can construct resonant cavities with
arbitrary Q and small (bounded) modal volume in
both two and three dimensions without a complete
photonic bandgap. Moreover, we have demonstrated
exemplary designs based on a standard quarter-wave
stack with a center quarter-wave defect, exhibiting
Q of more than 105 with modest system sizes. The
Q values of such cavities are limited by the system
size (e.g., N and T above), the degree to which Eq. (2)
on e can be satisfied, material absorption, surface
roughness, and other disorder. More-complicated
mirror structures (e.g., non-quarter-wave shifted) and
(or) multiple defect sites may be used to tailor the
transmission and dispersion characteristics of a cav-
ity. In practice, to relax the material constraints, one
may combine our mode-matching technique with some
other strategy for increasing Q, such as one based on
mode delocalization, or perhaps use mode matching in
one dimension and two-dimensional photonic bandgap
confinement in the others.
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12. J. Čtyroký, J. Opt. Soc. Am. A 18, 435 (2001).
13. P. Yeh, Optical Waves in Layered Media (Wiley,

New York, 1988).
14. K. S. Kunz and R. J. Luebbers, The Finite–Difference

Time-Domain Method for Electromagnetics (CRC,
Boca Raton, Fla., 1993)


