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Abstract: Photonic crystals of one- or two- 
dimensional periodicity can be used to achieve 
three-dimensional photon confinement in 
dielectric waveguides with modal volumes of the 
order of a cubic half-wavelength. Since photonic 
crystals of low-dimensional periodicity do not 
have full three-dimensional bandgaps, the 
microcavities undergo increasing radiation losses 
with decreasing modal volumes. High-Q resonant 
modes can be generated by reducing the strength 
of the photon confinement. Increasingly, larger 
modal volumes lead to lower radiation losses and 
more efficient coupling to waveguide modes 
outside the cavity. 

1 Introduction 

The confinement of light to small volumes has impor- 
tant consequences on the properties of optical emission. 
The density of electromagnetic states, for example, can 
be significantly modified, and spontaneous emission 
can be either enhanced or inhibited. Confined systems 
can lead to the reduction in size and power requirement 
of integrated optical components, to single-mode oper- 
ation of light-emitting devices, to the reduction of las- 
ing thresholds in semiconductor lasers, and to higher 
modulation speeds [l]. 

Photonic bandgap (PBG) materials, also known as 
photonic crystals, offer a method of achieving strong 
photon confinement within volumes on the order of (U 
2n)3, where A is the emission wavelength and n is the 
refractive index [2, 31. The localised states arise from 
the introduction of local defects inside photonic crys- 
tals. The large index contrast which exists between the 
different materials, necessary for achieving full three- 
dimensional bandgaps, causes the amplitude of the 
electromagnetic fields to fall off sharply away from the 
defect, resulting in strong photon confinement. 

Three-dimensional crystals have the ability to com- 
pletely isolate a mode from its surroundings by opening 
a gap along every direction in space. The fabrication of 
three-dimensional crystals, however, poses a great tech- 
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nological challenge. Several different geometries have 
been suggested for the fabrication of three-dimensional 
photonic crystals [&lo], but crystals with lower-dimen- 
sional periodicity may provide a more viable alterna- 
tive for achieving strong photon Confinement in 
dielectric structures. 

One important aspect of structures with lower- 
dimensional periodicity is the coupling to radiation 
modes. By reducing the dimensionality of the crystal, 
and by resorting to standard index guiding to confine 
light along the nonperiodic directions, one no longer 
has the ability to contain light completely, and leaves 
open possible decay pathways through which light can 
escape. 

In this paper, we investigate three-dimensional con- 
finement of light in low-dimensional photonic crystals. 
We show that strong three-dimensional confinement 
can be provided in part by a photonic crystal, and in 
part by index confinement. We present a complete 
modal analysis, and investigate the coupling of con- 
fined optical modes to nonguided radiation modes. 

2 Slab-waveguide microcavities 

We consider a dielectric slab waveguide with a two- 
dimensional photonic crystal. The photonic crystal is 
used to confine light in the plane of the waveguide (say 
the xji-plane). It is up to the dielectric slab itself to 
keep light from escaping along the transverse direction 
(the z-direction). The modes inside the structure are 
highly dependent on the finite nature of the waveguide 
along the z-axis. The dimensions of the waveguide con- 
stitute an integral part of the problem. 

We begin by investigating a uniform slab waveguide, 
and consider the effect of adding a periodic array of 
holes. This approach is preferable over the reverse 
approach, which consists of starting from a purely two- 
dimensional photonic crystal and ‘adding’ the finite 
nature of the structure along the z-direction, since 
purely two-dimensional structures lack information 
along the third dimension, making impossible the tran- 
sition from an infinite structure to a finite structure. 

We choose a slab waveguide with a large refractive 
index (n = 3.4) and, for simplicity, assume that the 
waveguide lies in air [l 1, 121. (The effects of setting the 
waveguide on a substrate will be discussed below.) The 
thickness of the slab is 0.5 U where a is a scaling 
parameter which we define later. The use of a high- 
index waveguide is twofold; first, the high index pro- 
vides strong field confinement along the z-direction (i.e. 
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tmst is required between the 
holes to open a bandgap in the xy-pIane. 
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material and the 

the light line corresponds to the continuum of radiation 
modes. Below the light h e ,  modes remain perfectly 
guided and propagate undisturbed through the holes 
without loss. A gap can be seen between the first and 
second even bands. 
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to xy-piane of symmetry in middle of slab 

The slab is shown in Fig. I. Its corresponding &spa- 
sion relation is shown in Fig. 2. The solid lines carre- 
spond to guided modes; the shaded region corresponds 
to the continuum of radiation (i.e. nonguided) modes. 
The guided modes are labelled even and odd with 
r e s p t  to the horizontd plane of symmetry in the xy- 
direction, in the middle of the waveguide. We have 
chosen this labelling convention over the more tradi- 
tional TE and TM convention since TE and TM modes 
are not strictly defined in skbs of finite extent (finite in 
the x or y directions) such as strip waveguides. Odd 
modes, for example, are characterised by the absence of 
electric field components in the x and y directions at 
the centre of the waveguide. A quantum well located at 
the centre of the waveguide could be designed such that 
light from the well would be unable to couple to the 
odd modes. The dispersion relation is plotted using the 
scalable parameter a which is defined below. 

The band structure shown in Fig. 2 is continuous; 
there is no upper bound on the wavevector. The intro- 
duction of a periodic array of holes into the slab 
waveguide has the effect a€ limiting the wavevector, 
folding the dispersion relation into the first Brillouin 
zone, and splitting the guided-mode bands. Fig. 3 
shows a slab waveguide with a triangular array of 
holes. The holes have a radius of 0.30 Q, where a is the 
lattice constant of the array. The associated band struc- 
ture is shown in Fig. 4. Again, the shaded region above 
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Schematic diagram of slab waveguide with two-dimensional array 

Parameters of slab are identical to those in Fig. 1 
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ure: guided modes do not exist above cut-of€ frequency of 0.66 cia 

The introduction of holes in the waveguide has two 
other effects; first, it Creates a frequency cut-off for 
guided modes. Every mode above the frequency 0.66 c/ 
a is folded into the radiation continuum, and is Bragg 
scattered out of the slab. The cut-off frequency is inde- 
pendent of the refractive index of the slab or the size of 
the holes, and depends only on the lattice geometry of 
the array of holes. The other effect consists of shifting 
the guided modes to higher frequencies, The shift arises 
from the removal of high-index material in the holes, 
resulting in a redaction of the effective index of the 
waveguide. Tbe shift has implications for mode match- 
ing between the mode in the BBG section and the one 
in the uniform (i.e holeless) section, and for radiation 
loss from the PBG slab, 

For purposes of comparison, we show in Figs. 5 and 
6 the corresponding structure and band diagram for a 
purely two-dimensional system. The structure can be 
viewed as a slab of infinite thickness with no field vari- 
ation along the z-axis. The dielectric material is chosen 
to have the same index of refraction as the waveguide 
above, with holes of equal size, Fig, 6 shows how 
strongly the band diagram is affected by the finite 
nature of the structure along the z-axis. 

If a defect is introduced in the PBG structure shown 
in Fig. 3, localised states can be formed in the vicinity 
of the defect. Since each localised state has a specific 
symmetry with respect to the mirror plane, it is possible 
to create an even state between the first and second 
even bands, orthogonal to odd states. 
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Fig. 5 Srheiiicrtic diugruni of 'purely tito-~liniensionul phoronic c r p u l  
Dielectric material has refractivc index of 3.4 and holes have radius of 0.3 U 
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Fig. 6 Bund diiigruin of ritv-dii?zensionul cryski1 shown iiz Fig. 5 

If, for example, light were to originate from a quan- 
tum well located at the middle of the waveguide, 
atomic transitions could be made to couple only to 
even modes. Figs. 7a and b show the electric-field 
energy density of such a localised state for the case 
where a single hole has been removed from the periodic 
array. The resonant state is doubly degenerate, and has 
a dipole-like symmetry in the horizontal plane. Its fre- 
quency is centred at 0.30 cia. 

R 

Two competing decay mechanisms contribute to the 
overall decay rate of this resonant state; coupling to 
guided modes in the waveguide (the desired decay 
mechanism) and decay to radiation modes. Because the 
resonant mode is strongly localised in real space, it is 
highly extended in wavevector space. Limiting the cou- 
pling between this mode and the radiation continuum 
is necessary to achieve efficient coupling to guided 
modes. The total quality Factor of the resonant mode 
Qcor is a measure of the optical energy stored in the 
microcavity over the total cycle-average power radiated 
out of the cavity. It is defined as J A f ,  where A j  is the 
width of the resonance, and it is given by [13]: 

where l/Q,bg is a measure of the coupling to waveguide 
modes and llQruli is a measure of the coupling to radia- 
tion modes. To compute Qro,, we use a finite-difference 
time-domain computational scheme [ 141 which first 
involves pumping energy into the cavity, and monitor- 
ing its decay. A resonator can sustain a total of Qto, 
oscillations before its energy decays by a factor e-1K (or 
approximately 0.2%) of its original value. A more 
detailed description of this procedure can be found 
elsewhere [15]. The mode shown in Figs. 7a and b has a 
quality factor Q,, of 240. 

Since the structure does not have a complete three- 
dimensional bandgap, is finite. Hence, it is not 
possible to increase mode confinement and Qror indefi- 
nitely. As the mode confinement increases, coupling to 
radiation modes also increases, and eventually domi- 
nates over coupling to guided modes inside the 
waveguide. Moreover, coupling to radiation modes are 
enhanced when the waveguide is positioned on top of a 
substrate. The substrate provides a favourable escape 
route, and may cause significant radiation loss. It will 
be shown, however, in the following Section that strong 
field confinement and low loss can be achieved when 
dielectric waveguides are located on low-index materi- 
als. 

By itself, Q,,, is not sufficient to determine the frac- 
tion of the energy which is coupled to guided modes, 
and the fraction which is coupled to radiation modes. 
By increasing the modal volume of the localised state, 
we can reduce the coupling to radiation modes (i.e. 
increase QVlzd) and, provided the coupling to guided 
modes remains largely unchanged, increase eror. The 
modal volume can be increased, for example, by creat- 
ing a different type of defect in the structure. lf, instead 
of removing a single hole from the two-dimensional 
array, we reduce the radius of seven nearest-neighbour 
holes from 0.3 a to 0.2 a otherwise leaving the structure 
unchanged, the dipole-like mode shown in Figs. 7u and 
b would become more extended in real space and its 
Qrot would increase to 2500. (The new resonant state 
has the same frequency as the one shown in Figs. 7a 
and h). 

3 Strip-waveguide microcavities 

Fig. 7 
inside slab iruveguide with tw,o-clirnensioiiul urray of holes 
Energy density is shown in two dfferent planes: 
U Horizontal plane in middle of waveguide 
h Vertical vz-plane 
Peaks in energy density are shown in black; zero energy density is shown in 
white; dashed lines indicate edges of dielectric material; localised state is cre- 
ated by filling single hole; quality factor Q,,,, of state is 240 
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Electric,rfield energy densify of' thrrr-(lin7ensionully confined state Instead of using a slab waveguide and a two-dimen- 
sional photonic crystal, we also could have used a strip 
waveguide (to confine light along two dimensions) and 
a one-dimensional photonic crystal (to confine light 
along the third dimension). The basic strip-waveguide 
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structure is shown in Fig. 8 with its corresponding dis- 
persion r e l a t h  in Fig. 9. The waveguide consists of a 
high-index strip (such as silicon; n = 3.48 at A. = 
1 . 5 5 ~ )  on a low-index laymi (such as SiO,; n = 1.44). 
The low-index layer separates the guided mode from 
the underlying high-index substrate, and allows for 
strong field confinement. 

2 

Fig.8 Schematic diagram of high-Mex strip waveguide (11 = 3.48) on 
low-index layer (n  = 1.44) 
Waveguide has dimensions 0.4 a x 1.2 a and is single mode over wide fre- 
quency range 
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Fig.9 
0 even, odd 
Solid lines correspond to guided modes; shaded region corresponds to contin- 
uum of radiation modes; guided modes are labelled even or odd with respect 
to xy-plane in middle of high-index strip 

Band diagrum of waveguide shown in Fg. 8 

The guided modes are shown by solid lines in Fig. 9. 
The modes are labelled even and odd with respect to 
the horizontal plane in the middle of the strip 
waveguide. We should point out that the horizontal 
plane is not a perfect plane of symmetry for this sys- 
tem. The presence of a low-index layer and a substrate 
breaks the symmetry along the z-axis. However, the 
mode classification based on the horizontal plane 
remains approximately valid when the refractive index 
of the underlying layer is low, and when the thickness 
of the layer is large enough to isolate the modes from 
the substrate. The horizontal plane provides a very use- 
ful classification scheme. Again, in the case where light 
originates from a quantum well located at the middle 
of the strip waveguide, atomic transitions could be 
made to couple only to even modes. 

The shaded region in Fig. 9 corresponds to the con- 
tinuum of radiation modes. The slope of the light line 
is determined by the refractive index of the low-index 
layer. This layer increases the coupling of the defect 
state (which we will introduce shortly) to the radiation 
modes. Fig. 10 shows a strip waveguide with an array 
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of holes. The holes have the effect of folding the 
guided-mode bands into the first Brifiouin zone. In 
addition to showing modes lying below the light line, 
Fig. 11 shows ‘guided’ bands which are folded inside 
the radiation continuum. These leaky-mode bands, 
which are shown by white bars, are not truly guided. 
Since modes above the light line are free to leak out of 
the guide, they behave like resonant states with a spe- 
cific ‘lifetime’. The lifetime inside the waveguide 
depends on the losses, which in turn depend on the 
coupling strength to the radiation modes, which, in 
turn, depends on the strength of the perturbation (i.e. 
the size of the holes). The bars are used to indicate that 
each data point has a certain frequency width, though 
no effort was made to correlate the length of the bars 
to the lifetime of the modes. 

Fig. 10 
array of holes of radius 0.23 u 
Parameters of waveguide are identical to those in Fig. 8 

Schematic diagram of strip waveguide with one-dimensionul 
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Fig. 1 1 Band diagram for waveguide shown in Fig 10 
Guided modes do not exist above cut-off frequency of 0 35 cia, white bars cor- 
respond to leaky modes folded into radiation continuum 

wavevector, 2xla 

The solid black lines correspond to guided modes 
which exist in spite of the presence of holes. The modes 
do not leak out. When a defect is introduced in the 
periodic array, the defect mode, which is made up pri- 
marily of guided modes, couples far less to radiation 
modes than it would if, say, the defect state was located 
above the light line in the second-order gap. 

Before showing a defect state, we show, in Figs. 12 
and 13, the band diagram for a purely one-dimensional 
structure. The even and odd modes are degenerate. It is 
clear, upon inspection of Figs. 11 and 13 that the finite 
nature of the waveguide plays a significant role in 
shaping the band diagram of the one-dimensional pho- 
tonic crystal. 
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Fig. 12 
High-dielectric material ha, refractive index of 3.48 and low-dielectric material 
has refractive index of I .OO 

Schemutic diugrum qfpurely one-dimensional photonic crystul 

0 0.1 0.2 0.3 0.4 0.5 
wavevector,2n/a 

Bund diugrum of one-dimeswnui crystal shown in Fig. 12 Fig. 13 

We now investigate the radiation losses of a defect 
state. We introduce a defect in the hole array, as shown 
in Fig. 14, and create a state inside the bandgap. The 
resonant mode is strongly confined within the micro- 
cavity and has a frequency of 0.27 cla. The modal vol- 
ume, V, is defined by [3]: 

where P(r) is the total electromagnetic energy density 
of the mode and P,,, is the peak value of P(r).  Using 
this definition, a modal volume of 0.004 u3 is com- 
puted, where U is the lattice constant of the periodic 
hole array, which corresponds to a volume of only five 
times 

Fig. 14 Schemuric diagram of strip-wuveguide microcovity 
Parameters of waveguide are identical to those shown in Fig. 10 

Using again a finite-difference time-domain scheme, 
we compute the transmission through the structure 
[14]. Results are shown in Fig. 15. The computation 
shows a wide bandgap, and a sharp resonant peak with 
a quality factor Q,,, of 280. Transmission outside the 
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gap is large which suggests that the modes remain 
guided as they propagate through the holes, and 
undergo little scattering. At resonance, the coupling 
efficiency exceeds 82%. The coupling occurs from the 
waveguide mode via the evanescent field through the 
array of holes. By increasing the number of holes, the 
reflectivity of the array is increased. However, as we 
increase the number of holes, we also increase the radi- 
ation losses, hence reduce the throughput of the niicro- 
cavity. The peak transmission through the cavity is 
given by: 

Q,",, 
Q2,, 

Tm,, = ( 3 )  

For the structure shown in Fig. 14, we find a value for 
QIGg of 310. As T,,, approaches unity, QlYg becomes 
equal to Q,,, and, from eqn. 1, Qrud becomes infinitely 
large. In this case, the cavity mode would decay 
entirely into the waveguide. 

0.23 0.25 0.27 0.29 0.31 0.33 0.35 

frequency, c/a 
Fig. 15 Trunsmission properties of wuveguide microcavity siioww in 
Fig. 14 
At resonance, transmission exceeds 82"h; the three-dimensionally confined 
state has quality factor Q,,, of 280 

Now, by coupling an optical transition to the micro- 
cavity resonance, the spontaneous emission rate can be 
enhanced by a factor q over the rate without a cavity. 
The expression for q is given as [ 161: 

Q t O t  
(4) 

where Y is the optical transition frequency. For the spe- 
cific strip-waveguide microcavity described above, the 
maximum enhancement is calculated to be 35, which is 
significantly larger than any enhancement yet meas- 
ured. This large spontaneous emission enhancement 
could lead to faster modulation of optical devices, and 
to the development of zero-threshold lasers. 

4 

The existence of bandgaps between leaky-mode bands 
above the light line (as shown in Fig. 11) suggests that 
it may also be possible to create defect states above the 
light line, though these defect states couple more heav- 
ily to radiation modes. A demonstration of this effect 
was published by Krauss et al. in 1997 [17]. They used 
an A1 lzGa 88As waveguide (n = 3.5) on an A1 35Ga 6 5 A ~  
layer (n = 3.3). Instead of using holes, the authors 
elected to use deep and narrow grooves. A schematic 
diagram of the structure is shown in Fig. 16. 

We compute the band diagram for this structure and 
show the results in Fig. 17, both with and without 

Microcavities operating above the light line 
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grooves on the same plot. The slope of the light line is 
determined by the index of MU.35Ga.65As. The solid 
black region corresponds to guided modes. At a fre- 
quency of 0.50 cla, for example, there are 18 modes 
tightly packed close to the light line. S i n e  the mode 
density is large, we did not label the modes according 
to their symmetry, to avoid overloading the figure. 
Moreover, the horizontal plane does not constitute a 
valid plane for mode characterisation in this case since 
the waveguide is highly asymmetric in the vertical 
direction. 

Fig. 16 Schematic diagram of stripwave+ microcavity designed to 
operate above light line 
Strip has thickness of 0.9 a, width of 9.0 a and refractive index of 3.5, and lies 
on layer of index 3.3; grooves are 1.6 a deep and 0.2 a long 

U P" I I 

0 0.5 1 .O I .5 2.0 
w(~vpvect~. 2x1s 

Fig. 17 Band diagram of waveguide shown in Fig. I6 with and without 
grooves 
Black region corresponds to guided modes in absence of grooves; at frequency 
of 0.5 c/a, for example, there are 18 modes tightly packed close to light line; 
white bars correspond to leaky modes folded into radiation continuum in pres- 
ence of grooves: leaky mode is shown only for lowest guided mode 

When grooves are added to the uniform waveguide, 
every mode is folded into the radiation continuum. We 
show in Fig. 17 the folded lowest-order mode. The 
length of the white bars is not meant to correspond 
exactly to the frequency width of the mode. By intro- 
ducing a defect, the authors created a state at fre- 
quency 0.49 cla above the light line, in the third-order 
gap. Although Fig. 17 shows only one folded resonant 
band, several of them are present, each coupling to a 
different degree with the incoming mode. If the incom- 
ing mode is the lowest order waveguide mode, the larg- 
est coupling should occur with the lowest-order 
resonant mode. 

We compute the transmission using again a finite-dif- 
ference time-domain method. The simulations are car- 
ried out in two dimensions since the three-dimensional 
computational cell is too large. We assume that the 
structure is infinite in the lateral direction (i.e. we 
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assume an infinitely wide waveguide, with no field var- 
iation along that direction). The two-dimensional simu- 
lations resemble the case of the lowest order mode. 
Results are shown in Fig. 18. The transmitted intensity 
through the array of grooves is normalised to the inten- 
sity in a uniform waveguide without grooves. 

The edges of the third-order gap match well with 
those published in [17]. The large Fabry-Perot fringes 
outside the gap are due to the small number of 
grooves. At resonance, the transmission efficiency is 
close to 4%. The resonance is centered at 0.49 cla, and 
it has a quality factor Qtot close to 1000. The modal 
volume of the experimental structure exceeds the one 
presented in the previous Section by more than two 
orders of magnitude [Note 11. While guided modes out- 
side the gap propagate through the grating with an effi- 
ciency of up to 65%, the resonant mode experiences 
severe loss as it 'bounces' back and forth, roughly one 
thousand times, inside the cavity before escaping. As it 
spends more time inside the cavity, the resonant mode 
couples increasingly to radiation modes. From eqns. 1 
and 3, we find Qwg = 5000 and Qrad = 1250. One could 
increase transmission at resonance by reducing Qwg 

which would have the effect of reducing the total time 
light spends inside the cavity. However, if transmission 
is to be made comparable to the one presented in the 
previous Section, it will be paramount for Qrad to 
remain much greater than elOK. Any reduction of the 
modal volume will result in a reduction of Qrad.  To 
achieve a large value for both Qlad and T,,, while 
maintaining a very small modal volume, the cavity 
must be operated in a gap below the light line. 

0.8 t 1 

0.40 0.45 0.50 0.55 0.80 
frequency, d a  

Fig. 18 Transmission properties of waveguide microcavity shown in 
Fg. 16 
Transmission at resonance is 4%; quality factor Q,,,, is close to 1000; transmis- 
sion could be made larger than 4% by reducing Qhp 

5 Conclusion 

We have presented a rigorous modal analysis of pho- 
ton confinement in dielectric structures. We have 
shown that strong field confinement and low radiation 
loss can be achieved in microcavities using a combina- 
tion of the PBG effect and index confinement. These 
microcavities readily lend themselves to microfabrica- 
tion, and do not require elaborate three-dimensional 
lithography processing. Furthermore, by including 
quantum wells inside the waveguides, these microcavi- 
ties may provide a means to fabricate ultra-fast and 
ultra-low-threshold optical devices. 
Note 1: The lateral dimension of the resonant mode was assumed to be 
equal to the width of the waveguide. This approximation should yield an 
underestimate of the mode volume. 

389 



6 Acknowledgment 8 CHENG. C.C., and SCHERER, A.: ‘Fabrication of photonic 
band-gap crystals’. J .  Vtrc. Sci. Techno/. B, 1995, 13, ( 6 ) ,  pp. 
2696-2700 

gram of the NSF under Award DMR-9400334. V.Y., YATES, H.M., PEMBLE, M.E., aiid SOTOMAYOR 
TORRES, C.M.: ‘Enhancement of the photonic gap of opal- 
based three-dimensional gratings’, Appl .  Phvs. Lett.,  1997, 70. 

7 References (161 nn 31191-7091 

This work was supported in part by the MRSEC Pro- 9 ROMANOV. s.G., JOHNSON, N.P., FOKIN, A.v., BUTKO, 

YOKOYAMA, H., and UJIHARA, K. (Eds.): ‘Spontaneous 
emission and laser oscillation in rnicrocavities’ (CRC Press, Boca, 
Raton, 1995) 
YABLONOVITCH, E., GMITTER, T.J., MEADE, R.D., 
RAPPE. .4.M.. BROMMER. K.D.. and JOANNOPOU- 
LOS, J.D.: ‘Donor and acceptor’modes in photonic band struc- 
ture’, PI7js. Rev. Lrtt.. 1991, 67, (24). pp. 3380-3383 
FORESI, J.s., VILLENEUVE, P.R.,- FERRERA,  J., THOEN, 
E.R., STEINMEYER, G., FAN, S., JOANNOPOULOS. J.D., 
KIMERLING, L.C.. SMITH, H.I., and IPPEN, E.P.: ‘Photonic- 
bandgap microcavities in optical waveguides’, Nature, 1997, 390, 
pp. 143-145 
YABLONOVITCH, E., GMITTER, T.J., and LEUNG, K.M.: 
‘Photonic band structure: the face-centered-cubic case employing 
nonspherical atoms’. Phys. Rev. Lett.,  1991, 67, (17), pp. 2295- 
2298 
HO, K.M., CHAN. C.T., SOUKOULIS, C.M., BISWAS, R., 
and SIGALAS, M.: ‘Photonic band gaps in three dimensions: 
new layer-by-layer periodic structures’, Solid State Commun., 
1994,,,89, pp. 413416 
SOZUER, H.S., and DOWLING, J.P.: ‘Photonic band calcula- 
tions for woodpile structures’. J.  Mod. Opt.. 1994, 41, pp. 231- 
239 
FAN, S., VILLENEUVE, P.R., MEADE, R.D.,  and JOAN- 
NOPOULOS, J.D.: ‘Design of three-dimensional photonic crys- 
tals at submicron lengthscales’, Appl. Phys. Lett., 1994, 65, (1 I) ,  
pp. 1466-1468 

,~-,, rr. _”_ - __,_ 

10 FEIERTAG, G., EHRFELD, W., FREIMUTH, H., KOLLE, 
H.,  LEHR, H., SCHMIDT, M., SIGALAS. M.M., SOUK- 
OULIS, C.M.. KIRIAKIDIS, G., PEDERSEN. T.. KUHL. J.. 
and KOENIG, W.: ‘Fabrication of photonic crystals by deep X- 
ray lithography’, Appl. P/7ys Lett.. 1997, 71, ( 1  I ) ,  pp. 1441-1443 

11 VILLENEUVE, P.R., FAN, S.,  JOANNOPOULOS, J.D., 
LIM, K.Y., PETRICH, G.S., KOLODZIEJSKI, L.A.. and 
REIF, R.: ’Air-bridge microcavities’, Appl. Phjs. Lc’tt., 1995, 67. 
(2),  pp. 167-169 

12 KANSKAR, M.,  PADDON, P., PACRADOUNI, V., 
MORIN, R., BUSCH, A., YOUNG, J.F., JOHNSON, S.R.. 
MACKENZIE, J.. and TIEDJE, T.:  ‘Observation of leaky slab 
modes in an air-bridged semiconductor waveguide with a two- 
dimensional photonic lattice’, Appl. Phys. Lett., 1997, 70, ( 1  1). 
nn. 1438-1440 r r  ~ ~ 

13 HAUS, H.A.: ‘Waves and fields in optoelectronics’ (Prentice- 

14 KUNZ, K.S., and LUEBBERS, R.J.: ‘The finite-difference time- 

15 FAN, S.. WINN. J.N.. DEVENYI. A.. CHEN. J.C.. MEADE. 

Hall, Englewood Cliffs, 1984), chap. 7 

domain method for electronics’ (CRC Press, Boca, Raton, 1993) 

R.D.. and JOANNOPOULOS. J.D.: ‘Guided and defect modes 
in periodic dielectric waveguides’, J .  Opt. Soc. Am. E, 1995, 12, 
(7), pp. 1267-1272 

16 YOKOYAMA, H., aiid BRORSON, S.D.: ’Rate equation analy- 
sis of microcavity lasers’. J .  Appl. Phys., 1989, 66, pp. 48014805 

17 KRAUSS, T.F., VOGELE. B., STANLEY, C.R.,  and DE LA 
RUE, R.M.: ‘Waveguide microcavitv based on Dhotonic micro- 
structure’, IEEE PhGtonics. Technol.,Lett., 1997,’9, ( 2 ) ,  pp. 176- 
178 

390 


