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Optical bistability in axially modulated OmniGuide fibers
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We demonstrate the feasibility of optical bistability in an axially modulated nonlinear OmniGuide fiber through
analytical theory and detailed numerical experiments. At 1.55-mm carrier wavelength, the in-fiber devices
that we propose can operate with only a few tens of milliwatts of power, can have a nearly instantaneous
response and recovery time, and can be shorter than 100 mm. © 2003 Optical Society of America

OCIS codes: 190.1450, 230.4320.
OmniGuide f ibers are a new type of cylindrical
multilayer dielectric f iber1,2 that have only very
recently been implemented experimentally.3 Their
cladding is an omnidirectional multilayer mirror that
ref lects light of any polarization and any direction.
These photonic bandgap fibers can have a hollow
core and a guiding mechanism that depends only on
the cladding. We propose to exploit these facts to
obtain much stronger axial optical modulation than
is possible in conventional f ibers through insertion
of material (e.g., spheres) into the core. Moreover,
because of strong transverse confinement, much
smaller transverse modal areas are possible than in
the usual low-index-contrast f ibers. In this way, we
show how optimal ultrafast bistable devices can be
achieved with operating powers less than 50 mW,
whose highly nonlinear input–output power relation
is key to many applications4 (e.g., all-optical pulse
reshaping, optical limiting, logic gates). Our device
retains all the advantages of similar photonic crystal5

or high-index-contrast devices6 in terms of power,
size, and speed. However, the fact that it is an
in-fiber device should make it easier to produce and to
couple with another f iber. We solve the full nonlinear
Maxwell equations numerically to demonstrate optical
bistability in this class of system. Moreover, we
present an analytical model that excellently describes
the behavior of these systems and is very useful in
predicting optimal designs.

A schematic of a typical design is shown in Fig. 1.
It consists of an axially modulated single-mode Omni-
Guide fiber with a core of diameter 0.41l0, where l0 is
the carrier wavelength in vacuum. The cladding con-
sists of seven bilayers (periods), each 0.3l0 thick; 30%
of the thickness is the high-index (nH � 2.8) material.
The innermost layer, adjacent to the core, is low
index (nL � 1.5). The axial modulation consists of 41
(nSPH � 1.5) spheres tightly filling the core (diameter
0.41l0). The periodicity of the axial modulation opens
a bandgap for the propagating mode. Our three-
dimensional frequency-domain simulations7 tell us
that structures such as the one in Fig. 1 easily open
axial bandgaps of 6% or larger (versus ,0.1% in
grated silica fibers).

A defect in the axial periodicity creates a resonant
cavity supporting a tightly conf ined, high-Q resonant
mode. In the implementation of Fig. 1, the defect is
0146-9592/03/070516-03$15.00/0
introduced by a change of the index of refraction of
the central sphere to nDEF � 1.9. Tight conf inement
in the transverse direction is provided by the large
bandgap of the OmniGuide cladding, while strong con-
finement in the axial direction is provided by the large
axial bandgap. The cavity couples to the waveguide
(axially uniform fiber) through tunneling processes.
We model the low-index material to have an instanta-
neous Kerr nonlinearity [the index change is dn�r, t� �
cnLe0n2jE�r, t�j2, where n2 is the Kerr coeff icient].

We perform nonlinear finite-difference time-domain
simulations,8 with a perfectly matched layers bound-
ary condition, of this system. These simulations
propagate Maxwell equations exactly, with no approxi-
mations apart for the discretization. Because of the
cylindrical symmetry of the system in Fig. 1, our sys-
tem is effectively two dimensional. Consequently, we
can obtain an excellent physical understanding of the
system by performing two-dimensional f inite-different
time-domain simulations. The numerical values
obtained with two-dimensional calculations will differ
from the true three-dimensional values by only a
geometrical factor of order unity.

The cavity supports a strongly localized resonant
mode (transverse modal area �l0

2�3, axial length of
mode �6l0). The system has a nearly Lorentzian
transmission spectrum: T �v� � POUT �v��PIN �v� �
gW

2���gR 1 gW �2 1 �v 2 vRES�2�, where POUT and PIN
are the outgoing and incoming power, respectively;
vRES is the resonant frequency; gW is the decay width
that is due to the coupling of the cavity mode to the
waveguides; and gR is the decay width that is due
to the coupling to the cladding modes.9 We mea-
sure a quality factor Q � vRES��2�gR 1 gW �� � 540
and a peak transmission TP � 0.88; from this we

Fig. 1. Schematic of a nonlinear OmniGuide device in
which we demonstrate optical bistability. Left, longitudi-
nal cross section; right, transverse cross section.
© 2003 Optical Society of America
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obtain the result that the radiation quality factor
QR � vRES�2gR � 8700. QR is finite because of the
coupling of energy to the radiating cladding modes;
this coupling is the primary cause of losses in our
system but can be controlled.10

First, we perform numerical experiments in which
we launch a series of Gaussian pulses into the sys-
tem. We choose a carrier frequency v0 � vRES 2
3.2�gW 1 gR�, and the FWHM bandwidth of our
pulses is v0�FWHM � 796. The ratio of the trans-
mitted (EOUT ) versus the incoming (EIN ) pulse energy
increases sharply as we approach the bistability
threshold and decreases after the threshold is passed,
as shown in the top left-hand panel of Fig. 2. Trans-
mitted pulse spectra are also shown for a few pulses in
the top right-hand panel of Fig. 2; the nonlinear cavity
redistributes the energy in the frequency spectrum.
If these changes to the spectrum are undesirable, one
can remove them by optimizing the device, using time-
integrating nonlinearity, or by adding a frequency-
dependent f ilter to the output of the device. Typical
output-pulse shapes are shown in the lower panels
of Fig. 2. As one can see from the bottom left-hand
panel, even without optimizing our system we still
obtain well-behaved shapes of output pulses in the
regime where EOUT�EIN is maximal.

For the case of cw signals, we can achieve a precise
analytical understanding of bistability in this system,
making use of a new fundamental dimensionless char-
acteristic of the cavity, nonlinear feedback parameter
k (derived in detail in Ref. 5):

k �
µ

c
vRES

∂d

3

R
VOL d

dr�jE�r� ? E�r�j2 1 2jE�r� ? E��r�j2�n2�r�n2�r�
�
R
VOL ddrjE�r�j2n2�r��2n2�r�jMAX

,

(1)

where n�r� is the unperturbed index of refraction,
E�r, t� � �E�r�exp�ivt� 1 E��r�exp�2ivt���2 is the
electric f ield, n2�r� is the local Kerr coeff icient, volume
(VOL) of integration is over the extent of the mode, and
d is the dimensionality of the system in question. As
can be seen from Eq. (1), k is dimensionless and scale
invariant. It is determined by the degree of spatial
confinement of the field in the nonlinear material.
To an excellent approximation, k is independent of
n2, the peak electric f ield amplitude, Q, and small
deviations in v0. Let us denote as PINS and POUTS

the steady-state values of PIN and POUT , respectively.
Using a Lorentzian transmission spectrum in the
linear case and perturbation theory for small dn�r�,
we obtain

POUT S

PINS
�

TP

1 1 ��POUT S�P0� 2 d�2
, (2)

where d � �vRES 2 v0���gW 1 gR�, TP � �gW
2��gW 1

gR�2� is the peak transmission, and P0 is a character-
istic power of this cavity given by

P0 �
p
TP

kQ2�vRES�c�d21n2�r�jMAX
. (3)
According to Eq. (2), P0 sets the power scale for observ-
ing bistability in a cavity of interest.

To check our analytical theory we obtain k � 0.010
from a single nonlinear computation; together with the
knowledge of Q and vRES, we obtain POUTS �PINS � for
d � 3.2, which we plot as a solid curve in Fig. 3. We
compare our analytical theory with numerical experi-
ments in which we launch smoothly turned on cw sig-
nals into the cavity. To observe the upper hysteresis
branch we launch large-amplitude and wide Gaussian
pulses that decay into smaller steady-state cw values.
The small discrepancy between our analytical theory
and the numerical experiments in Fig. 3 is attributable
mostly to the fact that the linear-regime transmission
curve is not a perfect Lorentzian.

Although numerical simulations for larger Q would
be prohibitively long, our analytical model allows us
to predict the behavior of a high-Q device. According

Fig. 2. Numerical experiments with launching temporal
Gaussian pulses into the nonlinear system of Fig. 1. The
top left-hand panel shows the transmission as a function
of the incoming pulse energy. The colored curves in
the top right-hand panel display the output spectra for
a few pulses, corresponding to the colored dots in the
top left-hand panel. The spectrum of each pulse is nor-
malized to its peak incoming power; i.e., the input pulse,
normalized in the same manner, is displayed with the
gray dashed curve. The bottom panels show the output
shapes for the incoming pulses, denoted by the green and
blue dots, respectively, in the top left-hand panel.

Fig. 3. Plot of the observed POUT S versus PINS for the
device from Fig. 1, when d � 3.2. The green squares are
points obtained from numerical experiments. The red
curve is the analytical prediction, which clearly matches
the numerical experiments; the dotted part of the curve is
unstable and therefore physically unobservable.
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to Eq. (3), the power requirements drop with 1�Q2.
Q can be increased by addition of more spheres to
the walls of the cavity. For Q of 6000 (which is still
compatible with 10-Gbit�s signals), the nonlinear
index changes are ,0.001 (which is still compatible
with nearly instantaneous nonlinear materials). The
power needed to observe bistability is 50 mW (as-
suming n2 � 2 3 10217 m2�W , a value typical for the
materials that we are using), which is fairly close
to the 5-mW single-channel peak power levels used
in telecommunications. The power can be further
decreased by reduction of the modal volume and (or)
by use of materials with a larger Kerr coefficient.

There are two reasons why the required power is
so small compared with that of other fiber systems
that display optical bistability.11,12 First, all the en-
ergy of the mode is concentrated in a very small modal
volume ��2l3�; consequently, for the same amount of
modal energy, the peak dn�r� induced in the system is
much larger than in other systems with much larger
modal volumes.12 This is manifested by the fact that
the nonlinear feedback parameter k � 0.010 is fairly
large. [For comparison, if one had a system in which
all the energy of the mode were contained uniformly
inside a volume �l0�2nL�3, k would be �0.15.] Sec-
ond, a large quality factor can be achieved at the same
time as the large k. Increasing Q while keeping other
parameters f ixed decreases the power requirements as
1�Q2.13,14 The f irst factor of Q appears because in-
creasing Q for a f ixed PIN leads to a larger peak elec-
tric f ield inside the cavity, because of the longer energy
accumulation. The second factor of Q comes from the
fact that the resonance peak width is �1�Q, thereby
reducing the required frequency (index) shift by 1�Q
as well.

On the experimental front, so far we have been suc-
cessful in inserting d � 1.75 mm spheres into d �
2 mm core f iber via capillary action (optical tweezers
could be used instead).15 To our advantage, spheres
tend to stick together because of van der Waals forces.
As a next step, we plan to decrease the pressure in-
side the core and heat the f iber to the melting point
so that it will clasp the spheres tightly; this is a stan-
dard technique usually used to decrease the core radii
of hollow-core fibers. Clearly, there are many other
possibilities for implementing axial modulation. Con-
ceptually, the fact that the guiding mechanism does
not depend on the core and the fact that the core is ini-
tially hollow provide for significantly more experimen-
tal f lexibility in implementing a stronger optical axial
modulation than exists in conventional f ibers. Other
authors16 demonstrated impressive manipulation of op-
tical properties of holey f ibers, including periodic ax-
ial modulation of the core, by inserting various kinds
of materials into the holes. Alternatively, one could
perform photolitography on the inner surface of the
core: A photoresist would be codrawn as the inner-
most layer of the cladding, one would shine laser beams
from the side to implement cross linking of the pho-
toresist, and then one would use the hollow core to
transport all the acids and (or) bases needed to etch
a periodic structure onto the innermost layer of the
cladding.
We emphasize that, since the transverse confine-
ment principle is not index guiding, periodic axial
modulation is not the only way to achieve axial confine-
ment in OmniGuide f ibers. In fact, simply shrinking
the core radius16 (or equivalently decreasing the index
of the core) of an OmniGuide fiber can shift the cutoff
frequency of the operating mode above the operating
frequency. Similarly to what occurs in a metallic
waveguide, a mode experiences exponential decay
once it encounters such a region; this property is suf-
ficient for implementing all the ideas presented above.
Finally, one should be able to implement all the prin-
ciples described in this Letter in any hollow photonic
crystal fiber that has a large enough lateral bandgap.

Help from S. Jacobs, T. Engeness, O. Weisberg, and
M. Skorobogatiy of OmniGuide Communications, Inc.,
and from E. Ippen of the Massachusetts Institute of
Technology is gratefully acknowledged. This work
was supported in part by the Materials Research Sci-
ence & Engineering Center program of the National
Science Foundation under grant DMR-9400334. M.
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