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ABSTRACT

 

We demonstrate optical bistability in a class of non-linear photonic crystal devices, through
the use of detailed numerical experiments, and analytical theory. Our devices are shorter
than the wavelength of light in length, they can operate with only a few mW of power, and
can be faster than 1ps.

1. INTRODUCTION

A powerful principle that could be explored to implement all-optical transistors, switches, logical
gates, and memory, is the concept of optical bistability. In systems that display optical bistability, the
outgoing intensity is a strongly non-linear function of the input intensity, and might even display a hysteresis
loop. We present a few photonic crystal devices demonstrating optical bistability. The use of photonic
crystals enables the system to be on the order of the wavelength of light, consume only a few mW of power,
and have a recovery and response time smaller than 1ps. In Section 2, we present single-defect photonic
crystal systems that exhibit optical bistability. In Section 3, we present bistability in axially modulated
OmniGuide photonic crystal fibers. In Section 4, we demonstrate optical bistability in double-defect photonic
crystal systems. We conclude in Section 5.

2. BISTABILITY IN SINGLE-DEFECT PHOTONIC CRYSTAL SYSTEMS

In this Section, we use the flexibility offered by photonic crystals [1,2,3] to design a system that is
effectively one-dimensional, although it is embedded in a higher-dimensional world. Because our system is
one-dimensional and single mode, it differs from previous studies [4,5,6] and provides optimal control over
input and output. For example, one can achieve 100% peak theoretical transmission. As a consequence, the
system is particularly suitable for large-scale all-optical integration. We solve the full non-linear Maxwell’s
equations numerically (with minimal physical approximations) to demonstrate optical bistability in this system.
We also develop an analytical model that excellently describes the behavior of the system and is very useful
in predicting and elucidating bistability phenomena.
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Ideally, we would like to work with a 3D photonic crystal system. Recently, however, a 3D photonic
crystal structure has been introduced that can closely emulate the photonic state frequencies and field
patterns of 2D photonic crystal systems [7]. In particular, cross sections of point and line-defect modes in that
structure are very similar to the profiles of the modes we describe in the present manuscript. We can
therefore simplify our calculations without loss of generality by constructing the system in 2D. Our design is
shown in Figure 1. It resides in a square lattice 2D PC of high-n dielectric rods (nH=3.5) embedded in a low-n
dielectric material (nL=1.5). The lattice spacing is denoted by a, and the radius of each rod is r=a/4. We focus
attention on transverse-magnetic (TM) modes, which have electric field parallel to the rods. To create single-
mode waveguides (line defects) inside of this PC, we reduce the radius of each rod in a line to r/3(*). Further,
we also create a resonant cavity (point defect) that supports a dipole-type localized resonant mode by
increasing the radius of a single rod to 5r/3. We connect this cavity with the outside world by placing it 3
unperturbed rods away from the two waveguides, one of the waveguides serving as the input port to the
cavity and the other serving as the output port. The cavity couples to the two ports through tunneling
processes. It is important for optimal transmission that the cavity be identically coupled to the input and
output ports. We consider a physical system where the high-index material has an instantaneous Kerr non-
linearity (index change of nHcε0n2|E(x,y,t)|2, where n2 is the Kerr coefficient). We neglect the Kerr effects in
the low-index material. In order to simplify computations without sacrificing physics, we consider only the
region within the square of ±3 rods from the cavity to be non-linear. Essentially all of the energy of the
resonant mode is within this square, so it is the only region where the non-linearity will have a significant
effect.

Figure 1: Electric field for a photonic crystal bistable switch at 100% resonant linear transmission. The
device consists of a resonant cavity in a square lattice of high dielectric (non-linear) rods coupled (via
tunneling effects) to two waveguides that serve as input and output ports.

Consider now numerical experiments to explore the behavior of the device. Namely, we solve the full
2D non-linear finite-difference time-domain (FDTD) equations [8], with perfectly matched layer (PML)
boundary regions to simulate our system. The nature of these simulations is that they model Maxwell’s
equations exactly, except for the discretization; as one increases the numerical resolution, these simulations
should asymptotically reproduce what is obtained in an experiment. Most of the simulations are performed at
a resolution of 12∗12 pixels per a∗a; doubling the resolution changes the results by less than 1%. To match
the waveguide modes inside the PC to the PML region, the PC waveguide is terminated with a distributed-
Bragg reflector [9].

The system is designed so that it has a TM band gap of 18% between ωMIN=0.24(2πc)/a, and
ωMAX=0.29(2πc)/a. Furthermore, the single-mode waveguide created can guide all of the frequencies in the
TM band gap. Finally, the cavity is designed to have a resonant frequency of ωRES=0.2581(2πc)/a and a

*) Note that this is just one particular way of implementing line defects in PCs; a more common way to create a line
defect would be to completely remove an entire line of rods.
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Lorentzian transmission spectrum: T(ω)≡POUT(ω)/PIN(ω)≈γ2/[γ2+(ω-ωRES)2], where POUT and PIN are the
outgoing and incoming powers respectively, and γ is the width of the resonance. The quality factor of the
cavity is found to be Q=ωRES/2γ=557.

As a first numerical experiment, we launch off-resonance pulses whose envelope is Gaussian in
time, with full-width at half-maximum (FWHM) ∆ω/ω0=1/1595, into the input waveguide. The carrier frequency
of the pulses is ω0=0.2573(2πc)/a so ωRES-ω0=3.8γ. When the peak power of the pulses is low, the total

output-pulse energy ( ∫
∞

∞−
≡ OUTOUT dtPE ) is only a small fraction (6.5%) of the incoming pulse energy EIN,

since we are operating off-resonance. As we increase the incoming pulse energy, the ratio EOUT/EIN

increases, at first slowly. However, as we approach the value of EIN=(0.57∗10-1)∗(λ0)
2/cn2

(†), the ratio
EOUT/EIN grows rapidly to 0.36; after this point, EOUT/EIN slowly decreases as we increase EIN. The
dependence of EOUT/EIN vs EIN is shown in Figure 2.

Figure 2: Transmission of Gaussian-envelope pulses through the device of Figure 1. As EIN is
increased, the EOUT/EIN ratio slowly grows. At a large enough EIN, the ratio of the outgoing and incoming
pulse energies increases sharply.

Intuitively, as one increases the optical power, the increasing index due to the non-linearity lowers
ωRES through ω0, causing a rise and fall in transmission. This simple picture however is modified by non-
linear feedback: as one moves into the resonance, coupling to the cavity is enhanced (positive feedback)
creating a sharper on-transition and as one moves out of the resonance, the coupling is reduced (negative
feedback) causing a more gradual off-transition.

Consider now a repetition of the above simulation, but with continuous-wave (CW) signals launched
into the cavity instead of Gaussian pulses. There are two reasons for doing this. First, the upper branch of
the expected hysteresis curve is difficult to probe using only a single input pulse. Second, it is much simpler
to construct an analytical theory explaining the phenomena when CW signals are used. In all cases, we find
that the amplitudes of the input signals grow slowly (compared with the cavity decay time) from zero to some
final CW steady state values. Denoting by PIN

S
, POUT

S the steady-state values of PIN and POUT respectively,
we obtain the results shown by circles in Figure 3. For low PIN

S, POUT
S slowly increases with increasing PIN

S.
However, at a certain PIN

S, POUT
S jumps discontinuously. This is precisely the desired performance, but it is

not the full story.

Hysteresis loops occur quite commonly in systems that exhibit optical bistability; an upper hysteresis
branch is the physical manifestation of the fact that the system “remembers” that it had a high POUT/PIN value
previous to getting to the current value. To observe the upper hysteresis branch, we launch pulses that are
superpositions of CW signals and Gaussian pulses (where the peak of the Gaussian pulse is significantly
higher than the CW steady state value). In this way the Gaussian pulse will “trigger” the device into a high

†) Here, λ0 is the carrier wavelength in vacuum.
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POUT/PIN state and, as the PIN relaxes into its (lower) CW value, the POUT will eventually reach a steady state
point on the upper hysteresis branch. This is confirmed in Figure 3 where we plot POUT

S as dots. After the CW
value of PIN

S passes the threshold of the upper hysteresis branch, the POUT
S value is always on the upper

hysteresis branch.

For the case of CW signals, one can achieve a precise analytical understanding of the phenomena
observed. In particular, we demonstrate below that there is a single additional fundamental physical quantity
associated with this cavity (in addition to Q and ωRES) that allows one to fully predict the POUT

S(PIN
S) behavior

of the system. First, according to first-order perturbation theory, the field of the resonant mode will (through
the Kerr effect) induce a change in the resonant frequency of the mode, given by:
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where n(r) is the unperturbed index of refraction, E(r,t)= [E(r)exp(iωt)+ E∗∗∗∗(r)exp(-iωt)]/2 is the electric field,
n2(r) is the local Kerr coefficient, cε0n2(r)n(r)|E(r)|2≡δn(r) is the local non-linear index change, VOL of
integration is over the extent of the mode, and d is the dimensionality of our system. We now introduce a
new dimensionless and scale-invariant parameter κ, defined as:

MAX
VOL

d

VOL

d
d

RES
nnd

nnd
c

)()()(

)()()()(2)()(

2

2

22

2
222

rrrEr

rrrErErErEr














 ⋅+⋅

∗







≡

∫

∫ ∗

ω
κ , (2)

As we shall see below, κ is a measure of the geometric non-linear feedback efficiency of the system. We
thus call κ  the non-linear feedback parameter. κ is determined by the degree of spatial confinement of the
field in the non-linear material; it is a very weak function of everything else. κ is scale invariant because of
the factor (c/ωRES)d, and is independent of the material n2 because of the factor n2(r)|MAX (the maximum value
of n2(r) anywhere). Because the change in the field pattern of the mode due to the nonlinear effects (or due
to small deviations from the operating frequency) is negligible, κ will also be independent of the peak
amplitude. Moreover, since the spatial extent of the mode changes negligibly with a change in the Q of the
cavity, κ is independent of Q. We found this to be true within 1% for cavity with Q=557, 2190, and 10330
(corresponding respectively to 3,4, and 5 unperturbed rods comprising the walls.) Indeed we find
κ=0.195±0.006 across all the simulations in this work, regardless of input power, Q, and operating frequency.
(For comparison, if one had a system in which all the energy of the mode were contained uniformly inside a
volume (λ0/2nH)3, κ would be ≈0.34.) Thus, κ is an independent design parameter. The larger the κ, the
more efficient the system is. Moreover, κ facilitates system design since a single simulation is enough to
determine it. One can then add rods to get the desired Q, and change the operating frequency ω0 until one
gets the desired properties.

Let us now construct an analytical model to predict the non-linear response of a cavity in terms of
only three fundamental quantities: the resonance frequency ωRES, the quality factor Q, and the nonlinear
feedback parameter κ. From Equations (1) and (2), we get δω=-(1/2)(ωRES/c)dκQcPOUT

Sn2(r)|MAX; to see this
note that the integral in the denominator of those equations is proportional to the energy stored in the cavity,
which is in turn proportional to QPOUT

S. Next, a Lorentzian resonant transmission gives POUT
S/PIN

S=γ2/[γ2+(ω0-
δω−ωRES)2]. This expression can be simplified by defining two useful quantities: γωωδ /)( 0−= RES , the

relative detuning of the carrier frequency from the resonance frequency, and
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Thus, POUT
S(PIN

S) is now reduced to depend on only two parameters, P0 and δ, each one of them having
separate effects: a change in P0 is equivalent to a rescaling of both axes by the same factor, while the shape
of the curve can only be modified by changing δ. In general, cubic equation (3) can have either one or three
real solutions for POUT

S, depending on the value of the detuning parameter δ. The bistable regime

corresponds to three real solutions and requires a detuning parameter 3>δ . As mentioned earlier the
detuning in our simulations is ωRES−ω0=3.8γ, which means that δ = 3.8, well within the predicted bistability
regime. Equation (3) is plotted in Figure 3 as a line for the case of Q=557 and κ=0.195. It is in excellent
agreement with the results from the computational experiments, predicting both the upper and lower
hysteresis branches exactly. Note that the middle branch (dashed green line) is unstable in that tiny
perturbations cause the solution to decay to either the upper, or lower branch [10].
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Figure 3: Plot of POUT
S vs. PIN

S for the device of Figure 1. The circles are obtained by launching CW
signals into the device. The dots correspond to launching superpositions of Gaussian pulses and CW
signals into the cavity in order to access the hysteresis portion of the curve. The line is the analytical
prediction, corresponding to δ=3.8 and P0=2.6∗10-6λ0/n2.

From Eq. (3) one can also calculate some typical power levels for the device. For example, the input
power needed for 100% transmission can be seen to be 0%100 PP δ= (corresponding to PIN

S=3.8P0 in Figure

3.) The minimum power needed for bistability is attained when 3=δ in which case we obtain
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Since the profiles of our modes are so similar to the cross-sections of the 3D modes described in Ref
7, we can use our 2D simulations to estimate the power needed to operate a true 3D device. According to
what is shown in Ref 7, we are safe to assume that in a 3D device, the profile of the mode at different
positions in the 3rd dimension will be roughly the same as the profile of the mode in the transverse direction
of the 2D system. Thus, taking the Kerr coefficient to be n2=1.5*10-17m2/W, (a value achievable in many
nearly-instantaneous non-linear materials), and a carrier wavelength λ0=1.55µm, gives a characteristic power
of P0=77mW, and a minimum power to observe bistability of Pb,min=133mW.

This level of power is many orders of magnitude lower than that required by other small all-optical
ultra-fast switches! There are two reasons for this. First, the transverse area of the modes in the photonic
crystal in question is only ≈(λ/5)2; consequently, to achieve the same-size non-linear effects (which depend
on intensity), we need much less power than in other systems that have larger transverse modal area.
Second, since we are dealing with a highly confined, high-Q cavity, the field inside the cavity is much larger
than the field outside the cavity; this happens because of energy accumulation in the cavity. In fact, from the
expression for the characteristic power P0, one can see that the operating power falls as 1/Q2. Building a
high-Q cavity that is also highly confined is very difficult in systems other than photonic crystals, so we
expect high-Q cavities in photonic crystals to be nearly optimal systems with respect to the power required
for optical bistability. For example, a Q=4000 would be quite useful for telecommunications, and leads to the
operational power of roughly 2.6mW. Moreover, the peak δn/n needed to operate the device would be 0.001,
which is definitely possible with conventional instantaneous Kerr materials. Consequently, the response and
recovery time could easily be smaller than 1ps. Potential applications for such a device include: optical
logical gates, switches, optical regeneration, all-optical memory, and amplification [10].

3. OPTICAL BISTABILITY IN AXIALLY MODULATED OMNIGUIDE FIBERS

OmniGuide fibers are a new type of cylindrical multi-layer dielectric fibers [11] that have only very
recently been implemented experimentally [12]. Their cladding is an omni-directional multi-layer mirror that
reflects light of any polarization and any direction. These photonic bandgap fibers can have a hollow core
and a guiding mechanism that depends only on the cladding. We propose to exploit these facts to obtain
much stronger axial optical modulation than is possible in conventional fibers through insertion of material
(e.g. spheres) into the core. Moreover, due to strong transverse confinement, much smaller transverse
modal areas are possible than in usual low index-contrast fibers. In this way, we show how optimal ultra-fast
bistable devices can be achieved with operating powers less than 40mW, whose highly nonlinear
input/output power relation is key to many applications [10] (e.g. all-optical pulse reshaping, optical limiting,
logic gates, etc.). Our device retains all the advantages of similar photonic crystal (c.f. Section 2) or high
index-contrast devices [13] in terms of power, size, and speed. On the other hand, the fact that it is an in-
fiber device should make it easier to produce and to couple with another fiber. We solve the full non-linear
Maxwell’s equations numerically to demonstrate optical bistability in this class of systems. Moreover, we
present an analytical model that excellently describes their behavior and is very useful in predicting optimal
designs.

A schematic of a typical design is shown in Figure 4. It consists of an axially modulated single-mode
OmniGuide fiber with a core of diameter 0.41λ0, where λ0 is the carrier wavelength in vacuum. The cladding
consists of 7 bilayers (periods), each 0.3λ0 thick, 30% of which thickness is the high index (nH=2.8) material.
The inner-most layer, adjacent to the core, is low-index (nL=1.5). The axial modulation consists of 41
(nSPH=1.5) spheres tightly filling the core (diameter 0.41λ0). The periodicity of the axial modulation opens a
bandgap for the propagating mode. Our 3D frequency-domain simulations [14] tell us that structures like the
one in Figure 1 easily open axial bandgaps of 6% or larger (vs. <0.1% in grated silica fibers).
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Figure 4: Schematic of a non-linear OmniGuide device in which we demonstrate optical bistability. The
left panel presents a longitudinal cross-section; the panel on the right presents a transverse cross-
section.

A defect in the axial periodicity creates a resonant cavity supporting a tightly confined, high-Q
resonant mode. In the implementation of Figure 4, the defect is introduced by changing the index of
refraction of the central sphere to nDEF=1.9. Tight confinement in the transverse direction is provided by the
large band-gap of the OmniGuide cladding, while strong confinement in the axial direction is provided by the
large axial bandgap. The cavity couples to the waveguide (axially uniform fiber) through tunneling processes.
We model the low-index material to have an instantaneous Kerr non-linearity (the index change is
δn(r,t)=cnLε0n2|E(r,t)|2, where n2 is the Kerr coefficient.)

We perform nonlinear finite-difference time-domain (FDTD) simulations [8], with perfectly matched
layers (PML) boundary condition, of this system. Due to the cylindrical symmetry of the system in Figure 4,
our system is effectively two-dimensional. Consequently, we can obtain excellent physical understanding of
the system by performing 2D FDTD simulations. The numerical values obtained with 2D calculations will
differ from the true 3D values only by a geometrical factor of order unity.

The cavity supports a strongly localized resonant mode (transverse modal area ≈ λ ̶
2/3 and axial

length of the mode ≈ 6λ0). The system has a nearly Lorentzian transmission spectrum: T(ω)≡POUT(ω)/PIN(ω) ≈
γW

2/[(γR ̭γW ̫2+(ω -ωRES)2], where POUT and PIN are the outgoing and incoming powers respectively, ωRES is the
resonant frequency, γW is the decay width due to the coupling of the cavity mode to the waveguides, while γR

is the decay width due to the coupling to the cladding modes [15]. We measure a quality factor Q
=̣ωRES/[2(γR+γW ̫]=540, and a peak transmission TP=0.88; from this we obtain that the radiation quality factor
QR = ωRES/2γR = 8700. QR is finite due to the coupling of energy to the radiating cladding modes; this coupling
is the primary cause of losses in our system, but can be controlled [16].

First, we perform numerical experiments in which we launch a series of Gaussian pulses into the
system. We choose a carrier frequency ω0 = ωRES – 3.2(γW ̭γR), and the full-width half-maximum (FWHM)
bandwidth of our pulses is ω0/FWHM = 796. The ratio of the transmitted (EOUT) vs. incoming (EIN) pulse
energy increases sharply as we approach the bistability threshold, and decreases after the threshold is
passed, as shown in the upper-left panel of Figure 5. Transmitted pulse spectra are also shown for a few
pulses in upper-right panel of Figure 5; the non-linear cavity redistributes the energy in the frequency
spectrum; if these changes to the spectrum are undesirable, they can be removed by: optimizing the device,
using time-integrating non-linearity, or by adding a frequency-dependent filter to the output of the device.
Typical output-pulse shapes are shown in the lower panels of Figure 5. As one can see in the lower-left
panel, even without optimizing our system, we still obtain well-behaved shapes of output pulses in the regime
where EOUT/EIN is maximal.
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Figure 5: Numerical experiments with launching temporal-Gaussian pulses into the non-linear system
of Figure 4. The upper-left panel shows the transmission as a function of the incoming pulse energy.
The lines in the upper-right panel display the output spectra for a few pulses; the spectrum of each
pulse is normalized to its peak incoming power (i.e. the input pulse, normalized in the same manner is
displayed with the dashed line). The lower panels show the output shapes for a few incoming pulses.
The square in the upper-left panel corresponds to the thick solid line in upper-right panel, and to the
pulse in the lower-left panel. The circle in the upper-left panel corresponds to the thin solid line in the
upper-right panel, and to the pulse in the lower-right panel.

For the case of CW signals we can achieve a precise analytical understanding of bistability in this system,
making use of the non-linear feedback parameter κ. Let us denote by PIN

S
, POUT

S the steady-state values of
PIN and POUT respectively. Using a Lorentzian transmission spectrum in the linear case and perturbation
theory for small δn(r), we obtain:

2

0
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S S
IN OUT

P T

P P
P δ
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, (4)

where δ =(ωRES -ω0)/(γW+γR), TP=[γW
2/(γW+γR)2] is the peak transmission, and P0 is a “characteristic power” of

this cavity given by:
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RES MAX
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Q c nκ ω −≡
r

, (5)

where κ is given by Eq.(2). According to Eq.(4), P0 sets the power scale for observing bistability in a cavity of
interest.

To check our analytical theory, we obtain κ=0.020 from a single non-linear computation; together
with the knowledge of Q and ωRES, we obtain POUT

S(PIN
S) for δ=3.2 which we plot, as a solid line in Figure 6.

We compare our analytical theory with numerical experiments in which we launch smoothly turned-on CW
signals into the cavity. To observe the upper hysteresis branch we launch large-amplitude and wide-width
Gaussian pulses that decay into smaller steady state CW values. The small discrepancy between our
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analytical theory and the numerical experiments in Figure 6 is mostly attributable to the fact that the linear-
regime transmission curve is not a perfect Lorentzian.
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Figure 6: Plot of the observed POUT
S vs. PIN

S for the device from Figure 4, when δ =3.2. The squares
are points obtained from numerical experiments. The line is the analytical prediction, which clearly
matches the numerical experiments; the dotted part of the line is unstable and therefore physically
unobservable.

While numerical simulations for larger Qs would be prohibitively long, our analytical model allows us
to predict the behavior of a high-Q device. According to Eq.(5), the power requirements drop with 1/Q2. Q
can be increased by adding more spheres to the “walls” of the cavity. For Q of 6000 (which is still compatible
with 10Gbit/sec signals), the non-linear index changes are <0.001 (which is still compatible with nearly
instantaneous non-linear materials). The power needed to observe bistability is 34mW (assuming n2=1.5∗10-

17m2/W, a value typical for the materials we are using), which is fairly close to the 5mW single-channel peak
power levels used in telecommunications. The power can be further decreased by reducing the modal
volume and/or by using materials with larger Kerr coefficient.

There are two reasons why the required power is so small compared to other fiber systems that
display optical bistability [17,18]. First, all the energy of the mode is concentrated in a very small modal
volume; consequently, for the same amount of modal energy, the peak δn(r) induced in the system is much
larger than in other systems with much larger modal volumes [18]. This is manifested by the fact that the
non-linear feedback parameter κ=0.020 is fairly large. (For comparison, if one had a system in which all the
energy of the mode were contained uniformly inside a volume (λ0/2nL)

3, κ would be ≈0.15.) Second, a large
quality factor can be achieved at the same time as the large κ. Increasing Q while keeping other parameters
fixed decreases the power requirements as 1/Q2 [19]. The first factor of Q appears because increasing Q for
a fixed PIN leads to a larger peak electric field inside the cavity, due to the longer energy accumulation. The
second factor of Q comes from the fact that the resonance peak width is ~1/Q, thereby reducing the required
frequency (index) shift by 1/Q as well.

On the experimental front, so far we have been successful in inserting d=1.75µm spheres into
d=2µm core fiber via capilary action (optical tweezers could be used instead) [20]. To our advantage,
spheres tend to stick together due to Van der Vaals forces. As a next step, we plan to decrease the pressure
inside the core, and heat the fiber to the melting point, so it would clasp tightly onto the spheres; this is a
standard technique usually used to decrease the core radii of hollow-core fibers. Clearly, there are many
other possibilities for implementing the axial modulation. Conceptually, the fact that the guiding mechanism
does not depend on the core and the fact that the core is initially hollow, provide for significantly more
experimental flexibility in implementing a strong optical axial modulation than exists in conventional fibers.
Other authors [21] demonstrated impressive manipulation of optical properties of holey fibers by inserting
various kinds of materials into the holes, including producing periodic axial modulation of the core.
Alternatively, one could perform photo-litography on the inner surface of the core: a photoresist would be co-
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drawn as the inner-most layer of the cladding, laser beams shone from the side would implement cross-
linking of the photo-resist, and then the hollow core would be used to transport all the acids and/or bases
needed to etch a periodic structure onto the inner-most layer of the cladding.

We would like to emphasize that since the transverse confinement principle is not index guiding,
periodic axial modulation is not the only way to achieve axial confinement in OmniGuide fibers. In fact, simply
shrinking the core radius [21] (or equivalently decreasing the index of the core) of an OmniGuide fiber can
shift the cutoff frequency of the operating mode above the operating frequencysimilarly to a metallic
waveguide, a mode experiences an exponential decay once it encounters such a region; this property is
sufficient to implement all the ideas presented above. Finally, one should be able to implement all the
principles described in this manuscript in any hollow photonic crystal fiber that has a large enough lateral
bandgap.

4. BISTABILITY IN DOUBLE-DEFECT PHOTONIC CRYSTAL SYSTEMS

In this Section, we describe a novel device system with 4 ports that provides very important new
performance characteristics. For example, essentially no portion of the incoming pulse is ever reflected back
into the input waveguide. Having zero reflection is of crucial importance for integration with other active
devices on the same chip. Through the use of analytical theory, and detailed numerical simulations, we
explain this device’s underlying physics and demonstrate its operation as an all-optical transistor and for
optical isolation.

Ideally, for many applications one would like to have a device with two inputs whose output has a
strong dependence on the (weak) amplitude of one of its inputs (the probe input). Moreover, for ultimate
efficiency, one would require single-mode waveguiding, high-Q cavities, and controllable radiation losses. A
non-linear PC system can provide us with all of these capabilities.

The system we propose is shown in Figure 7. It is reminiscent of the channel-drop filter introduced in
Ref. 22. The critical difference is that the PC is now made of high index non-linear rods suspended in air, and
this leads to important new functionality. The rods are made from an instantaneous Kerr material with index
change of ncε0n2|E(x,y,t)|2, where n2 is the Kerr coefficient. The system consists of two waveguides, and two
single-mode high-Q resonant cavities. The even, and odd states supported by the two-cavity system are
designed to be degenerate both in their resonant frequencies, and also in their decay times. Signals
propagating rightwards couple only to a particular superposition of the two states that in turn decays only into
rightwards propagating signals; consequently, there is never any reflection back into leftwards direction.
Since the energies stored in the two cavities are always equal, presence of the non-linearity does not spoil
the required left-right symmetry of the system(‡). Consequently, to the lowest order, the influence of the non-
linearity is only to change the doubly-degenerate resonant frequency ωRES depending on the intensity of the
signal. For a weak CW signal at ω, applied at port (1), the output at port (4) is given by:
T4(ω)≡POUT4(ω)/PIN1(ω)=γ2/[γ2+(ω-ωRES)2], where POUT4 and PIN1 are the outgoing and incoming powers
respectively, and γ is the width of the resonance; the output at (2) is given by: T2(ω)=1-T4(ω), while the
outputs at (1)&(3) are zero for all frequencies, because of the degeneracy and chosen symmetries of the two
resonant modes.

‡) One might wonder whether it is possible to excite states of the system that are not left-right symmetric. We were able
to excite such states with certain initial conditions that purposely ruined the left-right symmetry of the system, and in fact
some of these states seemed to be stable. Nevertheless, the states that have left-right symmetry appear to be
particularly stable; various non-linearly induced left-right asymmetries (at typical operating power levels) with as big as
10% difference in the energies stored in the two cavities did not seem to destabilize them.
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Figure 7: Basic 4-port non-linear PC device that we use to demonstrate optical bistability. The PC
consists of high-index εH=11.56 rods with radius 0.2a, a being the lattice constant. The four differently
colored rods in each plot have ε=9.5; the small rods have ε=6.2, and radius of 0.05a. As an example of
the use of the device, we show the electrical fields in the case when it performs optical isolation. Top
shows a strong forward-propagating pulse. Bottom shows a weak reflected backward-propagating
pulse. We model the high index rods as having an instantaneous Kerr non-linearity.

Given these forms for the transmission, we can follow the framework of Section 2 to predict that the
system will exhibit optical bistability if the carrier frequency ω0 is sufficiently below the resonant frequency:

( ) 30 >−≡ γ
ωωδ RES . Using the analytical framework of Section 2, the steady state values of the CW
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linear feedback parameter κ=0.11, while the quality factor is Q=ωRES/2γ=730. For definiteness, we take
δ=4.25, so bistability should be easily observable. We plot the analytical prediction as the green line in Figure
8; the dashed portion of that line is unstable, and thereby physically unobservable.

To verify this simple and powerful prediction, we perform numerical experiments (non-linear finite-
difference time-domain (FDTD) simulations with perfectly matched layers (PML) boundary conditions) on this
system. The current work, and the work of Ref. 22, are for a 2D model; this decreases numerical
requirements on our simulations significantly compared to 3D simulations. Nevertheless, it has been shown
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recently [7] that one can find an equivalent 3D system that will behave qualitatively the same, while the
quantitative differences will be only of a geometrical factor close to 1.
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Figure 8: Plots of the observed T≡POUT
S/PIN

S vs. PIN
S for the device from Figure 7. The upper panel

shows the power observed at output (2), while the lower panel shows the power observed at output (4).
The input signal enters the device at port (1). The circles are points obtained by launching CW signals
into our device. The dots are measurements that one observes when launching superpositions of
Gaussian pulses and CW signals into the system. The lines are from an analytical model described in
the text.

To observe the lower bistability hysteresis branch, we send smooth CW signals into the port (1) of
the system, and we vary the peak power of the incoming signals. In order to observe the upper bistability
hysteresis branch, we launch superpositions of wide Gaussian pulses that decay into smaller-intensity CW
signals, thereby relaxing into the points on the upper hysteresis branch. As shown in Figure 8, this device
indeed displays optical bistability, and our analytical model is a very good representation of the physical
reality. Throughout all of these simulations, the observed reflections back into ports (1)&(3) are always less
than 1% of the incoming signal’s power.

Given that the modes of the 2D system are so similar to the cross-sections of the modes described
in Ref.7, we can use the 2D results, together with the analytical model of the system to predict the
performance of the device in a real physical setting. According to Ref.7, once this device is implemented in a
PC with complete 3D bandgap, the 3rd dimension extent of all the modes will be roughly λ/3. Let us assume
that the Kerr coefficient of the material we are using is n2=1.5*10-17m2/W, (a value achievable in many nearly-
instantaneous non-linear materials, e.g. GaAs). Assuming a device with Q=4000 (which is still compatible
with 10Gbit/s signals), and carrier wavelength λ0=1.55µm, we get that the characteristic power of the device
is P0≈5mW, while the peak operating power needed to observe bistability is roughly 8mW. (Compare this to
the 5mW peak power levels used in telecommunications today). The peak non-linearly induced δn/n<0.001,
which is compatible with using nearly-instantaneous non-linear materials.
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Let us now examine how we would use such a device for optical isolation. One of the biggest
obstacles in achieving large-scale optics integration today is the non-existence of integrated optical isolators;
active and non-linear devices typically do not tolerate small reflections coming from other devices they are
integrated with. The most common approach involves breaking the time-reversal symmetry using magneto-
optic materials; other approaches involve breaking backward-forward symmetry using non-linear materials
[23]. Unfortunately, none of these approaches satisfy all the requirements mentioned earlier which are
necessary for large-scale optics integration. The device of Figure 7 can perform integrated-optics isolation,
for most applications of interest, eg. where the strength of each logical (forward-propagating) signal in a
particular waveguide is above the bistability threshold, and the reflected (backward-propagating) signals are
weak. An example of such operation is shown in Figure 7. A strong forward-propagating signal (operating at
a high-transmission point of the bistability curve) is nearly perfectly transferred from port (1) to port (4).
However, when a weak reflected signal (operating at a low-transmission point of the bistability curve) enters
port (4) of the device at a later time, it proceeds to port (3), from where it can be discarded.
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Figure 9: Results of launching Gaussian pulses into the device of Figure 7. Upper-left panel shows the
observations of launching various energy (otherwise equal) pulses only into port (1). Upper-right panel
shows the observations of launching a fixed signal (given by the circle from the upper-left panel) into the
port (1) of the device, in parallel with launching various amplitude (otherwise equal) pulses into port (3).
The lower-left panel, and the solid curve in the lower-right panel correspond to the pulse observed at
port (4) when a signal (square in upper-right panel) is launched into the device. The lower-right panel
also shows (in dashed line) the incoming pulse (both pulses in this panel are normalized to the peak
power of the incoming pulse).

In real practical applications, one will typically be launching pulses into the device, rather than CW
signals. Consequently, we also investigate what happens in this case. When the pulse duration is very long,
the response is of course very similar to that of the CW case, following the circle-curve in Figure 8. As the
pulse duration decreases, we expect the features of this transmission curve to smoothen-out. To check this,
we perform a series of numerical experiments in which we launch various energy Gaussian pulses of carrier
frequency ω0=ωRES-4.25γ, and full-width half-maximum (FWHM) bandwidth ω0/FWHM=638 into port (1) of the
device. The ratio of the energy transmitted to port (4) is shown in the upper-left panel of Figure 9. The shape
of this curve can also be intuitively understood as follows. As one increases the optical power, the increasing
index due to the non-linearity lowers ωRES through ω0, causing a rise and fall in transmission. This simple
picture however is modified by non-linear feedback: as one moves into the resonance, coupling to the cavity
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is enhanced (positive feedback) creating a sharper on-transition and as one moves out of the resonance, the
coupling is reduced (negative feedback) causing a more gradual off-transition.

As an illustration of another possible application of our device, we now exploit this sharper on-
transition to construct an all-optical transistor. We perform a series of numerical experiments in which we
launch into port (1) the pulses presented by the circle in the upper-left panel of Figure 9; however, in addition
to this, we send identical (albeit smaller energy) pulses into port (3) of the system. We experimented with
launching a few different energy pulses into (3); the results are shown in the upper-right panel of Figure 9. As
we can see, the amplification can be quite drastic. Consider for example the square in that panel: the pulse
sent into (3) had 0.25% of the energy of the pulse sent thru (1), resulting in an almost 5% increase in
transmission to port (4); this implies an amplification of a factor of roughly 20. Such large amplifications are
precisely the functionality one expects from an all-optical transistor (c.f. Section 2). An additional interesting
feature of the upper-right panel of Figure 9, is that the energy observed at port (4) is essentially proportional
to the square root of the energy sent in thru (3). This means that the energy amplification factor becomes
infinite as the signal energy goes to zero, which may have some exciting new applications, such as a very
low threshold laser. This behavior can be understood as follows. Pulses coming in thru (1)&(3) are coherent
and in phase. Consequently, (taking into account the up-down symmetry of the system), once inside the
cavities, the signals add in amplitude. Therefore, for small signals, and a given pulse incoming thru (1), the
energy stored in the cavity is a linear function of the field applied at (3). Since the energy at (4) is a linear
function of the energy stored in the cavities, it is a linear function of the square root of the energy coming thru
(3). If instead we considered a time-integrating non-linearity, and temporally incoherent signals, for a fixed
incoming pulse at (1), the energy output at (4) would be a linear function of the energy coming into (3) (in that
case, the signals in the cavity would add in intensity, rather than in amplitude). Finally, since the frequency
width of the pulses is comparable to the frequency width of the cavity, and the non-linear effects are quite
extreme, it is important to determine possible distortions in the shapes of the output pulses. The use of FDTD
simulations provides a bonus here, since a detailed description of output pulses is typically not feasible with
other theoretical models. In general, we find that the output pulses retain their pulse shape, as shown in the
lower panels of Figure 9.

With only minor modifications, the device system we propose can also be used for other applications
[10], including: any all-optical logical gate, pulse reshaping and regeneration, noise-cleanup, optical diode
[4], memory, etc. For any of these uses, when applying any signal to port (1) and/or port (3), one never has
to worry about any reflections into ports (1) or (3). The control of reflections offered by devices of this type
represents a low-power, ultra-fast, small-scale paradigm for implementing non-linear micro-devices in non-
linear optics.

5. CONCLUSION

We demonstrated how unique opportunities of photonic crystals for molding the flow of light opened
a new window of opportunity for using optical bistability for all-optical applications. Devices that can be
designed using these principles are suitable for implementing large-scale optics integration, they are tiny in
size, can be ultra-fast and operate with only a few mW of power.
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Materials Research Science and Engineering Center program of the National Science Foundation under
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