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Heating of Hollow Photonic Bragg Fibers From
Field Propagation, Coupling, and Bending

M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, C. Anastassiou, and B. Temelkuran

Abstract—We investigate heating from field propagation, cou-
pling, and bending, which are the potential failure mechanisms
for an emerging new type of high-power radiation guides—hollow
photonic Bragg fibers. Continuous wave (CW) and pulsed radia-
tion sources are considered, assuming continuous operation of the
laser source.

Index Terms—Bragg fiber, high-laser-power transmission, pho-
tonic bandgap fiber, power capacity.

I. INTRODUCTION

LARGE-CORE hollow dielectric fibers have been recently
investigated to provide a guiding platform for high-power

radiation in a wide range of IR frequencies from 1 to 10.6 µm
[1]–[5]. Due to the absence of an absorbing material in the core,
hollow fibers have a potential to guide kilowatts of continuous-
wave (CW) power at a designable IR wavelength.

To transfer this novel technology into the industrial domain,
one has to deal with a variety of factors limiting the power
capacity of such fibers. In high-power-guiding applications
(Fig. 1), major areas of theoretical and experimental develop-
ment are laser-fiber coupling efficiency; reduction of heating
at the input fiber face; straight fiber design for minimized
radiation and material-absorption losses; reduction of mode
scattering and radiation due to imperfections and bends; sup-
pression of excess heating due to bends and imperfections;
and control of the output beam quality, which degrades due
to bends and imperfections. In this paper, we will focus on
issues related to the heating of hollow Bragg fibers (HBFs)
operating with the linearly polarized HE11 mode, which is the
most suitable mode to be coupled into with a standard high-
power laser.

HBF consists of a hollow core, a series of bilayers of two
materials with sufficient index contrast, and an overcladding.
Fig. 2(a) is a schematic of an HBF cross section. Hollow-core
radius is Ri. The dielectric mirror has N bilayers extending
to a radius Rm. Each bilayer is of thickness d. The outer
radius of the overcladding is Ro. Typically, Ri ∼ Rm � Ro.
The electromagnetic field decays exponentially in the mirror.
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Fig. 1. Major development areas in a high-power fiber link. Input—coupling
efficiency, input face heating. Transmission—design and optimization of a
straight fiber, mitigation of scattering/radiation due to imperfections/bends,
excess heating due to bends. Output—control of beam quality and M2.

Fig. 2. Power-capacity analysis of an HBF. (a) Schematic of a fiber. Hollow
core of radius Ri, mirror region of N bilayers, each of thickness d, surrounded
by an overcladding extending to Ro. (b) Two major types of heat sources
(shown in light gray)—Habs is due to field penetration and absorption in the
mirror region, Hrad is due to radiation leakage through a finite-size mirror and
absorption in the overcladding.

Thus, field penetration into the mirror is typically limited to the
first few bilayers. Since the core area that guides most of the
light is several orders of magnitude larger than the mirror area,
power dissipation due to material absorption Habs is greatly
suppressed, with most of the heating happening in the first
few mirror layers [shown in light gray in Fig. 2(b)]. Another
mechanism of power dissipation in HBFs is radiation Hrad

leaking through the finite-size mirror. If the overcladding region
is absorbing, most of the radiation escaping from the core
will be converted into heat in that region. Sometimes, when
absorption in the overcladding is very high (105 dB/m for a
polymer at 10.6 µm), all the heat conversion occurs in a thin
circular region at Rm just outside the mirror [also shown in
light gray on Fig. 2(b)]. Assuming no hear transfer to the hollow
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core, all the heat dissipation occurs through the overcladding
periphery at Ro. Cooling there is provided by conduction and
convection to gas or flowing water at an operating temperature
Tc. Heat transfer from fiber to coolant is characterized by a heat
transfer coefficient h, which can depend strongly on the fiber di-
ameter. Typical heat-transfer coefficients for a solid–gas/liquid
flat interface are dry air—h = 5 W/(m2 · K), forced dry air—
h = 25 W/(m2 · K), water—h = 200 W/(m2 · K), while the
same coefficients for fibers with outer diameters of ∼ 1 mm
can be five to ten times larger. Common heat conductance of
polymers and glasses is k ∼ 0.25 W/(m · K).

A typical design for λ = 10.6 µm has Ri = 500 µm, Ro =
1500 µm, and 14 bilayers. The mirror materials are polymer
(low index) and chalcogenide glass (high index), with indices
of nl = 1.5 and nh = 2.8, respectively. Bilayer thickness is d =
3 µm. Intrinsic bulk absorption loss of a high-index material
is ∼ 10 dB/m, an overestimate for high-purity chalcogenide
glasses at 10.6 µm. The overcladding and low-index materials
are assumed to have absorption losses of 105 dB/m, which is a
value typical for polymers. These material parameters yield a
total HE11 modal loss of αHE11 ∼ 0.1 dB/m. For this design,
total power dissipation is dominated by material-absorption
losses in the first few layers of the mirror.

II. HEATING WITH A CW LASER SOURCE

We first analyze the heating of a fiber transmitting P [W] of
power coming from a CW laser source. For CW sources,
temperature rise in a fiber is very sensitive to the cooling
conditions, with most of the temperature rise occurring at the
cladding to air/water interface, and only a small temperature
difference across the fiber profile. A semirigorous analysis of
temperature increase in hollow fibers and preforms for CW
sources, typically ignores intermodal interferences, and can be
encountered in the literature on hollow metallic fibers [6]–[9].
In this paper, we present rigorous formulation for both CW and
pulsed sources.

A. Simple Model

The equilibrium temperature profile can be found by solving
the standard heat-transfer equation, with the sources determined
by the modal profile in the absorbing regions of a fiber. For a
single propagating mode, we find that the solution of a heat-
transfer equation with exact sources can be approximated very
well by a simpler model. Instead of an exact heat source, we
assume a thin circular heat source Habs + Hrad at Ri with a
heat flux through the core jr(r, z)|r=Ri

= Pmαm exp(−αmz),
where Pm is the partial power and αm is the total loss of a
mode m. Boundary conditions assume zero heat flux through
the fiber facets jr(r, z)|z=0 = jr(r, z)|z=L = 0. Finally, we
use the Newton boundary condition for the outgoing heat flux
into the coolant in the form jr(r, z)|r=Ro

= h(T (Ro, z) − Tc).
In a simple analysis, we ignore the interference effects be-
tween copropagating modes, thus adding their individual con-
tributions to the temperature rise. In this model, the most
heated region of a fiber is at the fiber-coupling facet, near

the inner mirror edge, with a corresponding temperature rise
∆TCW = Ti − Tc

∆TCW =


 ∑

Riαm�1

Pmαm





 1

2πRoh
+

log
(

Ro

Ri

)
2πk




+
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Pm
2 log(Riαm)

π2Rik

)
. (1)

The first summation in (1) accounts for the core-guided
modes, each of which has relatively small modal losses and
modal decay occurring on a length scale larger than the core
radius Riαm � 1. These modes are relatively benign, as heat-
ing from the dissipation of such modes can be counteracted by
improved cooling. When coupling to these fiber modes, one
has to avoid coupling to the very lossy overcladding modes
Riαm > 1, for which all the power is immediately converted
into the heat in a small spatially localized region near the input
fiber facet. Heating from such modes cannot be effectively
counteracted, as the heated region is smaller than the fiber cross
section, rendering heat dissipation through the outer boundary
ineffective. We find that the optimal coupling of power from the
Gaussian laser beam to the HE11 mode of a fiber is PHE11 ≈
0.98, and it is achieved when the diameter of the laser beam
is ∼ 0.6 times the fiber diameter, with coupling to the very
lossy overcladding modes being Pcladding ≈ 10−3. Choosing a
laser-beam diameter smaller than the optimal, while reducing
coupling to the HE11 mode, also greatly reduces the coupling to
the overcladding modes, with the rest of the power going to the
relatively low-loss higher order core-guided modes. Thus, with
a laser-beam diameter of 0.3 times the core diameter, power in
the HE11 mode is still large (PHE11 ≈ 0.65), while power in
the overcladding modes is less than Pcladding ≈ 10−6. Thus,
using smaller-waist laser beams at the coupling facet of the
fiber can substantially reduce fiber heating at the expense of
the deterioration of the beam quality. These theoretical results
on coupler efficiency and heating were also confirmed by direct
experimental observations.

B. Rigorous Formulation

Although simple model (1) is adequate to quantify fiber
heating on average, it is inadequate to describe an observable
localized heating rise along the direction of propagation at the
points of constructive interference of copropagating modes.
To describe this phenomenon, we have to resort to a com-
plete formulation of the heat-transfer problem. Particularly, we
assume laser-beam excitation of several fiber modes counted
by index i and angular-momentum index m, with excitation
coefficients Ci,m(z) along the length of a fiber. At z = 0, these
coefficients are found by solving a laser beam–fiber coupling
problem with the proper field-continuity conditions on the fiber-
coupling facet. Particularly, the incident laser beam, assumed to
have a Gaussian profile, is decomposed into a sum of forward-
propagating modes of a homogeneous waveguide, and the
reflected field is expressed as a sum of backward-propagating
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Fig. 3. Modeling of fiber heating. Most heating comes from energy dissipa-
tion in the mirror layers made of highly absorbing material. This dissipation
defines a very nonuniform heat source in the radial direction. Heat transfer to
the core and through the fiber end facets is assumed zero, with all the heat
dissipating through the outer surface of a fiber.

free space modes. The amplitudes of the modes are chosen to
satisfy transverse field continuity.

Due to the modal interference, the most heated region in
the fiber is not necessarily at the coupling facet of the fiber,
but is determined by a particular modal-excitation pattern and
is usually somewhere near the coupling facet. Equilibrium
temperature in this region can be found by solving a time-
independent heat-transfer equation with a boundary condition
of zero flux across the fiber end facets and into the fiber core.
The heat source is computed exactly from the excited modal
pattern. Energy loss in the layers made of higher absorption-
loss material will contribute most to the heating; therefore, the
heat source will be a rapidly varying function in the radial
direction (Fig. 3).

Modal fields of a Bragg fiber have a general form(
E(ρ, θ, z, t)
H(ρ, θ, z, t)

)
= exp (i(βiz − ωt)) exp(imθ)

(
Ei,m(ρ)
Hi,m(ρ)

)
.

(2)

In the following analysis, we assume linearly polarized
modes. Particularly, one can show that any mode with m > 0
has a degenerate pair with the same propagation constant but
a negative angular momentum −m. Any linear combination
of such modes will also be an eigenstate degenerate with the
constituent modes. One typically defines the following linear
combinations of the modes (we call them “+” and “−” like
polarized modes) of index i and angular momenta m and −m,
which are most compatible with a polarization of an incoming
linearly polarized laser mode shown in (3), shown at the bottom
of the page. The total field in the fiber is then

F(ρ, θ, z) =
∑
i,m

C±
i,m(z) exp(iβi,mz)Fi,m

± (ρ, θ) (4)

where F is either an electric- or magnetic-field vector. In the
case of straight-fiber, expansion coefficients, C±

i,m(z) = C±
i,m

are independent of z and reflect initial excitation weights. In
general, in the case of imperfect fibers (for example, bent

fibers), modal expansion coefficients are changing along the
propagation length and have to be computed beforehand using
coupled-mode theory. The total energy flux along the fiber
direction is normalized by the total incoming power Pz(0) =
P [W] and is equal to

PCW
z (z)

=
1
4
Ẑ ·

∮
waveguide

cross section

(H∗ × E + H × E∗)ds

=
1
4

∑
i,j,m

(
ηmC∗±

i,m(z)C±
j,m(z)P i,j,m

z

· exp([−Im(βj,m+βi,m)+iRe(βj,m−βi,m)]z)
)
(5)

where η0 = 1, ηm �=0 = 1/2, and a cross flux is defined as

P i,j,m
z = Ẑ ·

+∞∫
0

2πρdρ
(
H∗

i,m(ρ) × Ej,m(ρ)

+ Hj,m(ρ) × E∗
i,m(ρ)

)
. (6)

The heat flux from the material absorption of the electric field is
calculated by using an imaginary part of the material dielectric
constant as

SCW(ρ, θ, z)

=
Im (ε(ρ)) ω

2c
|E|2

=
Im (ε(ρ)) ω

4c

·
∑

m,m′

∑
i,j

(
C∗±

i,m(z)C±
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· exp ([−Im(βj,m′ + βi,m)

+ iRe(βj,m′ − βi,m)] z)

·
(
cos ((m − m′)θ) χi,j,m−m′

± cos ((m + m′)θ) χi,j,m+m′
))

(7)

where one chooses the + sign for “+” polarized modes and the
− sign for “−” polarized ones, and

χi,j,m−m′
=
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(8)
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(3)
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Fig. 4. Heat source SCW
m (ρ, 0) of HE11 mode in a fiber mirror region.

The radius of a fiber core is Ri = 330 µm. Most of the heating comes from
energy dissipation in the mirror layers made of a polymer material. Due to
the exponential decay of a modal field inside a reflector, most of the heat is
dissipated in the first few mirror layers.

We define T (ρ, θ, z) to be the temperature distribution across
the fiber profile. Angular dependence of the heat source sug-
gests that temperature distribution can be represented in the fol-
lowing form T (ρ, θ, z) = Tc +

∑
m Tm(ρ, z) cos(mθ), where

Tc is a coolant temperature. For every angular component of a
temperature distribution, we then write a corresponding heat-
transfer equation in cylindrical coordinates(

∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2

)
Tm +

∂2Tm

∂z2
+

SCW
m (ρ, z)
k(ρ)

= 0

−k(ρ)
∂Tm

∂ρ

∣∣∣∣
ρ=Ro

= hTm|ρ=Ro
; −k(ρ)

∂Tm

∂ρ

∣∣∣∣
ρ=Ri

= 0

∂Tm

∂z

∣∣∣∣
z=0

=
∂Tm

∂z

∣∣∣∣
z=L

= 0

(9)

where k(ρ) is heat conductance, and a source term Sm(ρ, z) is
defined in (10), shown at the bottom of the page.

In Fig. 4, we demonstrate the leading angular invariant
m = 0 heat-source term for the HE11 mode of a large-core
(Ri = 330 µm) OmniGuide fiber, assuming all values of the
power in that mode and a polymer/chalcogenide glass material
combination.

As in all the following graphs, we normalize the temperature
scale by the maximal absorption loss of a fiber material. As
we pointed out before, most of the heating comes from energy

dissipation in the polymer mirror layers made of highly absorb-
ing material. This dissipation defines a very nonuniform heat
source in a radial direction, with the maxima in the polymer
and the minima in the glass layers.

We further expand Tm(ρ, z) =
∑

i T i
m(ρ)U i

m(z) into a set
of basis functions T i

m(ρ) which are the eigenstates of the
following operator:

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2

)
T i

m(ρ) = −γ2
i T i

m(ρ)

−k(ρ)
∂T i

m

∂ρ

∣∣∣∣
ρ=Ro

= hT i
m(ρ)

∣∣
ρ=Ro

−k(ρ)
∂T i

m

∂ρ

∣∣∣∣
ρ=Ri

= 0. (11)

Eigenfunctions T i
m(ρ) are easy to construct, as in each region

of constant k(ρ), T i
m(ρ) can be expanded into the Bessel func-

tions T i
m(ρ) = AJm(γiρ) + BYm(γiρ). These regions are then

matched with each other to satisfy the condition of temperature
continuity across interfaces, as well as boundary conditions at
the first and the last layer interfaces. T i

m(ρ) defined by (11) will
then possess very convenient orthogonality properties

Ro∫
Ri

T i
m(ρ)T j

m(ρ)ρdρ = δi,j . (12)

Finally, expansion coefficients U i
m(z) can be found by solv-

ing a set of decoupled linear differential equations

∂2U i
m(z)

∂z2
− γ2

i U i
m(z) + S̃i

m(z) = 0

∂U i
m(z)
∂z
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=
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∂z
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z=L

= 0 (13)

where

S̃i
m(z) =

Ro∫
Ri

SCW
m (ρ, z)
k(ρ)

T i
m(ρ)ρdρ. (14)

The solution of (13) is known in a closed form

U i
m(z) = Ai exp(γiz) + Bi exp(−γiz)

+
1

2γi

L∫
0

exp (−γi|z − z′|) S̃i
m(z′)dz′ (15)
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m (ρ, z) =

Im(ε(ρ))ω
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·
∑
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+
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i,m′(z)C±

j,m′′(z)χi,j,m′+m′′
exp ([−Im(βj,m′′ + βi,m′) + iRe(βj,m′′ − βi,m′)] z)

)
(10)
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Fig. 5. High-power coupling into a fiber via a tube coupler. The metal coupler
tube is inserted into a block of metal to shield an input fiber facet from direct
illumination by laser beam. The coupler tube is a thin metallic tube of inner
radius, close to that of a fiber core radius.

where coefficients Ai and Bi are chosen to satisfy the boundary
conditions

∂U i
m(z)
∂z

∣∣∣∣
z=0

=
∂U i

m(z)
∂z

∣∣∣∣
z=L

= 0. (16)

Finally, temperature distribution across the fiber is

T (ρ, θ, z) =
∑
i,m

T i
m(ρ)U i

m(z) cos(mθ). (17)

Thus, the introduced method is effectively a multipole expan-
sion method with a source for the heat-transfer equation.

III. HEATING DUE TO AN IMPERFECT COUPLER

In the following, we analyze the heating of a fiber when laser
light is coupled through an imperfect coupler that excites higher
order modes. Fiber is designed for an optimal performance at
10.6 µm, having a core radius of Ri = 330 µm.

A simple coupler (Fig. 5) can be a short metallic tube
inserted into a metallic block shielding an input fiber facet.
Depending upon coupling conditions, such as the diameter of an
incoming Gaussian beam, higher order modes in the fiber can
be exited. To demonstrate the effect of modal interference on
local fiber heating, we took a particular realization of a coupler
where nonoptimal size of an incoming Gaussian laser beam
resulted in total power being distributed 80% in HE11 mode,
10% in HE12 mode, and the rest in other high-order modes.
Theoretical losses of HE11 and HE12 modes were computed
to be 0.2 and 1 dB/m, respectively. Although fractional power
in the HE11 mode is eight times larger than that of the HE12

mode, losses of the HE11 mode are five times smaller than the
losses of the HE12 mode, leading to heat sources from the two
modes that are comparable in magnitude. Because of the modal
field interference, local loss can get larger or smaller than the
weighted average of the two losses, leading to an appearance of
“hot” spots along the fiber length. To demonstrate this effect,
we solve the heat-transfer equations exactly with the modal
excitation pattern due to an imperfect coupler described above
and assuming the passive air cooling of a fiber. The result is
presented in Fig. 6.

We plot temperature rise along a 3-m long fiber per 1 W
of incoming light normalized by the maximal bulk-absorption
material loss in a fiber. Note that the HE11 mode alone con-
tributes to an almost-uniform temperature rise across the length
of a fiber (dotted curve in Fig. 6). Inclusion of other excited
modes can contribute significantly to the heating despite their
small fractional power. Temperature distribution along the fiber

Fig. 6. Temperature rise per 1 W of input power along a 3-m fiber normalized
by the maximum material-absorption loss of a fiber material. The dotted curve
shows a temperature rise when only the HE11 mode is excited. The solid curve
shows a temperature rise when several modes are excited with 80% in the HE11

mode, 10% in the HE12 mode, and with the rest of the power in higher order
modes. The strongly oscillatory nature of the temperature distribution is due to
interference between excited fiber modes. The thick dashed curve corresponds
to the temperature distribution when the modal interference is not taken into
account.

Fig. 7. IR image of a 20 cm fiber piece near the coupling facet. Temperature
oscillations (“hot” spots) are observed every 2–5 cm along the fiber length.

length is very nonuniform (solid curve), with hot spots appear-
ing every 3 cm, corresponding approximately to a beat length
between HE11 and HE12 modes. If interference effects between
the modes are not taken into account, the heating profile [dashed
thick curve calculated using (1)] only describes an average heat
rise along the fiber length, completely missing the phenomenon
of “hot” spots, which can sometimes be a dominant failure
mechanism in high-power-guiding fibers. If special care is not
taken when launching the light into the fiber, local “hot” spots
along the fiber length can be easily detected by an IR camera.

In Fig. 7, an IR mage of a 20-cm-long OmniGuide fiber piece
near the tube coupler is presented. “Hot” spots are clearly visi-
ble every 2–5 cm along the fiber length. Actually, the phenom-
enon of “hot” spots and their distribution along the fiber length
was first predicted numerically, and then observed experimen-
tally, in real fiber links. In fact, statistics of distribution of “hot”
spots along several-meter fiber length can be used to deduce
the excitation pattern of core modes. This excitation pattern
can then be compared to the one deduced independently [10]
from the field-intensity distributions in the near and far field
regions at the fiber output. Consistent mode mixing from the



3522 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 11, NOVEMBER 2005

two methods is typically observed in the absence of structural
defects near the fiber output end. Another way of comparing
numerical and theoretical prediction is at the fiber input end.
At the coupler input facet, we use mode-matching software to
predict the excitation pattern from a Gaussian laser beam into a
tube coupler. This numerical excitation pattern can then be used
to calculate the numerical distribution of “hot” spots along the
fiber length close to the coupler region. A good agreement with
experimental observations is typically found in the absence of
structural defects in the coupling region.

IV. HEATING DUE TO BENDS

When bends are present, mode conversion is induced. Modal
coefficients along the length of a bend can be computed by
coupled-mode theory [11]. If the bend shape is not optimally
chosen, additional fiber heating can be substantial. Mode
conversion in bends is stronger as the fiber core radius becomes
larger, and is inversely proportional to the bend radius. As
higher order modes have larger attenuations, their presence can
lead to a substantial increase in the fiber heating along the bend.
In Fig. 8, we demonstrate temperature rise along the 90◦ fiber
bend of a 20-cm bend radius, assuming all of the incoming
power in the HE11 mode at the start of a bend. At the beginning
of the bend, before substantial mode conversion occurs, heating
is dominated by the HE11 modal loss. Further into the bend,
modal conversion is substantial, leading to an appreciable
temperature rise. Note the appearance of “hot” spots along
the bend length because of the modal interference. When
compared to the temperature rise in a straight fiber, heating
in an unoptimized bend can be several times larger, thus,
ultimately limiting the power capacity of a high-power fiber.

V. FIBER HEATING WITH A PULSED LASER SOURCE

We now analyze HBF power handling of pulsed radiation.
We assume Ppeak [W] peak power transmitted through the

waveguide with τ [s] pulse duration and ν [1/s] repetition rate.
We denote the average transmitted power as Pav = Ppeakτ/ν.
Typically, the pulse duration is much smaller than the char-
acteristic temperature-equilibration time across the fiber cross
section τeq = CvR2

i /k ∼ 1 s. In a regime of short pulses, tem-
perature distribution across the fiber cross section will be mod-
ified from that of the equilibrium distribution corresponding to
the average transmitted power Pav. In general, power handling
of pulsed radiation is more challenging than the power handling
of CW radiation of the same average intensity. Physically, this
can be attributed to excitation by the time-dependent source of
localized “heat waves” (Fig. 9).

A. Simple Model

As before, we assume laser-beam coupling to the fiber modes
counted by index m with fractional average powers Pm

av in
each of them. Disregarding the interference effects between the
modes, the most heated region of the fiber will again be at
the coupling facet of a fiber near the inner core radius. Peak
temperature value Ti in this region over time can be found by
solving a simplified time-dependent heat-transfer equation with
boundary conditions of zero flux across the fiber side facets

Fig. 8. Heating along a 90◦ fiber bend of 20-cm bend radius, assuming all
of the incoming power is in the HE11 mode. At the beginning of the bend,
before substantial mode conversion, heating is dominated by the HE11 modal
loss. After 2 cm into the bend, modal conversion is substantial, leading to a
significant temperature rise.

Fig. 9. Phenomenon of a “heat wave.” Heat dissipation from a periodic in
time heat source deteriorates as the temporal frequency of a source gets larger,
leading to increased local heating. Heat from a time-dependent source localizes
inside a region of size L, which is inversely proportional to the square root of
a source frequency. The larger is the frequency (pulse repetition rate) of a heat
source, the more localized is the “heat wave,” leading to a deterioration of heat
exchange through the outer boundary of the fiber to the coolant.

and assuming that all the heat flux was coming into the fiber
from a very narrow heat source at the fiber-core boundary (we
later refer to it as a delta-function heat source). The maximum
temperature is then

∆Ti ≈ ∆TCW +

( ∑
Riαm�1

αmPm
av

)(
1

ν
√

ττeq

0.84
2πkoclad

)
(18)

where CW contribution ∆TCW is computed with (1), and Pm
av

is fractional average powers, assuming that high-loss over-
cladding modes Riαm 
 1 are suppressed. For a given fiber
design, the temperature rise of a pulsed source as a func-
tion of an average power, pulse duration, and pulse repetition
rate can then be presented by a universal line in coordinates
(1/(ν√ττeq),∆Ti/Pav). In these coordinates, the temperature
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rise is given by a family of straight lines, each correspond-
ing to a different cooling mechanism. CW power capacity
is calculated by letting 1/ν

√
ττeq = 0. Note that additional

contribution to heating due to pulsed heat sources cannot be
mitigated by improved cooling at the outer jacket.

B. Complete Formulation

As in the analysis of CW sources, we assume laser-beam
coupling to a set of fiber modes counted by index i, angular-
momentum index m, with excitation coefficients Ci,m(z), in
general, varying along the length of a fiber. Equilibrium temper-
ature in this region can be found by solving a time-dependent
heat-transfer equation with a boundary condition of zero flux
across the fiber side facets and zero flux into the core. Heat
source is computed exactly from the excited modal pattern.
In the following analysis, we again assume linearly polarized
modes. The vector fields of “+” and “−” polarizations of a
mode with index i and angular momentum m are

F i,m
± (ρ, θ, z) = W

(
z

vi,m
− t

)
F i,m
± (ρ, θ)C±

i,m(z)

× exp(iβi,mz − iωt) (19)

where F i,m
± (ρ, θ) are the same as in the CW case. We assume

that the pulse is narrow enough in frequency that the fields
can be computed only at a single frequency. The shape of
the pulse comes through a multiplicative pulse-shape term
W (z/vi,m − t), where vi,m is the group velocity of a mode
(i,m). Pulses are typically characterized by their repetition
rate ν and duration τ < 1/ν. If pulse duration is not too short
τ > L/vi,m, then modal intensity is approximately uniform
across fiber length L, and additional simplification can be made
by dropping the z dependence of pulse shape W (t). We further
define P (t) = |W (t)|2. In the case of straight fiber-expansion
coefficients C±

i,m(z) = C±
i,m are independent of z and reflect

initial excitation weights, while in the case of a perturbed fiber,
they are computed using coupled-mode theory. Total power flux
along the fiber direction is then computed as

PPulsed
z (z, t) = P (t)PCW

z (z). (20)

Incoming flux is normalized to reflect average power per pulse

ν

1
ν∫

0

Pz(0, t)dt = Pav [W]. (21)

Heat flux from material absorption of electric field is cal-
culated by using the imaginary part of the material dielectric
constant, as in the CW case

SPulsed(ρ, θ, z, t) = P (t)SCW (ρ, θ, z). (22)

We define T (ρ, θ, z, t) to be the temperature distribution
across the fiber profile. Angular dependence of a CW heat
source suggests that temperature distribution can be represented
in the following form:

T (ρ, θ, z, t) = Tc +
∑
m

Tm(ρ, z, t) cos(mθ) (23)

where Tc is the coolant temperature. For each of the angular
components of the temperature distribution, heat-transfer equa-
tions written in cylindrical coordinates are(

∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2

)
Tm +

∂2Tm

∂z2

+ P (t)
SCW

m (ρ, z)
k(ρ)

=
C(ρ)
k(ρ)

∂Tm

∂t

−k(ρ)
∂Tm

∂ρ

∣∣∣∣
ρ=Ro

= hTm|ρ=Ro
; −k(ρ)

∂Tm

∂ρ

∣∣∣∣
ρ=Ri

= 0

∂Tm

∂z

∣∣∣∣
z=0

=
∂Tm

∂z

∣∣∣∣
z=L

= 0 (24)

where k(ρ) is heat conductance, and C(ρ) is heat capacitance
per unit volume. We further make an expansion

Tm(ρ, z, t) =
∑

i

T i
m(ρ)U i

m(z, t) (25)

into the same set of basis functions T i
m(ρ), as in a CW case. Us-

ing the orthogonality property (12) of these functions, U i
m(z, t)

can then be found by solving a set of decoupled differential
equations

∂2U i
m(z, t)
∂z2

− γ2
i U i

m(z, t) + P (t)S̃i
m(z) =

C

k

∂U i
m(z, t)
∂t

∂U i
m(z, t)
∂z

∣∣∣∣
z=0

=
∂U i

m(z, t)
∂z

∣∣∣∣
z=L

= 0 (26)

where S̃i
m(z) is the same as in a CW case, and the C(ρ)/k(ρ)

ratio is assumed to be constant across the fiber profile (this
assumption can be lifted, leading to a system of coupled dif-
ferential equations in index i).

We now make another expansion

U i
m(z, t) =

∞∑
n=0

cos(αnz)Di,n
m (t) (27)

where αn = πn/L to satisfy boundary conditions at the fiber
ends. Equations (26) are then simplified

∂Di,n
m (t)
∂t

+
k

C

(
γ2

i + α2
n

)
Di,n

m (t) =
k

C
P (t)S̃i,n

m (28)

where we introduce

S̃i,n
m =

ξn

L

L∫
0

cos(αnz)S̃i
m(z)dz (29)

and ξ0 = 1; ξm �=0 = 2. We are interested in the temporally
periodic solution of (28) corresponding to a stationary solution
of the heat transfer-problem. Such a solution is known in a
closed form as

Di,n
m (t) =

k

C
S̃i,n

m

t∫
−∞

exp

(
−

k
(
γ2

i + α2
n

)
C

(t − t′)

)
P (t′)dt′.

(30)
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Fig. 10. Temperature-rise parameter curves as a function of a laser-pulse
parameter. Different dashed curves are calculated for an exact heat source and
correspond to different pulse-repetition rates. The solid curve is calculated for
a simplistic δ function like heat source, which provides an upper bound on the
heating increase due to pulsed sources.

In the case of a square pulse, P (t) is a periodic function with a
period 1/ν defined in the interval (0, 1/ν) as

P (t) = Pav
1
τν

[
1 ; 0 < t < τ
0 ; τ < t < 1

ν

. (31)

Finally, temperature distribution across the fiber is

T (ρ, θ, z, t) =
∑

i,n,m

T i
m(ρ) cos(αnz) cos(mθ)Di,n

m (t). (32)

Detailed calculation of pulsed sources of the form (31) shows
that temperature rise is actually smaller when evaluated real-
istically, rather then a δ function like heat source [expression
(18)]. As the repetition rate of the pulse increases, for the
same value of a parameter 1/(ν√ττeq) temperature distribution
tends to get closer to the CW distribution. In Fig. 9, we present
an increase in the maximal temperature rise due to a pulsed
source compared to a temperature increase in a CW case
∆T/∆TCW − 1 as a function of a pulse parameter 1/(ν√ττeq)
for a single excited mode. Simplified theory with a δ function
like heat source predicts a straight solid line in Fig. 10. Detailed
calculations show that this line gives an upper bound on the
heating due to pulsed sources. In reality, because of the finite
extent of a heat source, temperature-rise curves tend to follow
a CW temperature rise as the pulse repetition rate increases. In
Fig. 10, several temperature-rise curves are presented. They are
labeled and calculated for particular values of pulse repetition
rates ν and varying pulse duration τ .

VI. DEGRADATION OF BEAM QUALITY—M2

For the completeness of the discussion, we mention in pass-
ing additional restrictions on high-power transmission-system
design due to the degradation of spatial beam quality. Although
not directly related to failure mechanisms due to heating,
degradation of a beam quality imposes additional requirements

on the uniformity of a transmission link, minimal bend radii
allowed, etc. As the concept of beam quality plays major role
in industrial applications, it deserves a special paper of its own.
Here, we will only introduce major concepts related to the issue
of beam quality in HBF links.

Degradation of the spatial content of propagating radiation
through an imperfect fiber is frequently characterized by the
beam-quality parameter M2, which measures the divergence
of a given beam of radiation relative to the divergence of a
minimum-divergence Gaussian beam in the form of

D2
M2(z) = D2(0)

[
1 +

(
4M2λz

πD2(0)

)2
] 1

2

. (33)

This measure ultimately reflects the smallest spot size to which
an outgoing beam can be focused. To estimate M2, one fits
DM2(z) to a numerically simulated beam divergence defined
through the simulated field intensity I(r, z) as

D(z) = 2
√

2

[∮
r2I(r, z)dA∮
I(r, z)dA

] 1
2

. (34)

Beam diameter D(z) is simulated by numerically propagating
the field from an output of a fiber to the distance L (usually
several centimeters) until a reliable determination of M2 is
achieved.

The main mechanism for beam degradation is intermodal
scattering into the higher order modes by micro and macro im-
perfections along the propagation length. Micro imperfections
include fiber core roughness, acircularity of a core, microbends,
etc., while macro imperfections typically include various fiber
curvature changes. Modal scattering leads to an increase in
the output beam diameter, an increase in the angle of beam
divergence, and “speckling” of the radiation profile. In the
case when most of the power is in a single mode, M2 can
be approximated as an M2 of that mode plus M2 numbers of
the other modes weighted by their fractional power in a beam.
Fractional powers in other modes can be calculated given a
particular profile of a fiber along its length by coupled-mode
theory. M2 for a general beam cannot be readily evaluated
from the M2 of the constituent modes as there are interference
terms between the modes that are not taken into account by
the simple addition of M2 numbers. As HBFs are multimoded,
individual modes can have significantly different qualities when
focused outside the fiber. For reference, we present results of
the simulation of M2 for several major modes in the HBF
of chalco/polymer material combination with ID = 660 µm,
OD = 1250 µm, and 20 bilayers.

HE11 TE01 HE21 HE12 EH11 EH21

1.10 2.17 2.17 3.02 3.22 4.26

VII. CONCLUSION

In this paper, we have developed an efficient yet exact semi-
analytical numerical technique to investigate heating from
continuous-wave (CW) and pulsed-radiation propagation, cou-
pling, and bending in an emerging new type of high-power-
radiation guides—hollow Bragg fibers (HBFs). The main factor
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limiting the power capacity of high-power HBF links is found
to be additional heating due to fundamental mode scattering
into the lossy higher order modes. Such scattering is typically
caused by imperfect coupling at the coupling end, micro imper-
fections, and macro bending along the fiber-propagation length.
When several modes are excited in the fiber, the phenomenon
of “hot” spots is observed due to modal interference, when
even a small partial content of a very lossy mode can lead to
a discernable beating pattern in temperature distribution with
pronounced temperature maxima. Finally, for the propagation
of pulsed radiation, additional heating is observed due to heat
localization near the pulsed heat source. This causes additional
heating in the first few layers of a reflector, which is difficult to
mediate by improving the outside cooling conditions.
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