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Abstract: Perturbation theory formulation of Maxwell’s equations
gives a theoretically elegant and computationally efficient way of de-
scribing small imperfections and weak interactions in electro-magnetic
systems. It is generally appreciated that due to the discontinuous field
boundary conditions in the systems employing high dielectric contrast
profiles standard perturbation formulations fail when applied to the
problem of shifted material boundaries. In this paper we developed a
novel coupled mode and perturbation theory formulations for treat-
ing generic non-uniform (varying along the direction of propagation)
perturbations of a waveguide cross-section based on Hamiltonian for-
mulation of Maxwell equations in curvilinear coordinates. We show
that our formulation is accurate and rapidly converges to an exact re-
sult when used in a coupled mode theory framework even for the high
index-contrast discontinuous dielectric profiles. Among others, our for-
mulation allows for an efficient numerical evaluation of induced PMD
due to a generic distortion of a waveguide profile, analysis of mode fil-
ters, mode converters and other optical elements such as strong Bragg
gratings, tapers, bends etc., and arbitrary combinations of thereof. To
our knowledge, this is the first time perturbation and coupled mode
theories are developed to deal with arbitrary non-uniform profile vari-
ations in high index-contrast waveguides.
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1. Introduction

Standard perturbation and coupled mode theory formulations are known to fail or ex-
hibit a very slow convergence [1–6] when applied to the analysis of geometrical variations
in the structure of high index-contrast fibers.

In a uniform coupled mode theory framework (waveguide profile remains unchanged
along the direction of propagation), eigenvalues of the matrix of coupling elements ap-
proximate the values of the propagation constants of a uniform waveguide of perturbed
cross-section. When large enough number of modes are included coupled mode theory,
in principle, should converge to an exact solution for perturbations of any strength. Per-
turbation theory is numerically more efficient method than coupled mode theory, but it
is mostly applicable to the analysis of small perturbations. For stronger perturbations,
higher order perturbation corrections must be included converging, in the limit of higher
orders, to an exact solution. In a non-uniform (waveguide profile is changing along the
direction of propagation) coupled mode and perturbation theories one propagates the
modal coefficients along the length of a waveguide using a first order differential equa-
tion involving a matrix of coupling elements. Both uniform and non-uniform coupled
mode and perturbation theory expansions rely on the knowledge of correct coupling
elements.

Conventional approach to the evaluation of the coupling elements proceeds by ex-
pansion of the solution for the fields in a perturbed waveguide into the modes of an
unperturbed system, then computes a correction to the Hamiltonian of a problem due
to the perturbation in question and, finally, computes the required coupling elements.
Unfortunately, this approach encounters difficulties when applied to the problem of find-
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ing perturbed electromaghetic modes in the waveguides with shifted high index-contrast
dielectric boundaries. In particular, it was demonstrated (see [4], for example) that for
a uniform geometric perturbation of a fiber profile with abrupt high index-contrast di-
electric interfaces, expansion of the perturbed modes into an increasing number of the
modes of an unperturbed system does not converge to a correct solution when standard
form of the coupling elements [7, 8] is used. Mathematical reasons of such a failure are
still not completely understood but probably lie either in the incompletness of the basis
of eigenmodes of an unpertubed waveguide in the domain of the eigenmodes of a per-
turbed waveguide or in the fact that the standard mode orthogonality condition (6) does
not constitute a strict norm. We would like to point out that standard coupled mode
theory can still be used even in the problem of finding the modes of a high index-contrast
waveguide with sharp dielectric interfaces. One can calculate such modes by using as an
expansion basis eigen modes of some “smooth” dielectic profile (empty metallic waveg-
uide, for example). However, the convergence of such a method with respect to the
number of basis modes is very slow (at most linear). Perturbation formulation withing
this approach is also problematic, and even for small geometric variations of waveguide
profile matrix of coupling element has to be recomputed anew.

Other methods developed to deal with shifting metallic boundaries and dielectric
interfaces originate primarily from the works on metallic waveguides and microwave
circuits [7, 9–13]. There, however, Hermitian nature of the Maxwell’s equations in the
problem of radiation propagation along the waveguides is not emphasized, and con-
sequent development of perturbation expansions is usually omitted. Moreover, dealing
with non-uniform waveguides, these formulations usually employ an expansion basis of
“instantaneous modes”. Such modes have to be recalculated at each different waveguide
cross-section leading to very computationally demanding propagation schemes.

In this paper we introduce a method of evaluating the coupling elements which is
valid for any analytical geometrical waveguide profile variations and high index contrast
using the eigen modes of an unperturbed waveguide as an expansion basis. To derive
a correct form of the coupling elements we, first, define a convenient way of specifying
geometrical perturbations using a technique of coordinate mapping, and then construct
a novel expansion basis using spatially stretched modes of an unperturbed waveguide.
Stretching is performed in such a way as to match the regions of the field discontinuities
in the expansion modes with the positions of the perturbed dielectric interfaces. Thus
defined expansion modes are designed to have continuous fields in the regions of the con-
tinuous dielectric of a perturbed index profile. By substituting such expansions into the
Maxwell’s equations, we later find the required expansion coefficients. It becomes more
convenient to perform further algebraic manipulations in a coordinate system where
stretched expansion modes become again unperturbed modes of an original waveguide.
Thus, the final steps of evaluation of the coupling elements involve transforming and
manipulation of Maxwell’s equations in the perturbation matched curvilinear coordi-
nates.

In further discussions we formulate geometrical waveguide profile variations in terms
of an analytical mapping of an unperturbed dielectric profile onto a perturbed one. Given
a perturbed dielectric profile ε(x′, y′, z′) in a Euclidian system of coordinates (x′, y′, z′)
(where z′ is a direction of propagation) we define a mapping (x′(x, y, z), y′(x, y, z), z′(x, y, z))
such that ε(x′(x, y, z), y′(x, y, z), z′(x, y, z)) corresponds to an unperturbed profile in a
curvilinear coordinate system associated with (x, y, z). We then perform a coordinate
transformation from a Euclidian system of coordinates (x′, y′, z′) into a corresponding
curvilinear coordinate system (x, y, z) by rewriting Maxwell’s equations in such a coor-
dinate system. Finally, because dielectric profile in a coordinate system (x, y, z) is that
of an unperturbed waveguide, we can use the basis set of eigen modes of an unperturbed
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Fig. 1. a) Dielectric profile of a cylindrically symmetric fiber. Concentric dielectric
interfaces are characterized by their radii ρi. b) Scaling variation - linear tapers.
Fiber profile remains cylindrically symmetric, while the radii of the dielectric in-
terfaces along the direction of propagation s become ρi(1 + δ s

L
). c) Scaling vari-

ation - sinusoidal Bragg gratings. Fiber profile remains cylindrically symmetric,
while the radii of the dielectric interfaces along the direction of propagation s be-
come ρi(1+δSin(2π s

Λ
)). d) Non-concentric variation. Each dielectric interface stays

cylindrically symmetric, while the center line is bent.

Hamiltonian in (x, y, z) coordinates to calculate coupling matrix elements due to the
geometrical perturbation of a waveguide profile.

Our paper is organized as following. We first describe some typical geometrical vari-
ations of fiber profiles. Next, we discuss properties of general curvilinear coordinate
transformations and relate them to a particular case of coordinate mappings describing
geometrical variations of a fiber profile. We then formulate Maxwell’s equations in a
general curvilinear coordinate system. We apply this formulation to develop the cou-
pled mode and perturbation theories using stretched eigen states of an unperturbed
Hamiltonian as an expansion basis. We conclude with a detailed study of the conver-
gence of the novel coupled mode and perturbation theories for a variety of uniform and
non-uniform variations of the geometric profiles in high index-contrast waveguides.

In the following, we focus on the geometrical variation in fibers, although geometric
variations in generic waveguides can be readily described by the same theory (see [3]
for planar waveguides, for example).

2. Types of geometrical variations of fiber profiles

We start by considering some common geometrical variations of a fiber profile that can
be either deliberately designed or arise during manufacturing as perturbations.

Let (x, y, z) correspond to Euclidian coordinate system. In cylindrical coordinates

x = ρCos(θ)
y = ρSin(θ)
z = s.

(1)

Then, for step index multilayer fibers, for example, the position of the i′th dielectric
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interface of radius ρi can be described by a set of points (1), ρ = ρi,θ ∈ (0, 2π) (see
figure 1a)).

Geometrical variations in multilayer fibers that will be considered in this paper for
the purpose of demonstration of our method include high index contrast Bragg gratings,
tapers and bends.

If all the radii of the dielectric interfaces are scaled from their original values ρi to
become ρi(1 + f(s)) where f(s) is an analytic function of propagation distance s, then
the following coordinate mapping will describe such a scaling variation of interface radii
along the direction of propagation

x = ρCos(θ)(1 + f(s))
y = ρSin(θ)(1 + f(s))
z = s.

(2)

Here, ρ = ρi, θ ∈ (0, 2π) define the points on the i′th unperturbed dielectric inter-
face, while the corresponding (x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s)) describe the points on the
perturbed interfaces.

Using description of the points on the perturbed dielectric interfaces in terms of the
coordinate transformation (2) we introduce the following optical elements:

1) Dielectric tapers described by the monotonic variations in the radii of the dielectric
layers in a cylindrically symmetric fiber (see figure 1b)). For the case of linear tapers
f(s) = δ s

L where L is a length of a taper and δ is a relative change in the taper
dimensions from the beginning to the end.

2) Dielectric Bragg gratings of any strength, where the radii of the dielectric layers
change according to some analytic periodic function along the direction of propagation
in a cylindrically symmetric fiber (see figure 1c)). For the case of sinusoidal gratings,
for example, f(s) = δsin(2π s

Λ ), where δ defines the magnitude of the radial variation
of the grating dimensions, while Λ corresponds to the pitch of the grating.

In the same manner as for the case of concentric perturbations 1) and 2), we define
non-concentric perturbations through the respective coordinate transformation which
for the case of bends, for example, is defined as following:

3) Assuming that the center of a fiber spans an arc of radius R (see figure 1d)), then
the following coordinate mapping will describe the points on the perturbed dielectric
interfaces due to a bend

x = ρCos(θ)Cos( sR ) +R(Cos( sR )− 1)
y = ρSin(θ)
z = ρCos(θ)Sin( sR ) +RSin( sR ),

(3)

where s is a length along a circular arc. Here, ρ = ρi, θ ∈ (0, 2π) define the points on the
i′th unperturbed dielectric interface, while the corresponding (x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s))
of (3) describe the points on the perturbed bent interfaces.

3. Coupled mode theory for Maxwell’s equations

In the following, we introduce a Hamiltonian formulation of Maxwell’s equations in
terms of transverse field coordinates to address radiation propagation in generic non-
uniform waveguides. Hamiltonian formulation in regular Euclidian coordinates in terms
of the transverse fields is known and detailed in [1,3]. Hamiltonian formulation in curvi-
linear perturbation matched coordinates for the case of uniform fibers of arbitrary
cross-sections is detailed in [3, 4], where perturbation induced deterministic PMD is
considered in length.
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Assuming the standard time dependence of the electro-magnetic fields F(x, y, z, t) =
F(x, y, z) exp−iωt, (F denotes electric or magnetic field vector) and introducing trans-
verse and longitudinal components of the fields F = Ft + Fz with respect to the prop-
agation direction z, Maxwell’s equations can be written in terms of the transverse field
components as

−i
∂

∂z
B̂ |ψ〉 = Â |ψ〉 , (4)

where operators Â and B̂ are

B̂ =
(

0 −ẑ×
ẑ× 0

)
,

Â =
( ω

c ε− c
ω∇t × [ẑ( 1

µ ẑ · (∇t×))] 0
0 ω

c µ− c
ω∇t × [ẑ(1

ε ẑ · (∇t×))]
)
,

(5)

and Dirac notation is introduced |ψ〉 =
(

Et

Ht

)
. In this form operators on the left and

on the right of equation (4) are Hermitian.
In the case of a uniform waveguide profile operator Â is going to be a function of

the transverse coordinates (x, y) only, and we will refer to such an operator as Â0.
In that case, fields - solutions of (4) will possess an extra symmetry F(x, y, z, t) =
F(x, y)expiβz − iωt. An orthogonality condition between the modes β and β′ could
then be taken in the form (see [3])

〈ψ0
β∗ |B̂|ψ0

β′〉 = β′

|β′|δβ,β′ , (6)

where pure real β’s correspond to the guided modes, pure imaginary β’s correspond to
the evanescent modes and δβ,β′ stands for the Kronecker δ. Propagation problem (4)
will then reduce to a generalized Hermitian eigen value problem

βB̂ |ψ0
β〉 = Â0 |ψ0

β〉 . (7)

In the current paper we assume a closed non-uniform waveguide with a linear
isotropic lossless and non-magnetic media so that only the pure guided and evanes-
cent waves are present in the field expansions. Strictly speaking, this formulation avoids
the analysis of radiation loss. However, current framework still allows study of radiation
propagation in leaky systems (Bragg Fibers and Photonic Crystal (PC) waveguides in
example below) in certain regimes. Particular methods and their justifications are be-
yond the scope of this paper and they will only be mentioned in passing. For Bragg
Fibers and PC waveguides of infinite number of confining layers, for example, radiation
leakage in the band gap is zero with modes in the band gap being pure guided and inte-
grable. If scattering to other guided modes in the band gap dominates scattering to the
continuum of radiation modes (as frequently is the case in the perturbed multimoded
air core PC of Bragg Fibers) one can use current formulation without modification. In
the case of leaky modes with small radiation loss (originating from the finite number
of the confining layers in the PC or Bragg fibers, for example) one can still use the
modes of an ideal lossless system to approximate the modal scattering for the prop-
agation lengthes on which the radiation losses of the corresponding leaky modes are
negligible. In general, introducing absorbing boundary conditions together with con-
ducting boundary conditions outside the absorber recasts the problem of dealing with
non-integrable leaky modes of an open waveguide onto the problem of dealing with lossy
(due to absorption and inosotropy of absorbing dielectric layer) but integrable modes of
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a closed waveguide. Modification of the current method is possible to include absorption
loss and inosotropy of corresponding dielectric materials thus, in principle, allowing the
treatment of leaky modes in non-uniform waveguides.

In the following, we analyze variations of a waveguide profile that are non-uniform
along the direction of propagation. Uniform perturbations of a waveguide profile has
been analyzed in our previous works [2–4]. If a variation such as a continuous change
in the sizes of transverse dimensions of a structure is introduced into a system, it will
modify the operator Â making it, generally, dependent on all the coordinates (x, y, z).
We denote correction to an original uniform operator Â0 by ∆Â(z). Then, propagation
equation (4) can be rewritten as

−i
∂

∂z
B̂ |ψ〉 = (Â0 +∆Â(z)) |ψ〉 , (8)

where |ψ〉 is a corresponding non-uniform solution. One solves equation (8) by expanding
a solution |ψ〉 into a linear combination of some basis functions. If variation correspond-
ing to ∆Â(z) is small, then the natural choice of such basis functions would be uniform
solutions |ψ0

β〉 of an unperturbed operator Â0,

|ψ〉 =
∑
i

Ci(z) exp iβiz |ψ0
βi
〉 , (9)

where Ci(z) form a vector of expansion coefficients "C. Substitution of (9) into (8) and
further use of the orthogonality condition (6) lead to the following set of coupled linear
differential equations with non-uniform coefficients

−iB
∂ "C

∂z
= ∆A"C, (10)

where normalization matrix B has entries Bi,j = 〈ψ0
β∗

i
|B̂|ψ0

βj
〉, and matrix of coupling

elements ∆A has entries ∆Ai,j = 〈ψ0
β∗

i
|∆Â|ψ0

βj
〉 exp i(β∗

j − βi)z. Moreover, if perturba-
tion of a fiber profile is small scattering problem (10) allows a perturbative analysis [14].
Thus, assuming that all incoming radiation is initially in the guided mode n, then
Cn(z) ≈ 1 and scattered power into the guided mode j can be found from population
coefficients

Cj(z) =
〈ψ0

βj
|∆Â|ψ0

βn
〉√

〈ψ0
βj
|B̂|ψ0

βj
〉 〈ψ0

βn
|B̂|ψ0

βn
〉
exp i(βn − βj)z − 1

βn − βj
, (11)

Standard methods of evaluation of the coupling matrix elements due to the geometri-
cal distortions of the dielectric interfaces [7,8,15] employ eigen modes of an unperturbed
waveguide while shifting the dielectric boundaries to extract additional contributions
from Maxwell’s equations to the original Hamiltonian. While intuitive, these methods
are known to fail when dealing with high index-contrast sharp interfaces (see detailed
discussion in [1–4]).

In the following we derive the form of the coupling matrix ∆A of (10) using trans-
formation of the Maxwell’s equations into the curvilinear coordinates that match the
geometrical variation in question. This way geometrical variations are interpreted as a
change in the geometrical metric of space, while the shapes of dielectric interfaces stay
intact allowing the use of the eigen modes of an unperturbed waveguide in a correspond-
ing curvilinear coordinate system.
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4. Curvilinear coordinate systems

Following [16, 17], we first introduce general properties of the curvilinear coordinate
transformations. Let (x1, x2, x3) be the coordinates in a Euclidian coordinate system.
We introduce an analytical mapping into a new coordinate system with coordinates
(q1, q2, q3) as (x1(q1, q2, q3), x2(q1, q2, q3), x3(q1, q2, q3)). A new coordinate system can
be characterized by its covariant basis vectors "ai defined in the original Euclidian system
as

"ai = (
∂x1

∂qi
,
∂x2

∂qi
,
∂x3

∂qi
). (12)

Note, if all the coordinates except qj are kept fixed, then "aj is tangential to the set
of points described in Euclidian coordinate system by a curve (x1(qi = const, qj , qk =
const), x2(qi = const, qj , qk = const), x3(qi = const, qj , qk = const)). Now, define recip-
rocal (contravariant) vector "ai as

"ai = 1√
g
"aj × "ak, (k, j) 
= i , (13)

where metric gij is defined as

gij =
∂xk

∂qi
∂xk

∂qj
, (14)

and g = det(gij). From the definition of reciprocal vector "ai, it is perpendicular to the
surface of constant qi described by (x1(qi = const, qj , qk), x2(qi = const, qj , qk), x3(qi =
const, qj , qk)) where (j 
= k 
= i). Vectors "ai and their reciprocal "ai satisfy the following
orthogonality conditions

"ai · "aj = δi,j , "ai · "aj = gij , "ai · "aj = gij , (15)

where gij is an inverse of the metric gij . In general, a vector may be represented by
its covariant components "E = ei"a

i or by its contravariant components "E = ei"ai. These
components might have unusual dimensions because the underlying vectors "ai and "ai are
not properly normalized in a Euclidian coordinate system. Components having the usual
dimensions are defined by Ei = ei√

gii
, Ei = ei√

gii
and "E = ei"a

i = Ei
"ii, "E = ei"ai = Ei"ii,

where"ii,"ii are unitary vectors. Normalized covariant and contravariant components are
connected by Ei = GijE

j , Ei = GijEj where Gij =
√

gii

gjj
gij , Gij =

√
gii

gjj g
ij .

We demonstrate the properties of curvilinear coordinate transformations on the ex-
ample of a linear taper variation of a fiber profile (2) where f(s) = δ s

L . To ease further
presentation we will use a more common notation for Euclidian coordinates (x, y, z)
instead of (x1, x2, x3) and curvilinear coordinates (ρ, θ, s) instead of (q1, q2, q3).

Coordinate mapping due to a linear taper variation of a fiber profile (see figure 1b))
expressed in the polar coordinates (ρ, θ, s) is

x = ρCos(θ)(1 + δ s
L )

y = ρSin(θ)(1 + δ s
L )

z = s.
(16)

Covariant and contravariant basis vectors corresponding to a curvilinear coordinate
transformation (16) are

"iρ = (Cos(θ), Sin(θ), 0) ; "iρ = (Cos(θ), Sin(θ),−δ ρ
L )

"iθ = (−Sin(θ), Cos(θ), 0) ; "iθ = (−Sin(θ), Cos(θ), 0)
"is = (δ ρ

LCos(θ),δ ρ
LSin(θ),1)√

1+(δ ρ
L )2

; "is = (0, 0, 1).
(17)
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Thus, coordinate transformation corresponding to a linear taper variation is not an
orthogonal transformation, and consequently the covariant and contravariant compo-
nents behave differently. Covariant field component Eρ

"iρ is always perpendicular to the
tapered dielectric interface, while a covariant field component Es

"is is not parallel to the
tapered interface, however, when δ → 0, Es

"is remains close to being parallel to the el-
liptical interface up to the first order accuracy in δ. In a similar fashion, a contravariant
field component Es"is is always parallel to the elliptical dielectric interface, while a con-
travariant field component Eρ"iρ is not perpendicular to the elliptical interface, however,
when δ → 0, Eρ"iρ remains close to being perpendicular to the elliptical interface up to
the first order accuracy in δ.

In the examples above and in the forthcoming presentation we concentrate on the
analysis of the geometrical fiber profile perturbations that can be described by a general
coordinate transformation of the form

x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s), (18)

where (x, y, z) are the coordinates in a Euclidian coordinate system. In an unperturbed
cylindrically symmetric fiber, the i′th dielectric interface can be characterized by its
radius ρi and a corresponding set of points (x = ρCos(θ), y = ρSin(θ), z = s), where
ρ = ρi, θ ∈ (0, 2π) for any s. Given the mapping (18), perturbed i′th dielectric in-
terface while changing along the direction of propagation s can still be characterized
by its unperturbed radius ρi and for every fixed s is represented by a set of points
(x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s)), ρ = ρi, θ ∈ (0, 2π) (frequently, it is convenient to assume
z = s). As follows from the discussion of this section vectors forming local covariant
and contravariant coordinate systems associated with coordinates (ρ, θ, s) will have the
following properties on the dielectric interfaces. Contravariant basis vectors:"iρ is strictly
perpendicular to the perturbed dielectric interface,"is is almost parallel to the perturbed
dielectric interface more so the less is the perturbation of a fiber profile. Covariant basis
vectors:"iρ is almost perpendicular to the perturbed dielectric interface more so the less
is the perturbation of a fiber profile, "is is strictly parallel to the perturbed dielectric
interface.

To summarize, geometric perturbations of a fiber profile can be characterized by a
small parameter (δ in the examples above) that defines a curvilinear coordinate map-
ping of an unperturbed profile expressed in coordinates (ρ, θ, s) onto a perturbed profile
expressed in Euclidian coordinates (x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s)). This mapping defines
a curvilinear and, generally, a nonorthogonal coordinate system of coordinates (ρ, θ, s).
The smaller is the profile perturbation the closer is the corresponding curvilinear coor-
dinate system to an original orthogonal system.

5. Maxwell’s equations in curvilinear coordinates

We now present a formulation of Maxwell’s equations in general curvilinear coordinates.
A well known form of Maxwell’s equations in curvilinear coordinates can be found in a
variety of references [16–19]. These expressions are compactly expressed in terms of the
normalized covariant and contravariant components of the fields and in the absence of
free electric currents they are

ε(q1, q2, q3)
∂ Ei√

gii

∂ct = 1√
g e

ijk
∂

Hk√
gkk

∂qj

−µ(q1, q2, q3)
∂ Hi√

gii

∂ct = 1√
g e

ijk
∂

Ek√
gkk

∂qj ,

(19)

where eijk is a Levi-Civita symbol. For further derivations it is most convenient to write
Maxwell’s equations in terms of the normalized covariant components only. This will
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allow us later in the paper to express the coupling elements only in terms of the integrals
over the fields avoiding the integrals over the field derivatives.

For a non-uniform fiber, propagation constant is not a conserved property, and the
only symmetry possessed by a solution is

(
E(ρ, θ, s, t)
H(ρ, θ, s, t)

)
=

(
E(ρ, θ, s)
H(ρ, θ, s)

)
exp−iωt. (20)

Assuming non-magnetic materials µ = 1 we express Maxwell’s equations (19) in terms
of the normalized covariant coordinates only

i
∂

Eθ√
gθθ

∂s =
∂ iEs√

gss

∂θ + ω
c

√
g(
√
gρρHρ + gρθ√

gθθ
Hθ + gρs

√
gss Hs)

−i
∂

Eρ√
gρρ

∂s = −
∂ iEs√

gss

∂ρ + ω
c

√
g( gθρ

√
gρρHρ +

√
gθθHθ + gθs

√
gss Hs)

−i
∂

Hθ√
gθθ

∂s = −
∂ iHs√

gss

∂θ + ω
c ε
√
g(
√
gρρEρ + gρθ√

gθθ
Eθ + gρs

√
gss Es)

i
∂

Hρ√
gρρ

∂s =
∂ iHs√

gss

∂ρ + ω
c ε
√
g( gθρ

√
gρρ Eρ +

√
gθθEθ + gθs

√
gss Es)

(21)

iEs√
gss = − c

ωε
√
ggss (

∂
Hθ√
gθθ

∂ρ −
∂

Hρ√
gρρ

∂θ )− i
gss ( gsρ

√
gρρ Eρ + gsθ√

gθθ
Eθ)

iHs√
gss = c

ω
√
ggss (

∂
Eθ√
gθθ

∂ρ −
∂

Eρ√
gρρ

∂θ )− i
gss ( gsρ

√
gρρ Hρ + gsθ√

gθθ
Hθ).

(22)

Note that by substituting s components of the electric and magnetic fields (22) into
(21) we can form the non-uniform Hamiltonian formulation of the Maxwell’s equations
in the curvilinear coordinates in terms of the differential equation relating the covariant
components of transverse fields only.

For an unperturbed cylindrically symmetric uniform fiber, propagation constant is a
conserved parameter.We denote the eigen fields corresponding to a propagation constant
β and an angular integer index m as

(
E0(ρ, θ, s)
H0(ρ, θ, s)

)m

β

=
(

E0(ρ)
H0(ρ)

)m

β

exp iβs+ iθm. (23)

By substituting (23) into (21,22) fields (23) satisfy the following equations

−βE0m
θβ = −

√
g0θθmE0m

sβ + ω
c

√
g0g0ρρg0θθH0m

ρβ

βE0m
ρβ = −√

g0ρρ ∂iE
0m
sβ

∂ρ + ω
c

√
g0g0ρρg0θθH0m

θβ

βH0m
θβ =

√
g0θθmH0m

sβ + ω
c ε

√
g0g0ρρg0θθE0m

ρβ

−βH0m
ρβ =

√
g0ρρ ∂iH

0m
sβ

∂ρ + ω
c ε

√
g0g0ρρg0θθE0m

θβ

(24)

iE0m
sβ = − c

ωε
√
g0
(
∂

H0m
θβ√
g0θθ

∂ρ − im
H0m

ρβ√
g0ρρ

)

iH0m
sβ = c

ω
√
g0
(
∂

E0m
θβ√
g0θθ

∂ρ − im
E0m

ρβ√
g0ρρ

),

(25)

where an unperturbed polar coordinate metric is diagonal g0ρρ = 1; g0θθ = 1
ρ2 ; g0ss =

1; g0 = ρ2, and notation for a field component j ∈ (ρ, θ, s) (either electric or magnetic)
is F 0m

jβ = F 0
j (ρ) exp imθ.
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6. Coupled mode theory for Maxwell’s equations in curvilinear coordinates

In the previous sections we introduced geometrical variations of waveguide cross-section
in terms of the analytical mapping of an unperturbed onto a perturbed waveguide profile.
Next, we construct an expansion basis using the eigen fields of an unperturbed fiber by
spatially stretching them in such a way as to match the regions of discontinuity of their
field components with the position of the perturbed dielectric interfaces. Finally, we
find expansion coefficients by satisfying Maxwell’s equations (21,22). In the following,
we first define an expansion basis and then demonstrate how perturbation theory and
a coupled mode theory can be formulated in such a basis.

6.1 Expansion basis

We showed previously [1, 3, 4] that eigen modes of an unperturbed waveguide can be
described in the Hermitian Hamiltonian formulation in terms of the transverse fields
satisfying an orthogonality condition (6). In the following we will concentrate on the
case of fibers, while analogous derivations can be applied to any type of waveguides.
For cylindrically symmetrical fibers the natural choice of coordinates are the polar
coordinates. Condition of orthogonality (6) for the eigen fields of an unperturbed fiber
can be expanded as

〈ψ0
β∗,m|B̂|ψ0

β′,m′〉 = β′

|β′|δβ,β′ =∫
((H0m

θβ∗)∗E0m′
ρβ′ − (H0m

ρβ∗)∗E0m′
θβ′ +H0m′

θβ′ (E0m
ρβ∗)∗ −H0m′

ρβ′ (E0m
θβ∗)∗)J0(ρ)dρdθ,

(26)

where in polar coordinates Jacobian of transformation is J0(ρ) = ρ.
Now, consider a waveguide with a geometry slightly different from an original one.

Let (x, y, z) to define a Euclidian coordinate system associated with a perturbed waveg-
uide, and (ρ, θ, s) be a coordinate system corresponding to an unperturbed, cylindrically
symmetric fiber, where s is a length of a curve transversed by the center of a waveguide
cross-section. Define a coordinate transformation relating such two coordinate systems
as (x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s)) . Using solutions for the fields of an unperturbed fiber
expressed in the coordinates (ρ, θ, s) we form an expansion basis in a Euclidian coordi-
nate system (x, y, z) as following

|Ψβ,m〉 =




√
gρρ

g0ρρ E
0
ρ(ρ(x, y, z))"i

ρ +
√

gθθ

g0θθ E
0
θ (ρ(x, y, z))"i

θ√
gρρ

g0ρρ H
0
ρ(ρ(x, y, z))"i

ρ +
√

gθθ

g0θθ H
0
θ (ρ(x, y, z))"i

θ




m

β

exp imθ(x, y, z).

(27)
There are several important properties that basis vector fields (27) possess. First, if

coordinate transformation is orthogonal ("iρ = "iρ,"iθ = "iθ) then one can show that any
two basis fields of (27) are orthogonal in a sense of the orthogonality condition (6,26),
〈Ψβ∗,m|B̂|Ψβ′,m′〉 = β′

|β′|δβ,β′δm,m′ . Moreover, in the case of non-orthogonal transforma-
tions, basis fields (27) will be almost orthogonal with an amount of non-orthogonality
proportional to the strength of perturbation.

Second, basis fields (27) are continuous in the regions of continuous dielectric of a
perturbed fiber profile. In other words, regions of discontinuity in the field components
of the basis fields (27), by construction, coincide with the positions of the perturbed
dielectric interfaces.

Finally, due to the properties of the generalized coordinate transformations discussed
in the previous section "iρ will be strictly normal to the perturbed dielectric interfaces,
while "iθ will be either strictly tangential (orthogonal coordinate transformation) or al-
most tangential to the perturbed dielectric interfaces, deviating from strict tangentiality
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by an amount proportional to the strength of perturbation. As the unperturbed com-
ponents of the fields E0

ρ , H
0
ρ and E0

θ , H
0
θ satisfy the correct boundary conditions on the

unperturbed dielectric interfaces the field components (27) of (27) basis functions will
either exactly satisfy the proper boundary conditions on the perturbed interfaces (or-
thogonal coordinate transformation) or will satisfy them approximately deviating only
by an amount proportional to the strength of perturbation.

6.2 Coupled mode theory

In the previous section we derived the form (21,22) of Maxwell’s equations in the curvi-
linear coordinates (ρ, θ, s). While seemingly complicated these equations involve an un-
perturbed, cylindrically symmetric dielectric profile ε(ρ, θ, s). We look for a solution of
Maxwell’s equations (21,22) in terms of the basis fields (27) which in (ρ, θ, s) coordinate
system are essentially the eigen fields of an unperturbed fiber. We look for a solution
of Maxwell’s equations (21,22) in curvilinear coordinates (ρ, θ, s) in terms of an expan-
sion into the basis fields (27) entering with corresponding varying along the direction
of propagation coefficients Cβ′

m′(s). Thus, in the covariant coordinates




Eρ

Eθ

Hρ

Hθ


 =

∑
β′,m′

Cβ′
m′(s)




√
gρρ

g0ρρ E
0
ρ(ρ)√

gθθ

g0θθ E
0
θ (ρ)√

gρρ

g0ρρ H
0
ρ(ρ)√

gθθ

g0θθ H
0
θ (ρ)




m′

β′

exp im′θ. (28)

By substitution of expansion (28) into (21) and manipulation of the resultant equations
(see Appendix) we arrive to the following set of equations

−iB
∂ "C(s)
∂s

= M "C(s), (29)

Bβ∗,β′ = β′
|β′|δβ,β′ is a normalization matrix (6), M is a matrix of coupling elements

given by

Mβ∗,m;β′,m′ = 〈ψβ∗m|M̂ |ψβ′,m′〉 = ω
c

∫
exp i(m′ −m)θ×



E0
ρ(ρ)

E0
θ (ρ)

E0
s (ρ)

H0
ρ(ρ)

H0
θ (ρ)

H0
s (ρ)




m†

β∗




εdρρ εdρθ εdρs 0 0 0
εdθρ εdθθ εdθs 0 0 0
εdsρ εdsθ εdss 0 0 0
0 0 0 dρρ dρθ dρs
0 0 0 dθρ dθθ dθs
0 0 0 dsρ dsθ dss







E0
ρ(ρ)

E0
θ (ρ)

E0
s (ρ)

H0
ρ(ρ)

H0
θ (ρ)

H0
s (ρ)




m′

β′

J0(ρ)dρdθ
,

(30)
where integration is performed over an unperturbed fiber profile and non-zero elements
of 6× 6 matrix M̂ are

dρρ =
√

gg0θθ

g0ρρ (gρρ − (gρs)2

gss )

dρθ = dθρ =
√
g(gρθ − gρsgθs

gss )
dρs = dsρ =

√
g0g0θθg0ss g

ρs

gss

dθθ =
√

gg0ρρ

g0θθ (gθθ − (gθs)2

gss )

dθs = dsθ =
√
g0g0ρρg0ss g

θs

gss

dss = − g0g0ss

gss

√
g0ρρg0θθ

g .

(31)
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Fig. 2. a) Transmitted power T1 in the fundamental m = 1 mode, along with the
transmitted powers T2, T3 in the second and third m = 1 parasitic modes as a
function of the taper length L, calculated by our coupled mode theory . Results
of an asymptotically exact transfer matrix based CAMFR code are presented in
circles. b) Convergence of the errors in the transmitted and reflected coefficients for
a taper length of L = 10a as a function of the number of expansion modes. Solid
lines correspond to the relative errors in the transmission coefficients while dotted
lines correspond to the relative errors in the reflected coefficients. Calculated by our
coupled mode theory, errors in the transmission and reflection coefficients exhibit
faster than a quadratic convergence.

Equations (28) present a system of first order linear coupled differential equations with
respect to a vector of expansion coefficients Cβ

m(s). Boundary conditions such as a modal
content of an incoming and an outgoing signal defines a boundary value problem that
can be further solved numerically.

Note that the matrix of coupling elements M is Hermitian and, thus
〈ψβ∗,m|M̂ |ψβ′,m′〉 = 〈ψβ′,m′ |M̂ |ψβ∗,m〉∗. In (30) we can further perform an integration
of matrix M̂ over θ,

∫
M̂ exp i(m′ −m)θdθ as such an integration is decoupled from the

integration over the fields which are the functions of ρ only.
To summarize, given a geometric perturbation of a fiber profile, we characterize such

a perturbation in terms of a coordinate transformation (x(ρ, θ, s), y(ρ, θ, s), z(ρ, θ, s))
where an original cylindrically symmetric fiber profile in coordinates (ρ, θ, s) is mapped
onto a perturbed fiber profile in Euclidian coordinates (x, y, z). Such a coordinate trans-
formation defines a metric gij . Solving propagation equation governed by the matrix of
coupling elements (29,30,31) and applying the proper boundary conditions one finds the
transmission and reflection of the incident radiation into the modes of the outgoing and
incoming waveguides to any order of accuracy.

Moreover, (29) allows a perturbative interpretation. As a metric of a slightly per-
turbed coordinate system in only slightly different from the metric of an unperturbed
coordinate system that will naturally introduce a small parameter for small geometrical
perturbations of fiber profile. Exactly the same perturbative expansion for the values
of the modal coefficients due to scattering as in (11) holds in our case, where instead of
operator ∆A one would use an operator M − β0, where β0 is a matrix of propagation
constants of unperturbed modes.

7. Study of convergence of the coupled mode theory

We test our theory on a set of geometrical variations in the all-dielectric high index-
contrast waveguides. First we are going to consider long and short tapers and a limiting
case of an abrupt junction between two waveguides. Next, we will consider strong Bragg
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gratings. Finally, bends will be addressed.
An underlying waveguide used in our study is a single core high index-contrast

waveguide of radius Rcore = 1.525a, ncore = 3, nclad = 1 surrounded by a metallic
jacket of Rmetal = 4a. Frequency of operation is fixed and equal ω = 0.2 2πc

a , propagation
constant is measured in units 2π

a , where a defines the scale and can be chosen at will.
There are altogether 10 -m = 0, 16 -m = ±1, 12 -m = ±2 and 8 -m = ±3 guided modes
in this fiber. Metallic boundary conditions due to a waveguide outer jacket eliminate
the radiation continuum leaving a discrete spectrum of guided (propagation constant
is pure real) and evanescent modes (propagation constant is pure imaginary). We will
refer further to this waveguide as a “basic” waveguide.

First, we consider a linear taper variation of a waveguide profile where all the in-
terfaces (including an outside metal jacket) are scaled by the same amount along the
direction of propagation (see figure 1b)). A corresponding coordinate mapping will be
that of (2) with f(s) = δ s

L , where L is a length of a taper, and δ is its strength. Cou-
pling elements can be calculated from (30) and with a selection rule ∆m = 0 they are
dρρ = 1, dρθ = dθρ = 0, dρs = dsρ = ρ

L
δ

(1+δ s
L ) , dθθ = 1, dθs = dsθ = 0, dss = − 1

(1+δ s
L )2 .

For a strong taper variation of δ = 100% and a boundary condition of all the incom-
ing radiation coming in the fundamental m = 1 mode we solve (29) for the power in the
transmitted and reflected modes propagating in the incoming and outgoing waveguides.
We assume propagation from a larger waveguide into a smaller “basic” waveguide. Ex-
pansion basis consisted of 8 - m = 1 guided and 42 - m = 1 evanescent modes of an
outgoing “basic” waveguide. On figure 2a) we plot in dotted lines a transmitted power
T1 in the fundamental m = 1 mode, along with the transmitted powers T2, T3 in the
second and third m = 1 parasitic modes as a function of the taper length L, and calcu-
lated by our coupled mode theory . For comparison, results of an asymptotically exact
transfer matrix based CAMFR code [20] are presented on the same figure in circles
exhibiting an excellent agreement with our results. When taper length goes to zero we
retrieve the case of an abrupt junction between different waveguides. In the case when
taper length is large enough we are in the regime of a standard taper with most of the
transmitted power staying in the same mode.

On figure 2b), we present convergence of the transmitted and reflected coefficients
for a linear taper of length L = 10a. Solid lines correspond to the relative errors in
the transmission coefficients while dotted lines correspond to the relative errors in the
reflected coefficients. Note a very robust convergence of our coupled mode theory with
respect to the number of modes in the expansion basis. Errors in the coefficients ex-
hibit faster than quadratic convergence. For comparison, standard coupled mode theory
dealing with perturbed high index contrast discontinuous interfaces either does not con-
verges at all or exhibit a very slow linear convergence of errors [2, 4]. We also observe
that in all the regimes of short and long taper lengths our coupled mode theory gives
the correct values of the main transmission and reflection coefficients to a percent error
with less then 40 basis functions.

Next, we consider a strong index-contrast sinusoidal Bragg grating variation of a
waveguide profile where all the interfaces (including an outside metal jacket) are scaled
by the same amount along the direction of propagation (see figure 1c)). A corresponding
coordinate mapping will be that of (2) with f(s) = δSin(2π s

Λ ), where Λ is a period of
the grating, and δ is its strength. We assume a starting profile of a “basic” waveguide
at s = 0. Coupling elements can be calculated exactly from (30) and with a selection
rule ∆m = 0 they are dρρ = 1, dρθ = dθρ = 0, dρs = dsρ = − 2πρ

Λ

δCos(2π s
Λ )

(1+δSin(2π s
Λ )) , dθθ = 1,

dθs = dsθ = 0, dss = − 1
(1+δSin(2π s

Λ ))2 .
For a Bragg grating strength of δ = 5% and a boundary condition of all the incoming
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Fig. 3. a) Transmitted powers T2, T3, T4 in the second third and forth m = 1 modes
for the grating lengths [Λ

2
, 3Λ] in the Λ

2
increments are plotted in crosses, calculated

by our coupled mode theory. In this geometry the incoming and outgoing waveguides
are the same. Results of an asymptotically exact transfer matrix based CAMFR
code are presented in circles. When grating length is increased the power transfer
to the first excited mode is monotonically increased as expected. b) Convergence
of the errors in the transmitted and reflected coefficients for a grating of L = Λ

2
as a function of the number of expansion modes. Solid lines correspond to the
relative errors in the transmission coefficients. Calculated by our coupled mode
theory, errors in the transmission and reflection coefficients exhibit faster than a
linear convergence.

radiation coming in the fundamental m = 1 mode we solve (29) for the power in the
transmitted and reflected modes propagating in the incoming and outgoing waveguides.
We choose the Bragg grating period Λ to match a beat length between the fundamental
(transmission coefficient T1) and a first excited mode (transmission coefficient T2), so
in the limit of long gratings all the power will be transferred to the excited mode.
Expansion basis consisted of 8 - m = 1 guided and 42 - m = 1 evanescent modes of an
incoming “basic” waveguide. On figure 3a) we plot in crosses the transmitted powers T2,
T3, T4 in the second, third and forth m = 1 modes for the grating lengths [Λ2 , 3Λ] in the
Λ
2 increments, as calculated by our coupled mode theory. In this geometry the incoming
and outgoing waveguides are the same. For comparison, results of an asymptotically
exact transfer matrix based CAMFR code [20] are presented on the same figure in circles
exhibiting an excellent agreement with our results. When grating length is increased the
power transfer to the first excited mode is monotonically increased as expected.

On figure 3b), we present convergence of the transmitted and reflected coefficients
for a sinusoidal taper of length L = Λ

2 . Solid lines correspond to the relative errors in the
transmission coefficients. Note a greater than linear convergence of our coupled mode
theory with respect to the number of modes in the expansion basis. We also observe
that our coupled mode theory gives the correct values of the main transmission and
reflection coefficients to a percent error with less then 20 basis functions.

Finally, we derive an expression for the coupling elements due to a uniform bend
(see figure 1d)). A corresponding coordinate mapping will be that of (3), where R is
the radius of a bend. Coupling elements can be calculated exactly from (30) and with
a selection rule ∆m = 1 they are dρρ = ρ

2R , dρθ = dθρ = 0, dρs = dsρ = 0, dθθ = ρ
2R ,

dθs = dsθ = 0, dss = − ρ
2R . These matrix elements can be showed to correspond exactly

to the well known coupling matrix elements for the coupling of the guided modes in
uniform bends of metallic waveguides (see [9], for example). This correspondence is
expected as in the case of the uniform bends our method is identical to the “method of

(C) 2002 OSA 21 October 2002 / Vol. 10,  No. 21 / OPTICS EXPRESS  1241
#1640 - $15.00 US Received August 30, 2002; Revised October 18, 2002



cross-sections” as detailed in ( [9]).

8. Conclusion

In this work, we presented a novel form of the coupled mode and perturbation theories
to treat general geometric variations of a waveguide profile with an arbitrary dielectric
index contrast. This formulation, unlike much previous work, holds equally well for
high index contrasts. We demonstrated that for general scaling variations (including
tapers and Bragg gratings) of high index-contrast profiles our methods exhibit a faster
than linear convergence with the number of expansion modes. To our knowledge, this
is the first time coupled mode and perturbation theories are developed to deal with
arbitrary profile variations along the direction of propagation in the high index-contrast
waveguides.

Appendix: Derivation of coupling elements

We denote a product of two vector components F1, F2 with respect to a general operator
Ô as 〈F1|ÔF2〉 =

∫
(F †

1 ÔF2)J0(ρ)dρdθ († defines a transpose conjugate).
First, we substitute expansion (28) into (21) multiplying left and right sides of the

resultant equations by the respective factors of
√
g0ρρ and

√
g0θθ. We then multiply the

modified equations (21) on the left by the proper components of the unperturbed fields
and integrate over the fiber cross-section to exploit an orthogonality condition satisfied
by the unperturbed solutions (26). Modified equations (21) can thus be written as

i 〈H0m
ρβ∗ |

√
g0θθ

∂
Eθ√
gθθ

∂s 〉 = 〈H0m
ρβ∗ |

√
g0θθ

∂ iEs√
gss

∂θ 〉+
ω
c (〈H0m

ρβ∗ |
√
ggρρg0θθHρ〉+ 〈H0m

ρβ∗ |
√

g0θθg
gθθ gρθHθ)〉+ 〈H0m

ρβ∗ |
√

g0θθg
gss gρsHs)〉)

−i 〈H0m
θβ∗|

√
g0ρρ

∂
Eρ√
gρρ

∂s 〉 = −〈H0m
θβ∗|

√
g0ρρ

∂ iEs√
gss

∂ρ 〉+
ω
c (〈H0m

θβ∗ |
√

g0ρρg
gρρ gθρHρ〉+ 〈H0m

θβ∗ |
√
gg0ρρgθθHθ〉+ 〈H0m

θβ∗ |
√

g0ρρg
gss gθsHs〉)

−i 〈E0m
ρβ∗ |

√
g0θθ

∂
Hθ√
gθθ

∂s 〉 = −〈E0m
ρβ∗ |

√
g0θθ

∂ iHs√
gss

∂θ 〉+
ω
c ε(〈E0m

ρβ∗ |
√

ggρρg0θθEρ〉+ 〈E0m
ρβ∗ |

√
g0θθg
gθθ gρθEθ〉+ 〈E0m

ρβ∗ |
√

g0θθg
gss gρsEs〉)

i 〈E0m
θβ∗ |

√
g0ρρ

∂
Hρ√
gρρ

∂s 〉 = 〈E0m
θβ∗ |

√
g0ρρ

∂ iHs√
gss

∂ρ 〉+
ω
c ε(〈E0m

θβ∗ |
√

g0ρρg
gρρ gθρEρ〉+ 〈E0m

θβ∗ |
√
gg0ρρgθθEθ〉+ 〈E0m

θβ∗ |
√

g0ρρg
gss gθsEρ〉).

(32)

Next, we eliminate s components of the fields by substitution of (22) into (32). Conse-
quent substitution of expansion (28) into (32), summation of all the equations in (32),
and using orthogonality condition (6) leads to the following propagation equation

−iB
∂Cβ

m(s)
∂s =

∑
β′m′ C

β′
m′(s) 〈ψ0

β∗,m|M̂ |ψ0
β′,m′〉 = ∑

β′m′ C
β′
m′ [〈H0m

ρβ∗ |
√
g0θθ

∂
iEm′

sβ′√
gss

∂θ 〉

− 〈H0m
θβ∗|

√
g0ρρ

∂
iEm′

sβ′√
gss

∂ρ 〉 − 〈E0m
ρβ∗ |

√
g0θθ

∂
iHm′

sβ′√
gss

∂θ 〉+ 〈E0m
θβ∗ |

√
g0ρρ

∂
iHm′

sβ′√
gss

∂ρ 〉
+ω

c (〈H0m
ρβ∗ |

√
ggρρg0θθH0m′

ρβ′ 〉+ 〈H0m
ρβ∗ |

√
g0θθg
gθθ gρθH0m′

θβ′ 〉+ 〈H0m
ρβ∗ |

√
g0θθg
gss gρsH0m′

sβ′ 〉)
+ω

c (〈H0m
θβ∗ |

√
g0ρρg
gρρ gθρH0m′

ρβ′ 〉+ 〈H0m
θβ∗ |

√
gg0ρρgθθH0m′

θβ′ 〉+ 〈H0m
θβ∗ |

√
g0ρρg
gss gθsH0m′

sβ′ 〉)
+ω

c ε(〈E0m
ρβ∗ |

√
ggρρg0θθE0m′

ρβ′ 〉+ 〈E0m
ρβ∗ |

√
g0θθg
gθθ gρθE0m′

θβ′ 〉+ 〈E0m
ρβ∗ |

√
g0θθg
gss gρsE0m′

sβ′ 〉)
+ω

c ε(〈E0m
θβ∗ |

√
g0ρρg
gρρ gθρE0m′

ρβ′ 〉+ 〈E0m
θβ∗ |

√
gg0ρρgθθE0m′

θβ′ 〉+ 〈E0m
θβ∗ |

√
g0ρρg
gss gθsE0m′

sβ′ 〉)],
(33)
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where

iEm′
sβ′√
gss = − c

ωε
√
ggss (

∂
H0m′

θβ′√
g0θθ

∂ρ −
∂

H0m′
ρβ′√
g0ρρ

∂θ )− i
gss ( gsρ√

g0ρρ
E0m′
ρβ′ + gsθ√

g0θθ
E0m′
θβ′ )

iHm′
sβ′√
gss = c

ω
√
ggss (

∂
E0m′

θβ′√
g0θθ

∂ρ −
∂

E0m′
ρβ′√
g0ρρ

∂θ )− i
gss ( gsρ√

g0ρρ
H0m′
ρβ′ + gsθ√

g0θθ
H0m′
θβ′ ).

(34)

Coupling elements Mβ∗,m;β′,m′ = 〈ψ0
β∗,m|M̂ |ψ0

β′,m′〉 are defined by expression (33) after
substitution of equations (34) into it, while B is a normalization matrix (6).

Evaluation of the coupling elements using expression (33) involves integrals over the
derivatives of the unperturbed field components. Using the properties of the modes of
an unperturbed structure (24) and integrating by parts we can substantially simplify
evaluation of the coupling elements in the form of expression (33). In fact, evaluation of
coupling elements can be reduced to the evaluation of integrals over the products of the
field components sandwiched between a 6 × 6 matrix of analytical functions M̂ given
by (30), totally eliminating the derivatives of the field components.
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