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Abstract: We present a rigorous analysis methodology of fundamental
to higher order mode converters in step index few mode optical fibers. We
demonstrate experimental conversion from a fundamental LP01 mode to
the higher order LP11 mode utilizing a multiple mechanical bend mode
converter. We perform a quantitative analysis of the measured light intensity,
and demonstrate a modal decomposition algorithm to characterize the modal
content excited in the fiber. Theoretical modelling of the current mode
converter is then performed and compared with experimental findings.
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1. Introduction

Conversion from fundamental to the higher-order modes in optical fiber has received a consider-
able interest due to potential applications in dispersion compensation, variable attenuation, and
enhanced transmission properties [1–3]. Many schemes have been proposed to perform funda-
mental to higher-order mode conversion including fiber bends, long-period fiber Bragg gratings,
tapers of various topologies, and phase masks [4–12]. While many experiments demonstrating
mode conversion have been described, few of them were subjected to a rigorous analysis of the
intensity plots and a comparison with theoretical predictions. Typical uncertainties in the modal
weights from these experiments can reach tens of percents. The aim of this paper is to present a
rigorous analysis methodology for fundamental to higher-order mode converters and to discuss
inherent limitations of such an analysis.

Devising such a methodology relies on several key capabilities. One is to perform modal
decomposition of the intensity plots into the constituent modes of a fiber. As phase information
is absent from the intensity plots, the problem of fitting the modal content of the multimode
fiber is generally ill-conditioned. In low index-contrast fibers, one can successfully perform
modal decomposition of intensity plots only into the LP modal groups rather than into the in-
dividual modes. Another challenging task is to simulate the components of the imaging setup
as precisely as possible to achieve smaller than a few percent accuracy in prediction of the
true modal weights. Part of the uncertainty of any theoretical simulation comes from an un-
certainty of the fiber specifications, which are usually known only to several percent. Another
uncertainty comes from the limited knowledge of the experimental setup parameters, such as
the precise fiber center-line deviation in a bent fiber. Therefore, if quantitative comparison with
experimental data is desired, the experiment has to be designed around these uncertainties.

In this paper, we devise a self-consistent experimental-theoretical methodology that allows
the quantitative characterization of fundamental to higher-order mode converters. Our paper
is organized as follows. We first describe a particular type of mode converter used in our ex-
periments, which is based on multiple fiber bends. Then, experimental setup and results are
discussed. After that, a novel modal characterization algorithm is presented, experimental data
is analyzed, and the modal weights of different LP modes are extracted. Finally, we perform
theoretical modelling of mode conversion and compare its results with weights fitted by the
modal characterization algorithm.

2. Serpentine mode converter, design and experimental setup

“Serpentine” mode converters based on multiple single-plane bends of an optical fiber have
been described in many papers [7, 9, 11]. Single in-plane bend can directly couple modes with
angular indexes different by ∆m = 1. Such a bend couples differently modes with polariza-
tions in the plane of the bend and modes with polarizations perpendicular to the plane, without
mixing between polarizations. Coupling between modes is stronger, the larger is the curva-
ture of a bend. Periodic (“serpentine”) bends with spatial period Λ, in addition, induce a phase
matching condition that preferentially couples the modes with propagation constants different
by |∆β | = 2π

Λ . This allows a selective higher-order mode excitation. A typical “serpentine”
mode converter (Fig. 1) consists of two sets of tightly wound wires of diameter Dw with an op-
tical fiber of outer diameter Df placed between them. When the upper wires are pressed down,
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Fig. 1. Serpentine mode converter geometry. Optical fiber is in-between the two sets of
tightly wound wires of diameter Dw, chosen to satisfy phase matching condition between
the converted modes. Fiber diameter D f is generally comparable to the Dw.
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Fig. 2. Schematic of an experimental setup. Light from He : Ne laser, is coupled into the
fiber through the coupling lens. A mode stripper is then applied consisting of several loops
of tightly wound fiber. The wire wrapped mandrel on xyz stage was used as a mode con-
verter with fiber squeezed between two wire sets. The far field images were captured with
a CCD camera placed 13mm from the fiber end.

they induce a periodic sequence of mechanical bends in the fiber. By choosing the diameter of
the wires Dw to satisfy the phase-matching condition between the target modes of a fiber, one
can achieve mode conversion between them. If N is the number of wire loops, then the length
of the coupler is N ·Dw. When entering and exiting the coupler, the fiber is glued to a substrate
at some distance L from a converter, chosen in such a way as to not induce additional modal
conversion in these interface regions.

In our experiments, we perform an LP01 to LP11 mode conversion in SMF −28 and SM−750
fibers operating at λ = 632.8nm. LP01 is a singlet HE11 gaussian-like mode with propaga-
tion constant βLP01 and LP11 is a triplet of T E01, T M01, HE21 modes with almost degenerate
propagation constants βLP11 . Modes in each LP group exhibit very similar intensity patterns,
but not the field patterns. Vector fields are very different for different modes in the same LP
group, reflecting correspondent modal symmetries. The coupler resonant condition is therefore
Dw = 2π

|βLP01−βLP11 |
which for SMF −28 is Dw = 0.519µm, and for SM−750 is Dw = 0.246µm.

A schematic of the experimental setup is shown in Fig. 2. Light with λ = 632.8 nm from a
He:Ne laser is coupled into the fiber, exciting mostly the LP01 mode of the fiber. This is achieved
by first collimating the laser beam to 1 cm and then focusing it into the fiber with a lens of focal
length 8.3 cm and 3.8 cm for the SMF −28 and the SM−750 respectively. A mode stripper is
then applied to ensure that any higher order modes excited are stripped and only the LP01 mode
is sent to the mode converter. The mode stripper consisted of three loops of 6 mm diameter
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Fig. 3. Far field images taken 13 mm from exit of SMF −28 (a) and (b) and SM −750 (c)
and (d) being excited with He:Ne. (a) No mode converter applied for SMF − 28 showing
the LP01. (b) Mode converter applied with N = 35 turns of 0.512 mm copper wires showing
65% conversion to LP11 (established by modal characterization algorithm). (c) No mode
converter applied for SM − 750 showing the LP01 mode. (d) Mode converter applied with
N = 14 turns of 0.254 mm copper wires showing 55% conversion to LP11 (established by
modal characterization algorithm).

for the SMF −28 and only one loop of 12.7 mm diameter for the SM −750. The LP01 to LP11

mode converter, shown in Fig. 2, was built by wrapping two cylinders (12.7 mm diameter) with
a copper wire and squeezing the fiber in between them. The copper wire diameter was chosen
to be as close to the beat length of the two modes as possible. We used 0.512 mm and 0.254 mm
wire diameters for the SMF −28 and the SM−750, respectively. The wire-wrapped mandrels
were put on the xyz stages to adjust the amount of separation between the mandrels and their
relative alignment and pressure applied to the fiber in order to achieve maximal conversion.
Care was also taken to ensure there were no additional sharp bends after the mode converter,
this was particularly critical for the SM − 750 due to the very high bending losses of its LP11

mode.
The far-field images shown in Fig. 3 were taken 13 mm away from the exit of the fibers,

captured with a CCD camera (Cohu 4812) and a Spiricon LBA500-PC frame grabber. The
CCD camera had its protective glass removed to prevent reflections from distorting the image.
Fig. 3(a) and Fig. 3(b) show the image with no bend and with bend applied for maximum
conversion for the SMF−28; the corresponding images for the SM−750 are shown in Fig. 3(c)
and Fig. 3(d). All of the images were then decomposed into the corresponding fiber modes by
using the modal characterization tool described in the following section. We thus found that the
maximum LP01 to LP11 conversion is 65% in the case of SMF −28 with N = 35 wire turns, and
55% for the SM−750 converters with N = 14 wire turns.

Table 1 summarizes the experimental parameters and results. The fiber parameters were used
in the spatial decomposition program and were taken from the manufacturer specifications.
Specifications of fiber geometry usually allow up to 5% uncertainties in their values, while
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the knowledge of the refractive index is somewhat better controlled. Uncertainties in the wire
diameter can be up to 1%. Uncertainties of the modal characterization algorithm is 5%.

Table 1. Experimental parameters of fibers and wires including core diameter, core and
cladding refractive indexes, wire diameter and LP01 to LP11 conversion efficiency

Dcore (µm) ncore nclad Dw (µm) Conv. Eff. (%)
SMF-28 8.2 1.4625 1.4572 512 65 ± 3
SM-750 4.46 1.4622 1.4572 254 55 ± 3

3. Modal characterization algorithm

The object of modal characterization is to infer the fractional power (weight) in each guided
mode (eigenmode) from the far-field intensity pattern captured by the CCD. To do this, we
perform a least-squares fit of the measured Imes(ρ,θ) to predicted I(ρ,θ) intensity, with the
modal weights and phases as fit parameters. This involves several steps. First, the eigenmodes
of the specified fiber profile are computed by a transfer-matrix method [13]. These modes are
coupled to modes of air by matching boundary conditions, and are propagated to yield the the-
oretical field pattern of each mode as it would appear at the detector. Then, for any given modal
weights and phases, the fields can be summed to yield the total intensity. We then define “ob-
jective function,” as integral over the difference squared in predicted and measured intensities
over the area of the image. Objective function is then minimized by a variety of standard meth-
ods by varying weights and phases (see [14] for an algorithm where phases are not included
in the optimization). Ideally, this should reduce the objective function to zero, at which point
we would know the modal weights and phases exactly. In practice, we are only able to reduce
the objective function to a finite value because of experimental uncertainties, and we therefore
obtain the modal weights and phases with a certain degree of uncertainty. Moreover, from a
single intensity image, this method does not distinguish between individual, nearly degenerate,
modes of an LP modal group.

We tested several function minimization algorithms to reduce the value of objective function.
As we mentioned earlier, fitting phases is generally more problematic than fitting weights as
phase information is lost in the intensity plots. However, we found that standard multidimen-
sional conjugate gradient (CG) minimization algorithm where weights and phases are treated on
equal footing works very well in this problem. Another very efficient minimization method that
worked somewhat faster than CG was multidimensional Newton method. Weights and phases
were treated on equal footing, however, not all dimensions were used to find a new searched
direction. We used SVD decomposition of the Hessian of an objective function to reduce de-
generate subspaces.

To ensure consistency in the calculations, we always normalize both the observed and cal-
culated modes so that their integrated intensity on the screen is unity. In order to compare the
calculated modes to the real modes of the fiber, it is also important that the calculated modes
and the real modes be centered at the same location, and we therefore need an accurate measure
of the center of the fiber. We locate the center experimentally by first sending a white light sig-
nal through the fiber and determining the “center of mass” of this image. This “center of mass”
gives a correct center determination, because white source is incoherent, and the image that the
white light creates is cylindrically symmetrical without any finer structure to it.

We now describe in more detail the computation of the objective function, the sum of the
squares of the difference in predicted and measured intensity, a calculation that we simplify
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somewhat by the use of Fourier series. The predicted intensity is the z component of the real
part of the Poynting vector of the summed modes. We define (Em j

ρ (ρ),Em j
θ (ρ))exp(imθ) and

(Hm j
ρ (ρ),Hm j

θ (ρ))exp(imθ) to be the transverse components of the electromagnetic fields cor-
responding to the propagated eigenmode j of a fiber characterized by an angular index m and
propagation constant in the fiber β j. The total field is then

Fρ,θ = ∑
j

Fm j
ρ,θ(ρ)eimθ ·w j · eiφj (1)

where wi is the modal weight, φi is the modal phase, and Fm j
ρ,θ is a transverse component of the

electric or magnetic field. The time average predicted intensity I(ρ,θ) is then

I(ρ,θ) = 1
4 (�H∗ ×�E + �H ×�E∗)z =

∑
∆m

(
∑

i, j,mi−m j=∆m
fi j(ρ) ·ωi ·ωj · ei(φi−φj)

)
· ei∆mθ ≡ ∑

∆m
Ĩ(∆m,ρ) · ei∆mθ ,

(2)

where we introduced a cross-flux as

fi j(ρ) =
1
4
(Emi

ρ (ρ) ·H∗m j
θ (ρ)−Emi

θ (ρ) ·H∗m j
ρ (ρ))z. (3)

We now introduce the Fourier transform of the measured intensity field Imes(ρ,θ) as

Ĩmes(∆m,ρ) =
1

2π

2π∫
0

Imes(ρ,θ) · e−i∆mθdθ. (4)

Objective function is defined as an integral of the square of the difference between the experi-
mental intensity and fitted intensity, and can be further expressed as

O =
∫

ρdρdθ (I(ρ,θ)− Imes(ρ,θ))2

=
∫

ρdρ ∑
∆m

(
Ĩ(∆m,ρ)− Ĩmes(∆m,ρ)

)·(Ĩ(−∆m,ρ)− Ĩmes(−∆m,ρ)
) (5)

Substitution of the Ĩ(∆m,ρ) into the above equation gives

O =∑
∆m




∑
i, j,mi−m j=∆m

∑
i′, j′,mi′−m j′=∆m

[∫
ρdρ fi j(ρ) f ∗i′ j′(ρ)

]
ωiωjωi′ωj′e

i(φi+φj′−φj−φi′ )...

−2 ·Re ∑
i, j,mim j=∆m

[∫
ρdρ fi j(ρ)Ĩmes(∆m,ρ)

]
ωiωjei(φi−φj) +

∫
ρdρ

∣∣Ĩmes(∆m,ρ)
∣∣2


 .

(6)
The advantage of this formulation is that we can evaluate the mode-specific integrals only once,
and reuse them with any experimental intensity images. When the mode-specific integrals have
been calculated, we can very quickly evaluate the objective function as a function of the modal
weights and phases. Also, during objective function minimization, the workload of evaluating
the objective function repeatedly for different modal weights and phases is small and we can
thus rapidly minimize the objective function. Furthermore, the workload for the evaluation of
each minimization step does not scale with the size/number of pixels of the CCD, only with the
number of modes, which permits us to use a high image resolution.

4. Theoretical modelling

In this section we verify mode conversion by theoretical modelling of an experimental setup. We
then compare theoretical findings with results from modal characterization of the experimental
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Fig. 4. (a) Dielectric profile of a cylindrically symmetric fiber. Concentric dielectric in-
terfaces are characterized by their radii ρi. (b) Perturbations of a fiber center line in a 2D
plane. Cross-section perpendicular to the fiber center line is assumed cylindrically symmet-
ric, while the position of the fiber center is described by an analytic curve (X(s),s) confined
to a plane.

intensity images. In our analysis, we employ a vectorial coupled mode theory developed for
analysis of generic geometry variations of a fiber profile [15]. This formulation is also valid for
high index-contrast fibers. For alternative formulations see also [16]. In particular, we simulate
modal scattering in a fiber undergoing periodic mechanical bends assuming that initially all of
the power is launched into the HE11 mode. Both linear polarizations are considered. We also
assume that all the fiber bends are confined to a single plane.

Let (x,y,z) be the coordinates in a Cartesian coordinate system. In unperturbed, cylindri-
cally symmetric, step-index fibers, the position of the dielectric interfaces can be described in
cylindrical coordinates by a set of points (x = ρ cos(θ), y = ρ sin(θ), z = s), where for the i-th
dielectric interface ρ = ρi,θ ∈ (0,2π) (Fig. 4(a). Now, consider perturbations of a fiber center
line in a 2D plane. For such a perturbation, each cross-section perpendicular to the fiber center
line remains cylindrically symmetric, while the position of the fiber center is described by an
analytic curve confined to a plane. If (X(s),s) is an analytic curve in a 2D plane (see Fig. 4(b),
then the coordinate mapping

x = X(s)+ρ cos(θ) 1√
1+( ∂X(s)

∂ s )2

y = ρ sin(θ)

z = s−ρ cos(θ)
∂X(s)

∂ s√
1+( ∂X(s)

∂ s )2
,

(7)

will describe such a fiber center line perturbation. Here, as before, ρ = ρi, θ ∈ (0,2π)
define the points on the i-th unperturbed dielectric interface, while the corresponding
(x(ρ,θ,s),y(ρ,θ,s),z(ρ,θ,s)) describe the points on the perturbed interfaces, and s is cho-
sen along one of the axes in a Cartesian coordinate system.

We choose a fiber center curve (X(s),s) to describe the features of a mode converter shown
on Fig. 1 as follows. Input and output regions of the length L are described by elastic beam
equations with a solution Xi,o(s) = ∑3

j=0 Ai,o
j · s j, where the coefficients Ai,o are determined by

zero-slope boundary conditions at the fixed points. In the converter region, the fiber center-
line is described by a sinusoidal variation X(s) = Dw + D f

2 + δ(sin(2πs−s0
Dw

)− 1), where δ
characterizes the strength of the perturbation. Parameters Ai,o

j and s0 are chosen to produce a
continuous curve with continuous 1st and 2nd derivatives. For a fixed number of wire turns N
and a transition length L, the parameter δ is chosen to maximize the LP01 to LP11 conversion
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for each of the polarizations.
As demonstrated in Ref. [15], modal scattering due to curving of the fiber center-line can be

simulated in a coupled mode theory framework. Defining �C(s) to be the expansion coefficients
into the unperturbed modes of a straight fiber, the following set of first order coupled differential
equations have to be solved to find the weights of the excited modes

−iB
∂�C(s)

∂ s
= M�C(s), (8)

where Bβ∗,β ′ = β ′
|β ′|δβ ,β ′ is a normalization matrix, and M is a matrix of coupling elements given

by

Mβ∗,m;β ′,m′ = ω
c

∫
ρdρdθ exp i(m′ −m)θ×



E0
ρ(ρ)

E0
θ(ρ)

E0
s (ρ)

H0
ρ(ρ)

H0
θ(ρ)

H0
s (ρ)




m†

β∗




εdρρ εdρθ εdρs 0 0 0
εdθρ εdθθ εdθs 0 0 0
εdsρ εdsθ εdss 0 0 0

0 0 0 dρρ dρθ dρs

0 0 0 dθρ dθθ dθs

0 0 0 dsρ dsθ dss







E0
ρ(ρ)

E0
θ(ρ)

E0
s (ρ)

H0
ρ(ρ)

H0
θ(ρ)

H0
s (ρ)




m′

β ′

, (9)

where the integration is performed over the unperturbed fields of a straight fiber. To the second
order in δ, the only non-zero elements of the coupling matrix are the ones corresponding to the
|m′−m|= 1 and |m′−m|= 0 transitions. From Ref. [15] they are the following. For |m′−m|= 0

non-zero coupling elements are calculated from 9 using −dss = dρρ = dθθ = ωδ2

2 ( ∂X(s)
∂ s )2. For

|m′ −m| = 1 non-zero coupling elements are calculated from 9 using dss = −dρρ = −dθθ =

ωρδ
2

∂ 2X(s)
∂ s2 . Equations (8) present a system of first order linear coupled differential equations

with respect to a vector of expansion coefficients �C(s). The boundary condition of a single
incoming HE11 mode at the input of a converter defines a boundary value problem that can be
solved numerically.

We now present the results of simulations for the two experimental implementations of
a mode converter as described in the experimental setup section. The first experiment uses
SMF −28 optical fiber with four guided modal groups LP01, LP11, LP21, and LP31. Higher order
modal groups LP11 and LP21 are both strongly coupled to the LP01 by bends. We calculated (and
verified experimentally) that the length L of a coupling region should be at least 0.5 cm to avoid
substantial mode scattering into the cladding due to bending at the converter input. In the exper-
iment, we used L = 2 cm, N = 35 turns, Dw = 512 µm, and we find that the amplitude of fiber
center-line oscillations to achieve the maximal LP01 to LP11 conversion for these parameters is
δ = 49 nm. Fig. 5 presents the theoretical simulation of modal conversion in SMF − 28 fiber
based converter at fixed δ = 49 nm as a function of the wire diameter Dw. Solid and dashed
lines in Fig. 5 correspond to the input LP01 polarizations perpendicular and parallel to the plane
of the converter, respectively. Upper two curves are the amplitudes (total of the squares of the
modal weights) of the higher order LP11 group after conversion, while the lower two curves are
the amplitudes of the original LP01 mode. The maximum conversion values are almost equiv-
alent for both polarizations. Our simulations predict that, for a wire diameter Dw = 512µm,
the maximum conversion into LP11 is 80%—90% depending upon the state of the incoming
polarization. This matches poorly with the maximal 65% conversion observed in analysis of
experimental intensity images. Multiple reasons can account for such a discrepancy, including
an uncertainty in the fiber parameters and the wire diameter. Note that a 1% deviation in the
wire diameter from the experimental value 512µm changes the conversion rate from almost
100% to less than 60%, and the experimental radius was 512±3µm.
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Fig. 5. Theoretical simulation of modal conversion as a function of a wire diameter in
SMF − 28 fiber undergoing N = 35 consecutive bends. Fiber centerline is described by
a sinusoid with an amplitude of δ = 49 nm and a pitch equal to the wire diameter Dw.
Solid and dashed lines correspond to the perpendicular and parallel to the plane of the
converter polarizations of an incoming LP01 mode. Upper two curves correspond to the
modal weights of the higher order LP11 group after conversion, while lower two curves
correspond to the remaining weights of the original LP01 mode.

The second experiment uses SM − 750 optical fiber with only two guided modal groups,
LP01 and LP11. The higher order LP11 modes are very close to the cladding light line, and their
losses increase dramatically with bending. We calculated (and verified experimentally) that
the length L of a coupling region should be at least 1 cm to avoid substantial mode scattering
into the cladding due to bending at the converter input. In the experiment we used L = 2 cm,
N = 14 turns, Dw = 254 µm, and we find that the amplitude of fiber center-line oscillations to
achieve the maximal LP01 to LP11 conversion for these parameters is δ = 110 nm. Fig. 6 displays
theoretical simulation of modal conversion in SM − 750 fiber based converter at fixed δ =
110 nm as a function of the wire diameter Dw. Like Fig. 5, solid and dashed lines correspond to
perpendicular and parallel LP01 input, and the upper and lower curves are the output amplitudes
of LP11 and LP01. Note that scattering into cladding is stronger for the parallel polarization,
so the maximum conversion rate for two polarizations is somewhat different because of the
substantial radiation loss for the parallel polarization. Our simulations predict that for a wire
diameter Dw = 254µm, maximal conversion into LP11 is 50%—65%, depending upon the state
of the incoming polarization. This agrees well with the maximal 55% conversion from analysis
of experimental intensity images.

5. Discussion

On the basis of theoretical simulations and experiments on mode conversion we conclude that
knowing fiber and wire parameters as precisely as possible (ideally to better than a fraction of
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Fig. 6. Theoretical simulation of modal conversion as a function of a wire diameter in
SM − 750 fiber undergoing N = 14 consecutive bends. Fiber centerline is described by a
sinusoid with an amplitude of δ = 110 nm and a pitch equal to the wire diameter Dw.
Solid and dashed lines correspond to the perpendicular and parallel to the plane of the
converter polarizations of an incoming LP01 mode. Upper two curves correspond to the
modal weights of the higher order LP11 group after conversion, while lower two curves
correspond to the remaining weights of the original LP01 mode.

a percent accuracy) is crucial in establishing a good quantitative agreement between experi-
mental and theoretical results for “serpentine” bend converters. Particularly, from simulations
in low index-contrast systems we observe that phase matching condition should be observed
with better than 0.5% accuracy to achieve a 10% uncertainty in the value of the conversion am-
plitudes near the resonance. This translates into a sub percent accuracy in the assumed values
of the fiber parameters such as fiber core radius and core-clad index contrast, and converter
parameters such as wire diameter. Because of such tight tolerances, some level of tunability has
to be built into the converter design to make it practical.
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