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It was recently demonstrated that feeding a silicon-in-silica coaxial fibre into a flame—imparting a steep silica viscosity

gradient—results in the formation of silicon spheres whose size is controlled by the feed speed [Gumennik et al.,

Nat. Commun. 4, 2216 (2013)]. A reduced model to predict the droplet size from the feed speed was then derived

by Mowlavi et al. [Phys. Rev. Fluids. 4, 064003 (2019)], but large experimental uncertainties in the parameter values

and temperature profile made quantitative validation of the model impossible. Here, we validate the reduced model

against fully-resolved three-dimensional axisymmetric Stokes simulations using the exact same physical parameters

and temperature profile. We obtain excellent quantitative agreement for a wide range of experimentally relevant feed

speeds. Surprisingly, we also observe that the local capillary number at the breakup location remains almost constant

across all feed speeds. Owing to its low computational cost, the reduced model is therefore a useful tool for designing

future experiments.

I. INTRODUCTION

The classic phenomenon of capillary breakup of a jet into

droplets1 has recently been revisited under a new experimen-

tal setting2–9: a fibre is fed through a steep thermal/viscosity

gradient (Fig. 1), where the feed speed provides control over

the droplet size2. In that initial work2, a silicon-in-silica co-

axial fibre was fed into a localized flame, causing the silicon

core to break up into spherical droplets far smaller2 than those

produced by a classic isothermal process10. The softening of

the outer silica cladding, whose viscosity drops by more than

three orders of magnitude over a few millimeters, is believed

to be at the origin of the small drop size and its dependence on

the feed speed. However, a key challenge has been to develop

a simplified model that quantitatively predicts the droplet size

from the feed speed and other parameters, in order to bet-

ter understand this phenomenon and to design future exper-

iments.

In Ref. 11, such a one-dimensional (1D) reduced model

was developed through a long-wavelength approximation of

the governing Navier–Stokes equations. However, large ex-

perimental uncertainties in the temperature/viscosity profile

made it impossible to quantitatively validate the model’s ac-

curacy. In the present work, we circumvent this difficulty

by validating the 1D reduced model against fully-resolved

three-dimensional (3D) axisymmetric Stokes simulations of

the same problem. We observe excellent quantitative agree-

ment for a wide range of experimentally relevant feed speeds

(U0 = 5–30 µm/s). This is consistent with our observation

that the local capillary number at the breakup location remains

constant irrespective of the feed speed. Because the capillary

number scales as the product of feed speed and viscosity, suf-

ficiently high feed speeds cause breakup to occur deeper into

the flame, in such a way that the long-wavelength assumption

of the reduced model holds. As a result, the reduced model is a

useful tool for designing future experiments, since it takes the

form of a pair of 1D partial differential equations (PDEs)11

that are vastly simpler and more efficient to simulate than a

full 3D axisymmetric Stokes model.

Capillary instability of liquid threads and jets is a widely

studied subject. It was Plateau12 who, based on geomet-

ric arguments, first demonstrated that a liquid cylindrical

thread would become unstable due to capillary forces when

the thread length exceeds its circumference. Later, Lord

Rayleigh13,14 used linear stability analysis to obtain the wave-

length of the most unstable breakup mode for an inviscid and

a purely viscous jet, leading to a quantitative prediction of the

resulting drop size. Rayleigh’s viscous analysis was later gen-

eralized by Tomotika to account for the viscosity of the sur-

rounding fluid15, and was more recently extended further to an

arbitrary number of concentric fluids with different viscosities

and densities16. In parallel, several studies have investigated

the linear instability and breakup dynamics of compound jets,

where a core and a shell of different liquids are immersed in a

passive medium17,18. In the problem considered in this paper,

however, the outer radius of the silica cladding is two orders

of magnitude larger than the radius of the silicon core. As a

result, the deformation of the silica-air interface is negligible
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FIG. 1. Schematics of the problem. A silicon-in-silica co-axial fiber is fed through a flame at a constant speed, imparting an axial thermal

gradient along the fibre. The ensuing melting of the silicon core (pictured by the transition from gray to yellow color) together with the

softening of the silica cladding (pictured by the shift from darker to lighter brown color) triggers a capillary breakup of the silicon core into

regular spheres. Note that the colors do not reflect the actual values of the viscosity. Reprinted (Figure 2) with permission from Ref. 11:

Mowlavi et al., Physical Review Fluids, 4, 064003 (2019). Copyright (2019) by the American Physical Society.

and the silica cladding acts as a viscous ambient fluid during

breakup of the silicon core, just as in the setup considered by

Tomotika.

Linear stability analysis gives accurate predictions for

the size of particles produced by isothermal co-axial fibre-

drawing processes10, but it does not predict the droplets in

the dynamic thermal-gradient process considered here2,11.

Simple extensions of linear stability analysis to the thermal-

gradient case (Fig. 1) have thus far failed to produce ac-

curate results11 or require unknown dimensionless fit pa-

rameters2. This motivated the numerical simulations of

the long-wavelength reduced model presented in Ref. 11,

which were in reasonable agreement with experimental results

from Ref. 2. Nonetheless, large uncertainties in the experi-

mental temperature profile, which lead to exponentially large

uncertainties in the viscosity19,20, made it impossible to pre-

cisely validate the reduced model. Reducing these uncertain-

ties in future experiments will be an arduous process. The al-

ternative is to validate against brute-force Stokes simulations

(valid because the relevant Reynolds number is on the order of

10−13), which offer a precise comparison with exactly known

parameters.

We close this introduction by giving a brief description

of the two models that we compare in this paper, both ap-

plied to the problem pictured in Fig. 1. The reduced model

from Ref. 11, which is obtained from a long-wavelength ap-

proximation of the Euler equations for the silicon core and

the Stokes equations for the silica cladding, takes the form of

two coupled 1D PDEs that we solve in Matlab. Separately,

a large-scale parallel solver for the 3D axisymmetric Stokes

equations was developed in C, giving an accurate reference

solution for the capillary breakup process and resulting par-

ticle size. For various temperature profiles and feed speeds,

we obtain different particle sizes, which are then compared

with predictions from the 1D reduced model to demonstrate

the accuracy and determine the range of applicability of this

model. Because solving the reduced model is much faster than

a full Stokes simulation—even with our unoptimized Matlab

code—the validated reduced model is therefore a useful tool

for designing experiments and extracting future analytical in-

sights.

II. MODELING

A. Problem setup

The problem that we consider throughout this paper, in-

spired from the experimental setup of Gumennik et al.2, is

pictured in Fig. 1. A coaxial fiber made of a silicon core of

radius h0 = 2 µm encased in a much larger silica cladding is

fed into a localized flame at a uniform speed U0. The local

temperature gradient imparted by the flame causes the silicon

core to melt and the silica cladding to soften, triggering cap-

illary breakup of the silicon core into a continuous string of

spheres. These silicon spheres solidify upon leaving the flame

and remain trapped within the silica matrix.

This study concerns the region downstream of the lique-

faction point of the silicon core, which we set as the origin

of the axial coordinate z. The fiber witnesses temperatures

ranging from Tl ≃ 1400◦C at the melting point of silicon to

Th ≃ 1850◦C in the heart of the flame2, but experimental lim-

itations prevented the measurement of a detailed temperature

profile. For validation purposes, therefore, a hyperbolic tan-

gent profile is assumed:

T (z) = Tl +(Th −Tl) tanh
( z

w

)

, (1)

where w is the length scale associated with the temperature

gradient. Over this temperature range, the molten silicon core

and silica cladding have relatively constant density ρi ≃ ρo ≃

2500kg/m
3
. However, their viscosities depend exponentially
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on the temperature according to the following functions19,20:

µi(z) = 10
819

T (z)+273
−3.727

Pas, (2)

µo(z) = 10
26909
T+273−7.2348 Pas. (3)

As a result, the viscosity profile µi(z) of the inner silicon

varies from 6 ·10−4 to 5 ·10−4 Pas, while the viscosity profile

µo(z) of the outer silica varies from 7 · 108 to 3 · 105 Pas. Al-

though the viscosity of the inner silicon is not significantly af-

fected by the axial thermal gradient imposed by the flame, the

opposite is true for the outer silica, whose viscosity changes

by more than three orders of magnitude over millimeter scales.

Such a drastic viscosity gradient is believed to be the rea-

son for the dependence on feed speed of the resulting droplet

size2,11. Finally, the surface tension between silicon and silica

is taken to be γ = 10N/m. We assume that the surface ten-

sion variation around the pinchoff location is small enough to

neglect the Marangoni effect. In the breakup region, where

the peak temperature exists, Marangoni flows will be non-

negligible if the Marangoni number Ma = ∆γh0/µoα is of or-

der one or higher, where ∆γ is the variation in surface tension

(at the silicon-silica interface), µo is the viscosity (of silica),

and α is the thermal diffusivity (of silicon). In such a scenario,

the surface tension will need to vary by 108–109 N/m since the

local viscosity is between 106–107 Pas in the breakup region.

However, studies have shown that over a temperature range

of 1400–1800◦C, the surface tension of silica in air21 and sil-

icon in air22–24 can only vary by an amount of 0.02N/m and

0.2N/m, respectively. Thus it is reasonable to neglect large

surface tension variations in the region of the breakup.

Before presenting the two models that are considered in

this study, we summarize the physical mechanisms domi-

nating the dynamics of this problem. Besides surface ten-

sion γ , which clearly plays an important role, there are four

material parameters: the densities ρi and ρo of the silicon

and silica, and their viscosities µi(z) and µo(z). In the di-

mensional analysis to follow, we will consider the viscosity

values corresponding to the highest temperature point in the

heart of the flame. The Reynolds number in the outer silica,

Reo = ρoU0h0/µo ∼ 10−13, shows that inertial effects due to

ρo are negligible. The dynamics of the inner silicon are gov-

erned by surface tension rather than by the velocity scale as-

sociated with the feed speed of the fiber. Thus, the relevant

quantity to compare the relative importance of viscous and in-

ertial effects in the silicon is the Ohnesorge number, defined

as the ratio of viscous to inertial timescales of the capillary

instability25. We find that Ohi = µi/
√

ρiγh0 ∼ 10−3, reveal-

ing that viscous effects in the silicon are negligible. We are

then left with ρi and µo, which we compare using a mixed

Ohnesorge number Ohi/o = µo/
√

ρiγh0 ∼ 106. The latter in-

dicates that, ultimately, viscosity of the outer silica µo is the

only meaningful material parameter acting together with sur-

face tension.

Consequently, both models considered in this study take

into account the spatially-varying silica viscosity µo(z). Al-

though the inertia and viscosity of the inner silicon are both

negligible, it turns out that it is necessary to include at least

one of them in order to have well-posed governing equations.

The two models make different choices in this regard—the

axisymmetric Stokes solver clearly neglects inertia of the in-

ner silicon, while the reduced model is derived from the Euler

equations for the inner silicon, which do not account for its

viscosity. Nevertheless, both approaches are physically mean-

ingful since the equations are then simulated in a range of pa-

rameter values for which the only mechanisms that matter are

the surface tension and viscous dissipation in the outer silica.

B. Full Stokes model

We begin with the description of the full 3D axisymmet-

ric Stokes solver. The dynamics are described by the Stokes

equation

−∇p+∇ ·
[

µ(~r)
(

∇v+∇v
T
)]

= γ δ (φ(~r))κ(φ(~r))
∇φ(~r)

|∇φ(~r)|
(4)

and the continuity equation

∇ ·v = 0, (5)

where p and v are the pressure and velocity fields in both the

inner and outer layers, φ(~r) is the level-set function which de-

fines the interface position~ri through φ(~ri) = 0, and κ(φ(~ri))
is the curvature of the interface. The motion of the interface

is described by the advection equation

∂φ

∂ t
+v ·∇φ = 0. (6)

Numerically, (4) and (5) are discretized by a second-order

finite-difference scheme, and solved by a parallel MUMPs di-

rect solver26 using the PETSc library27. For (6) we use a

third-order TVD Runge-Kutta method for time integration and

the WENO discretization in space28. The simulation domain

extends 30 µm in the radial direction with grid spacing of

0.2 µm, and the length in the axial direction is 2mm with grid

spacing of 0.8 µm. Each simulation is initialized as a cylin-

der of length 10 µm with a spherical tip and uniform velocity

everywhere equal to the prescribed feed speed. A breakup is

registered when φ changes sign somewhere along the symme-

try axis, and the average drop radius is obtained once the jet

enters a quasi-steady regime with breakup occurring at regu-

lar time intervals. More details on the numerical schemes are

presented in the Appendix.

C. Reduced model

The reduced model, introduced in Ref. 11, is derived from

a long-wavelength approximation of the incompressible Euler

equations for the inner silicon and the incompressible Navier–

Stokes equations for the outer silica. It consists of a set of two

coupled 1D nonlinear PDEs for the leading-order inner veloc-

ity ui(z) and interface height h(z). Expressed in dimensionless

form using the silicon radius h0 as the length scale and the feed
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speed U0 as the velocity scale, the coupled 1D equations take

the form

We

(

∂v

∂ t̃
+ v

∂v

∂ z̃

)

=−
∂ κ̃

∂ z̃
−

∂

∂ z̃

[

Caz̃

f

(

−
∂ ( f v)

∂ z̃
+

∂ f

∂ z̃

)]

,

(7a)

∂ f

∂ t̃
=−

∂ ( f v)

∂ z̃
, (7b)

κ̃ =
(2− f ′′) f + f ′2

2( f ′2/4+ f )3/2
, (7c)

where z̃= z/h0, t̃ = tU0/h0, v= ui/U0 is the dimensionless ve-

locity, f = (h/h0)
2 is a dimensionless function describing the

interface radius, κ̃ is the dimensionless interface curvature,

and We = ρih0U0
2/γ and Caz̃ = µo(z̃)U0/γ are respectively

the Weber and spatially-varying capillary numbers.

The Weber number We based on the true values for the

physical parameters lies in a range that is computationally in-

accessible. Nonetheless, it was demonstrated in Ref. 11 that

below a certain limit, the Weber number has a negligible in-

fluence on droplet size. We henceforth pick We = 0.05 in our

simulations, regardless of the feed speed U0. On the other

hand, the capillary number Caz̃ is calculated from equations

(3) and (1), and therefore inherits a large spatial gradient from

the silica viscosity µo(z).

A numerical domain of length 1500 with a grid spacing of

0.25–0.5 in dimensionless units is considered. In dimensional

form this corresponds to a domain size of 3 mm and a grid

spacing of 0.5–1 µm. For smaller feed speeds U0 ranging from

1 to 5 µm/s, the initial condition is defined as a cylinder en-

closed with a spherical tip. In dimensionless units, the cylin-

der has a unit radius, a unit interface velocity and extends for a

length of 110 (0.22 mm) into the domain. Beyond the cylinder

tip, the height and velocity are set as 0. For feed speeds larger

than U0 = 5 µm/s, simulations are performed sequentially at

intervals of 5 µm/s, beginning from U0 = 10 µm/s and termi-

nating at U0 = 30 µm/s. As individual simulations are run

for these increasing feed speeds, the convergence time is im-

proved by selecting as initial condition the breakup shape and

velocity obtained from the preceding feed speed. We verified

that the initial shape of the jet does not affect its quasi-steady

breakup characteristics, which are the focal point of our anal-

ysis.

A pinchoff is set to have occurred when the dimensionless

value of f passes below a threshold value of 10−5 anywhere

in the domain. The distance between the pinchoff location

and the nozzle, denoted by the breakup length, was found to

attain a maximum value of approximately 650 dimensionless

units (1.3 mm). The simulations are run for a sufficiently long

time to enter the regime where the jet breaks up at regular

intervals of time and at a fixed axial location. The jet charac-

teristics, such as the breakup length, location and drop radius,

are obtained in this quasi-steady regime. When satellite drops

appear, they are equal to about 3.3% (for U0 > 5µm/s) and

10% (for U0 < 5µm/s) of the main drop volume and hence

are considered as numerical artifacts.

FIG. 2. Comparison of drop radii obtained by the full Stokes model

(lines), the semi-analytical 1D model (circles), and experimental

measurements2 (diamonds) as a function of the feed speed. The solid

line for the full Stokes model is obtained using a spline fit of the

actual data obtained for feed speeds U0 = 2,4,8,16 and 32 µm/s.

Different transition widths w ranging from 1.18 mm to 2.0 mm are

considered for the temperature profile of the hydrogen torch, which

varies from 1400◦C to 1850◦C. The experimental measurements cor-

respond to the numerical results for w ≃ 1.16 mm. In the shaded

(low-speed) region, the long-wavelength approximation breaks down

and the 1D reduced model is no longer accurate.

III. RESULTS AND DISCUSSION

The sphere radius as a function of the feed speed, obtained

using both the full Stokes model and the reduced order 1D

model, are plotted in Fig. 2 . The results in bold lines are ob-

tained from the 3D Stokes solver with different values of tem-

perature transition width, w, ranging from 1.2 mm to 2.0 mm;

and in colored circular markers, obtained by numerically solv-

ing the 1D equation (7) for w = 1.18 and 1.79 mm only. Good

quantitative agreement for the drop radius is seen between the

two approaches in the speed range U0 = 5–30 µm/s. Addi-

tionally, we also plot as red diamond markers the radii ob-

tained from the experimental measurements2. The 3D Stokes

results agree quite well with the experimental results for feed

speeds as low as U0 = 10 µm/s and suggest an experimental

value of w around 1.6mm, which is within the range of ex-

pected experimental values for a hydrogen torch.

Fig. 2 shows that the sphere radius has a nonlinear depen-

dence on the feed speed. As the feed speed increases, the

mass flow rate of silicon into the high temperature region

increases, thereby adding more volume to the sphere before

breakup. However the increase in feed speed also shifts the

pinch-off location further down into the higher temperature

region, thereby decreasing the pinch-off time and reducing the

amount of silicon that is used in the formation of the sphere.

Below U0 = 5 µm/s (see the grey shaded region in Fig. 2)

a deviation is observed between the drop radii obtained from

the 1D solver and from the Stokes solver. In the shaded re-

gion, the large variation in the drop radius predicted by the

1D model can be probably attributed to the limitations of the
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FIG. 3. Capillary number profile as a function of the dimensionless axial distance for (a) w = 1.18 mm and (b) w = 1.79 mm, and for feed

speeds between 1–30 µm/s. The black markers represent the axial location where the silicon jet breaks up into drops and the corresponding

capillary number at that location. (c) Dimensionless breakup location inferred from the mean capillary number at breakup, as a function of the

feed speed and for different widths. Shaded region indicates where the long-wavelength assumption of the reduced model breaks down due to

a rapid decrease of the breakup location at low speeds.

numerical scheme and the failure of the long-wavelength as-

sumption used in deriving the simplified governing equations

(7). The latter reason is further investigated by plotting the

pinch-off location for different feed speeds. First, we plot the

spatial profiles of the capillary number Caz̃ for the different

feed speeds as a function of the dimensionless axial coordi-

nate z/h0 in Figs. 3(a) and 3(b) for w= 1.18 mm and 1.79 mm,

respectively. In the same plot we also indicate, in black cir-

cular markers, the pinch-off location observed for each feed

speed. Surprisingly, for a given value of width w, the capillary

number at the pinch-off location, Caz̃,po, was found to be al-

most constant irrespective of the feed speed. We find the mean

values 〈Caz̃,po〉 = 6.25 for w = 1.18 mm and 〈Caz̃,po〉 = 10

for w = 1.79 mm, which we indicate as the dashed lines in

Fig. 3(a) and 3(b). Using these mean values, we may infer

the breakup location z̃po through the definition of the capillary

number as

zpo = h0µ−1
o

(

γ〈Caz̃,po〉

U0

)

, (8)

where µ−1
o is the inverse of equation (3) for the silica vis-

cosity profile. The resulting break-up locations z̃po = zpo/h0

are plotted in Fig. 3(c) with respect to the feed speed. In-

terestingly, the combination of an exponentially decreasing

viscosity profile together with a constant capillary number at

breakup leads zpo/h0 to decrease monotonically as U0 is re-

duced. This decrease, however, is steepest below a feed speed

of 5 µm/s. For example, z/h0 decreases by an order of 150 µm

when U0 reduces from 30 to 10 µm/s and by a similar order

for U0 from 5 to 1 µm/s. Thus, the long-wavelength assump-

tion used by the 1D model could be violated for feed speeds

U0 . 5 µm/s where the breakup length is smallest, possibly

explaining the failure of the 1D model in that regime.

IV. CONCLUDING REMARKS

In this paper, we validated a 1D reduced model that predicts

the sphere size formed by capillary breakup in the presence of

steep temperature and viscosity gradients. The reduced model

was introduced in Ref. 11, but large uncertainty in the experi-

mental temperature profile made its precise validation impos-

sible. This issue is addressed here by validating the model

against fully-resolved 3D axisymmetric Stokes simulations of

the same problem. Without any adjustable parameters, the

1D model accurately estimates the sphere size in the exper-

imentally relevant range of feed speeds (U0 = 5–30 µm/s).

For a fixed lengthscale w of the temperature gradient, we ob-

serve near-constancy of the capillary number at the breakup

location, irrespective of the feed speed, which is an experi-
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mentally relevant piece of information in gauging the breakup

lengths for arbitrary feed speeds. Owing to its significantly

lower computational cost, the 1D reduced model provides a

useful tool for designing experiments and for gaining future

physical insights. Furthermore, the model could be utilized in

any experimental setting or technological application where

its major assumptions are met, namely (1) the co-axial jet is

axisymmetric, (2) the length scale of the interface dynamics

is much larger than the core radius, (3) the ratio of outer to

inner fluid viscosity ratio is very high and (4) the axial pro-

files of inner fluid density and outer fluid viscosity are known.

In particular, the 1D model can be applied to dripping and

3D printing scenarios since the jet interface need not be uni-

formly varying in the axial direction, in which case the model

can be considered a more rigorous alternative to the marginal

stability criterion for front propagation29–31.

For the thermal gradient breakup setup investigated in this

paper, the 1D reduced model is unreliable for feed speeds be-

low U0 = 5 µm/s, where the long-wavelength assumption of

the model is expected to be violated. Thus, predictions of

droplet radii in this range of feed speeds should be obtained

using the full 3D Stokes solver, unless and until the reduced

model can be refined so as to work in this regime. Further-

more, the numerical implementation of the reduced model can

benefit from multiple improvements. Our current numerical

scheme handles the splitting of the jet and the motion of the

tip by checking for conditions that depend on different nu-

merical parameters which need to be adjusted manually. Us-

ing a different scheme devoid of such parameters, for instance

by borrowing ideas from the regularized approach introduced

in Ref. 32, would make it easier to run the model over a wider

range of physical settings. Finally, interesting future work

could include adapting the numerical scheme to capture the

evolution of the drop beyond its breakup, as it enters a region

of decreasing temperature. This would be extremely relevant

for experimental conditions where the temperature profile so-

lidifies the droplet soon after breakup, preventing its complete

transformation into a sphere.
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Appendix: Stokes discretization

The governing equations for capillary breakup in a concen-

tric two-phase fluid system are (4)–(6) in the main text. While

advecting the level-set function φ , contours in the vicinity of

the φ = 0 may become increasingly distorted, thus leading to

potentially large error in evaluating derivatives. In order to

mitigate this issue, a reinitiallization process aiming to restore

the |∇φ |= 1 property in the neighborhood of zero level set is

necessary. This is achieved by solving in pseudo-time τ the

reinitialization equation,

∂φ

∂τ
+ sign(φ0)(|∇φ |−1) = 0, (A.1)

where sign(φ0) is a smoothed sign function evaluated from the

level-set function at τ = 0. For details on the approach and the

discretization we use, we refer the reader to Ref. 28.

Since the capillary breakup problem possesses azimuthal

symmetry, we express the governing equations in cylindrical

coordinate (r,z). In particular, the explicit form of the left-

hand side of (4), assuming v = uêr +wêz, is

−∇p+∇ ·
[

µ
(

∇v+∇v
T
)]

=
{

−
∂ p

∂ r
+

2

r

∂

∂ r

(

µr
∂u

∂ r

)

−2µ
u

r2
+

∂

∂ z

[

µ

(

∂w

∂ r
+

∂u

∂ z

)]}

êr

+

{

−
∂ p

∂ z
+

1

r

∂

∂ r

[

µr

(

∂u

∂ z
+

∂w

∂ r

)]

+
∂

∂ z

(

2µ
∂w

∂ z

)}

êz.

(A.2)

The continuity equation (5) becomes

∇ ·v =
1

r

∂

∂ r
(ru)+

∂w

∂ z
= 0. (A.3)

From the level-set function, we compute the unit normal vec-

tor

n=
∇φ

|∇φ |
=

φr
√

φ 2
r +φ 2

z

êr +
φz

√

φ 2
r +φ 2

z

êz, (A.4)

where φr = ∂φ/∂ r and φz = ∂φ/∂ z. Additionally, the curva-

ture is defined as κ = ∇ ·n, hence

κ(φ) =
φrrφ

2
z −2φrφzφrz +φzzφ

2
r

(

φ 2
r +φ 2

z

)3/2
+

1

r

φr
√

φ 2
r +φ 2

z

. (A.5)

Furthermore, we require a smoothed Dirac delta function δε ,

which we define as

δε(φ) =







0, for φ ≤−ε,
[1+ cos(πφ/ε)]/2ε, for − ε < φ < ε,
0, for φ ≥ ε.

(A.6)

Note that the approximation (A.6) possesses the following de-

sired property

δ (φ) = lim
ε→0+

δε(φ). (A.7)
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7

In our implementation, ε = 3∆r where ∆r is the grid spacing

in the r direction.

The spatial discretization is performed on a staggered grid

where the pressure is on the cell corners, the r-direction ve-

locity u is located on the horizontal cell interfaces, and the z-

direction w is located on the vertical cell interfaces, as shown

in Fig. 4. The Stokes equation is discretized at grid locations

(i+ 1/2, j) for the êr component and (i, j + 1/2) for the êz

component. The continuity equation is discretized at grid lo-

cations (i, j).

pij
(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

uij

wij

FIG. 4. Discretization grid of pressure p, velocities in r direction u,

and in z direction w.

Special care must taken when discretizing the êz compo-

nent and the continuity equation at i = 0 and r = 0. This can

be resolved by expansion around r = 0. Rewrite q(r,z) ≡
µ∂u/∂ z. Since there is no extra source at r = 0, we have

u(0,z) = 0 and q(0,z) = 0, and we can express q(r,z) by Tay-

lor expansion

q(r,z) = r
∂q(r,z)

∂ r
+ r2 ∂ 2q(r,z)

∂ r2
+O(r3), (A.8)

so that

1

r

∂

∂ r

(

µr
∂u

∂ r

)∣

∣

∣

∣

r→0

=
1

r

∂

∂ r
(rq(r,z))

∣

∣

∣

∣

r→0

= 2
∂

∂ r

(

µ
∂u

∂ z

)

.

(A.9)

Similarly, we obtain

1

r

∂

∂ r

(

µr
∂w

∂ r

)∣

∣

∣

∣

r→0

= 2
∂

∂ r

(

µ
∂w

∂ r

)

, (A.10)

since ∂w/∂ r|r→0 → 0, and

1

r

∂

∂ r
(ru)

∣

∣

∣

∣

r→0

= 2
∂u

∂ r
. (A.11)

For the time evolution in (6) and (A.1), we use a third or-

der TVD Runge-Kutta method and the HJ WENO method for

spatial discretization, following the approach in Ref. 28.

Finally, as usual, a mirror boundary condition is imposed

at r = 0. For the remaining three boundaries, we also adopt

mirror boundary conditions. This latter choice does not affect

the capillary instability as long as the computational boundary

in the r direction is well-separated from the interface between

the two fluids. Note also that there are large thermal and vis-

cosity gradients in the z direction. Therefore, a mirror bound-

ary condition is justified at the low-temperature end where the

interface motion is very slow. At the high-temperature bound-

ary, the fluid column has already broken into several droplets

far upstream, so the mirror boundary condition does not affect

the breakup process either.
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