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We predict that the near-field radiative heat-transfer rate between a cylinder and a perforated surface

depends nonmonotonically on their separation. This anomalous behavior, which arises due to evanescent-

wave effects, is explained using a heuristic model based on the interaction of a dipole with a plate. We

show that nonmonotonicity depends not only on geometry and temperature but also on material

dispersion—for micron and submicron objects, nonmonotonicity is present in polar dielectrics but absent

in metals with small skin depths.
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Disconnected bodies of unequal temperatures can ex-
change energy through stochastic electromagnetic waves
[1–8], a phenomenon known as radiative heat transfer that
underlies many naturally occurring and technologically
relevant processes [7,8]. Recent advances in microfabrica-
tion and metrology have enabled experiments that can now
regularly probe this phenomenon at micron and submicron
scales [9,10]. At such small scales, unusual near-field inter-
actions arise [8], but nonplanar geometries in this context
are only just beginning to be explored [11–23]. In this
Letter, inspired by our previous work on Casimir repulsion
[24], we demonstrate that the near-field heat transfer
between a cylinder (or elongated object) and a perforated
surface (e.g., a ring) can vary nonmonotonically with
respect to their mutual separation. This anomalous effect
stems primarily from the contribution of dipolar fields, as
illustrated by a heuristic model in which the cylinder is
modeled as a quasistatic dipole and the ring as an infinitesi-
mally thin plate with a hole. We find that nonmonotonicity
weakens (eventually disappearing) whenever the geometri-
cal and material parameters of the objects deviate signifi-
cantly from the dipolar regime: for cylinders of nearly equal
aspect ratio, large ring thicknesses, large temperatures, or
metals with small skin depths (such as gold), the usual
monotonic dependence is observed. Our calculations reveal
that, in contrast to more conventional geometries, ‘‘addi-
tive’’ approximations such as the well-known proximity
approximation cannot predict this effect, even qualitatively.

In the far field (object separations dmuch greater than the
thermal wavelength �T ¼ @c=kBT), radiative heat transfer
is dominated by the exchange of propagating waves and is
thus nearly insensitive to changes in separations (oscilla-
tions from interference effects typically beings small
[1,25]). In the (less studied) near field (d & �T), not only
are interference effects important, but otherwise-negligible
evanescent waves also contribute flux [7,8]. Such near-field

effects have been most commonly studied in planar geome-
tries, where the monotonically increasing contribution of
evanescent waves with decreasing d results in orders-of-
magnitude enhancement of the net radiative heat-transfer
rate (exceeding the far-field blackbody limit at submicron
separations [8]). Consequently, the net radiative heat-
transfer rate between objects in the near field usually
increases monotonically with decreasing d, with only a
few exceptions. Nonmonotonic changes have been pre-
dicted to occur in the shallow (d� �T) and deep (d �
object sizes � �T) near-field regimes due to interference
of propagating waves and atomic-scale phenomena. For
instance, deviations from monotonicity on the order of
10% have been predicted (and even experimentally
observed [26]) in the plate–plate [1] and nanoparticle–plate
[25] geometries at several microns separations, just as near-
field contributions begin to play a significant role. Even
larger deviations have been predicted to occur at nano and
subnanometer separations [8,27], where macroscopic elec-
tromagnetism breaks down. Thus far, however, little is
known about the near-field heat-transfer characteristics of
bodies whose shapes differ significantly from the planar,
unpatterned structures of the past, leaving open the possi-
bility of geometrically induced (d � object sizes) nonmo-
notonicity dominated by near-field (d � �T) effects.
Recent theoretical progress along these lines include pre-
dictions for a handful of new geometries, including spheres
[11,18] and cones [19] suspended above slabs, as well as
patterned surfaces [12–16,20]. In what follows, we describe
a situation in which near-field interactions mediated by
evanescent waves cause large nonmontonic changes in the
net heat-transfer rate between micron-scale bodies at sepa-
rations (d � hundreds of nanometers) comparable to the
object sizes.
The heat-transfer rate H between two objects held at

temperatures T1 and T2 can be expressed in the form [1,7,8]
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H ¼
Z 1

0
d!½�ð!; T2Þ ��ð!; T1Þ��ð!Þ; (1)

where � is the flux spectrum (the time-averaged flux into
object 2 due to current sources in object 1), and�ð!; TÞ ¼
@!=½expð@!=kBTÞ � 1� is the mean Planck energy per
oscillator at frequency ! and temperature T. (Note that
� ¼ 1 for blackbodies that capture all of one another’s
radiation.)We compute� by exploiting two recent computa-
tional methods: a fluctuating surface-current (FSC) formula-
tion involving the solution of an integral equation at each
frequency [22], and aLangevinfinite-difference time-domain
(FDTD) formulation in which one explicitly time-evolves
Maxwell’s equations in response to (broad-bandwidth) sto-
chastic sources inside the bodies [15]. In order to distinguish
the effects of geometry from those of material dispersion,
we begin by considering a simple model material: a lossy
dielectric with a broad (low-dispersion) absorption
peak, given by "ð!Þ ¼ "1 � �=ð!2

0 �!2 � i�!Þ, with
"1 ¼ 12:5, � ¼ 4� 102 ðc=�mÞ2, !0 ¼ 0, and � ¼
60 ðc=�mÞ, corresponding to roughly constant Re" �
12 and large Im" * 1 over relevant frequencies. Later, we
consider realistic materials and show that material disper-
sion also plays a crucial role.

We previously studied the radiation of isolated cylinders
and rings [22]. Here, we consider the new phenomena that
arise when these objects are brought into close proximity
so that near-field effects are present. The dashed green
lines in the inset of Fig. 1 show the flux spectrum of an
isolated cylinder (�c) of radius R ¼ 0:1 �m and aspect
ratio � ¼ L=2R ¼ 5, and of an isolated ring (�r) of outer
(inner) diameter D ¼ 2 �m (W ¼ 0:8 �m) and thickness
h ¼ 0:05D, as a function of frequency (units of 2R=�). In
this long-wavelength limit (� � R), large Im" and the
absence of geometric and material resonances means that
both objects emit significantly less than an ideal blackbody,
with (�c � �r � 1).

The inset in Fig. 1 also shows the flux spectrum� when
the two objects are brought into close proximity (solid
lines), at three different center-center separations d, show-
ing dramatic changes from the isolated case. � is com-
puted via both FDTD (noisy curves) and FSC (smooth
curves) methods, showing excellent agreement; the
remaining calculations use FSC only. Compared to isolated
objects, the increasing contribution of evanescent waves in
both objects leads to an overall increase in the flux at low
frequencies. [Note that the peak in � at � � 10�3R is a
consequence of material dispersion: the loss tangent of the
material �Im"=Re" ! 1 as � ! 1, leading to zero ra-
diation; the peak in the spectrum occurs at the crossover
wavelength for which Im"� Re". Low-frequency cutoffs
in the near-field enhancement occur in highly conductive
materials, such as gold (below).] Most interestingly, how-
ever, the enhancement in � here does not increase mono-
tonically with decreasing d: � increases from d ¼ 1 to
d � 0:4L but decreases from d � 0:4L to d ¼ 0.

To explore the geometry dependence of this near-field
behavior, we now examine the overall heat-transfer rate H
as a function of d instead of the spectrum. In particular,
Fig. 1 showsH from a room-temperature ring to a cylinder
at T ¼ 0, for multiple aspect ratios �. For comparison, H
is normalized to the radiation rate of the isolated ring Hr.
For large anisotropy � ¼ 5, H first increases as the two
objects approach each other due to the usual near-field
enhancement and then decreases as d ! 0, peaking at a
critical separation dc � 0:4L. Unlike previously studied
structures involving noninterleaved objects, the heat trans-
fer in this geometry does not diverge as d ! 0: although
the two objects approach each other in this limit, they never
touch. Also, H ! 0 as d ! 1 due to the finite size of the
two objects. As � decreases (keeping R fixed), correspond-
ing to increasingly isotropic cylinders, the nonmonotonicity
becomes less pronounced and is completely absent in both
the� ¼ 1 configuration (small anisotropy) and for a sphere
(open red circles). As expected, there is an overall decrease
inH with decreasing L due to the decreasing volume of the
cylinder. Nonmonotonicity also slowly disappears as the
ring thickness h increases to h � 0:5L, leaving a relatively
wide range of thicknesses over which the effect can be
observed. Furthermore, as expected, the strength of the
nonmonotonicity HðdcÞ=Hð0Þ grows larger as the cylinder
surface approaches the rim of the ring (corresponding to
larger R or smaller W) due to usual near-field effects, and
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FIG. 1 (color online). Heat-transfer rate H from a room-
temperature ring to a cylinder (or sphere) of fixed radius
R ¼ 0:1 �m and aspect ratio � ¼ L=2R held at T ¼ 0, as a
function of their center-center separation d. H is normalized by
the heat radiation of the isolated ring Hr. Both objects are lossy
dielectrics with Re" � 12 (see text). Inset shows the flux spec-
trum �ð!Þ of the � ¼ 5 configuration at three separations, and
also of the isolated cylinder and ring (dashed lines).
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also for largerD due to the larger surface area. We also find
that nonmonotonicity persists even when the cylinders are
shifted laterally (shifts <0:5W), an asymmetric configura-
tion that is likely to occur in experiments. Finally, we find
that HðdcÞ=Hð0Þ increases as h, R, L ! 0 (for fixed �), as
seen below (Fig. 2).

Cylindrical symmetry allows us to decompose � into
azimuthal angular components m (fields �eim�), imple-
mented in FDTD with cylindrical coordinates. Our calcu-
lations reveal (not shown) that most (though not all) of the
nonmonotonic dependence comes from the contribution of
dipolar (m ¼ 0) fields, which dominate the heat transfer at
these long thermal wavelengths �T � R, L. At such �, a
cylinder with large � will act like a fluctuating dipole
oriented mainly along the symmetry axis of the ring—
strictly speaking, this is true only for separations � R,
L. Since the fields generated by a fluctuating dipole are
polarized mostly along the dipole axis and since current
fluctuations in the thin ring are polarized mostly along the
plane of the ring, it follows that the fields induced by a long
z-oriented cylinder will do less work on currents in the ring
whenever the objects are nearly coplanar (d ! 0).

We quantify this argument by focusing on a simple
(albeit heuristic) model in which the cylinder is modeled

as a dipole of electric polarizability �Eð!Þ and the ring as
an infinitesimally thin plate with a hole. For convenience,
we only consider the nonretarded (quasistatic) limit of
small dipole separations d � �T , in which case the heat-
transfer rate between the dipole and plate can be expressed
as Hd ¼ R

d!½�ð!; T1Þ ��ð!;T2Þ��dð!Þ, where the

flux spectrum is given by [6,28,29]

�dð!Þ ¼ 2

�

X
i

!2Im½�E
i ð!Þ�Im½Giiðrd; rdÞ�: (2)

Here, Gijðr; r0Þ is the electric Green’s function of the

plate—the electric field in the ith direction at r due to a
dipole source in the jth direction at r0—and rd is the
location of the dipole. The calculation ofGij for a perfectly

conducting, infinitely thin plate was carried out in Ref. [30]
for the purpose of computing the Casimir-Polder force in
that idealized system. However, because perfect conduc-
tors do not radiate (ImGij ¼ 0), we merely exploit that

expression as the starting point of a quasistatic perturbative
calculation in which the plate is assumed to have a small
amount of absorption. In particular, we are interested in
computing the dissipated power or Ohmic losses on a plate
with small but finite conductivity �, given the quasistatic
fields at the surface of the perfectly conducting plate.
Following Ref. [31], the resistive losses on the plate are
�ImGjjðrd; rdÞ �

R
d2r�ðrÞjG0

j ðr; rdÞj2, where G0
ij is the

electric Dyadic Green’s function of the unperturbed (per-
fectly conducting) plate, and the integral is performed over
the plate surface. It turns out thatG0 exhibits nonintegrable
singularities at the rim of the hole, a well-known artifact of
the idealized nature of corners and wedges in electromag-
netism [31]. While the electromagnetic energy correspond-
ing to these fields is finite when integrated over all space,
the singularity in the fields is problematic for the perturba-
tion theory since the form of the perturbation considered
here requires that G0 be integrated only over the plane of
the plate. Essentially, this model does not account for the
finite thickness of the plate, and consequently fails to
capture effects associated with the finite penetration or
skin-depth � ¼ c=ð!Im

ffiffiffi
"

p Þ of fields. Therefore, we use
� as a cutoff length scale to regularize the integral near the
rim of the hole. Surprisingly, and despite its many short-
comings, this heuristic model captures most of the features
of interest.
The bottom inset in Fig. 2 shows the computed ImGii

and resulting heat-transfer rate Hd (in arbitrary units) from
a room-temperature plate of conductivity � ¼ !Im", in-
finitesimally small thickness h ! 0, and hole diameter W,
to a small cylinder of radius R � W and electric polar-
izability �E held at T ¼ 0, as a function of their separation
d.Hd is computed by Eq. (2) using the dipole model above,
with the polarizability of the dipole taken to be that of a
uniform prolate spheroid [29] of aspect ratio � ¼ L=2R
and permittivity " (same as above). At large d � W, the
presence of the hole in the plate is negligible and hence
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FIG. 2 (color online). Heat-transfer rate H between the ring
and cylinder of Fig. 1, for fixed cylinder aspect ratio � ¼ 5 and
thin ring thickness h ¼ 5� 10�3D, as a function of d and for
multiple cylinder lengths L. H is normalized by the radiation of
the isolated ring Hr multiplied by the cylinder area Ac. The
shaded region denotes separations over which the two objects are
interleaved. Top inset shows the critical separation dc of largest
H as a function of L, with shaded areas again denoting inter-
leaved configurations. Bottom inset shows H (solid lines) along
with ImGii at the cylinder location (dashed lines) in the limit h,
R, L ! 0, as computed by a heuristic model (see text).
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ImGii ! 0 in the usual monotonic fashion [31]. At small
d & W, the hole dramatically alters the interaction, making
it highly orientation dependent: ImGzz is nonmonotonicwith
d, achieving its maximum at d�W, whereas ImGxx is
strictly monotonically increasing with decreasing d.
Essentially, the electricfield lines of z- andx-oriented dipoles
lie mostly perpendicular and parallel to the plate, respec-
tively, leading to weaker and stronger interactions as d ! 0.
Since ImGzz � ImGxx at separations d & W, it follows that
Hd will become nonmonotonic at large enough anisotropies
� (equivalently, for �E

z =�
E
x � 1). For � ¼ 5, correspond-

ing to a highly anisotropic object, one observes the expected
nonmonotonic behavior, with the critical separation dc �
0:3W determined by W. As before, nonmonotonicity
decreases with decreasing �, disappearing completely in
the limit� ! 1 of an isotropic (spherical) object with polar-
izability �E ¼ 4=3�R3ð"� 1Þ=ð"þ 2Þ. In comparison
with Fig. 1, we observe that the simple model quantitatively
captures the onset of nonmonotonicity at � * 2. Since the
model represents a point-dipole limit, we also compare to
exact calculations for fixed� ¼ 5 by lettingL ! 0 and h ¼
5� 10�3D, as shown in Fig. 2. While nonmonotonicity is
present for allL, the scaling of the critical separation dc with
L changes qualitatively as L ! 0. Specifically, as shown by
the top inset of Fig. 2,dc � 0:3W forL � W, inquantitative
agreement with the dipole model, while dc � 0:4L for
L � W, with the crossover regime occurring at
L � 0:5W. We find that for L & 0:8W, the onset of
nonmonotonicity (dc) occurs before the two objects are
interleaved, i.e., when there is a separating plane between
the objects.

Aside from geometry, changes coming from either tem-
perature or material dispersion leading to deviations from
the ideal dipole regime can also weaken nonmonotonic
behavior. Thus far, we have restricted ourselves to studying
microscale bodies near room temperature (which emit
preferentially at infrared frequencies), corresponding to
large thermal wavelengths �T � R. At larger temperatures
(�T & R), however, such bodies can no longer be well
described as dipole emitters, and thus� no longer exhibits
nonmonotonic behavior. We find that nonmonotonicity
persists at temperatures well beyond the mere T � 300 K
considered here, so long as the feature sizes of the objects
involved remain at or below the micron scale. Realistic
materials often exhibit substantial material dispersion at or
near infrared wavelengths, and this can also significantly
alter the dipole picture above. This situation is depicted in
Fig. 3, which shows H for various material configurations,
including metals (gold and indium tin oxide) and polar
dielectrics (doped silicon). (The Au and ITO dispersions
are determined by Drude models with plasma frequencies
!p ¼ 1:367� 1016 rad=s and !p ¼ 1:4739� 1015 rad=s

and relaxation rates � ¼ 5:317� 1013 rad=s and � ¼
1:5347� 1014 rad=s, respectively, whereas the doped sili-
con dispersion is given by the model of Ref. [32].)

Interestingly, we find that nonmonotonicity is completely
absent for the Au and highly doped silicon (1022 cm�3)
configurations and present in the ITO and lesser-doped
silicon (5� 1018 cm�3) configurations. The reason for
the discrepancy comes from the fact that highly conductive
metals and polar dielectrics respond very differently to
incident light. In particular, for metals, the electric dipole
approximation (above) breaks down for skin depths � �
R, L: in that limit, eddy currents induced on the surface of
the metallic objects also lead to large magnetic dipole
moments [28,29,33], with magnetic polarizabilities �H �
�E. Unfortunately, the interaction between a magnetic
dipole moment and a plate does not exhibit the desired
nonmonotonic effect (at least in this geometry), which
explains the results in the case of Au and highly doped
silicon cylinders, whose skin depths � � 10�2 �m � R
at infrared wavelengths. If we scale the entire structure
down to much smaller scales R, L � � (not shown), we
find that nonmonotonicity is restored. Thus, for highly
conductive materials, one obtains the desired nonmono-
tonic effect only for h, R, L � � � �T .
The insets in Fig. 3 show the flux spectra of the various

material configurations at three separations (labeled A, B,
and C), along with normalized plots of the mean Planck
energy per oscillator at room temperature (dashed lines),
showing the various frequency contributions. The Au and
highly doped silicon � are monotonic with d at all fre-
quencies. On the other hand, ITO and lesser-doped silicon
are nonmonotonic with d only at certain frequencies.
For any material, � is monotonic at high frequencies
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(� � R, L), where the cylinder no longer acts as a dipole,
but this transition occurs even more rapidly for ITO (which
is only nonmonotonic for low frequencies) because of the
aforementioned skin-depth effect. For silicon, the situation
is greatly complicated by the presence of multiple geomet-
ric resonances (" has a single absorption peak), arising
from the ability of the fields to probe the interior as well as
the surface of the dielectric. It turns out that only two of the
resonant peaks in this case exhibit nonmonotonicity with d,
corresponding to resonances with the necessary dipolelike
polarizations.

Similar and even more pronounced nonmonotonic
behaviors should arise in other geometries, so long as the
suspended objects (regardless of shape) are sufficiently
anisotropic (behave dipolelike) and radiate primarily in
the direction orthogonal to the patterned surface. An inter-
esting structure to explore in the future is a nanowire array
suspended above a periodically patterned thin film.
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