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Disorder-immune confinement of light in
photonic-crystal cavities
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We demonstrate by finite-difference time-domain simulations in 2D and 3D that optical cavities in realistic
finite photonic crystals have lifetimes and modal volumes that are essentially insensitive to disorder (of vari-
ous types, including surface disorder and randomized positions), even with unphysically large disorder. A
lifetime Q=108 is demonstrated in a 3D single-mode cavity with a half-wavelength mode diameter using
only eight vertical periods of a disordered crystal. © 2005 Optical Society of America

OCIS codes: 230.3990, 230.5750, 240.5770.
In this Letter, we show that a photonic-crystal cavity
can confine light with a lifetime that is not limited by
fabrication disorder and is independent of modal vol-
ume. A photonic crystal is a periodic dielectric struc-
ture with a photonic bandgap, a range of wave-
lengths in which light cannot propagate in the
crystal; a point defect introduced into such a crystal
traps a localized mode.1 Dielectric cavities can also be
made by ring resonators2 and by point defects in
photonic-crystal slabs that combine bandgaps in one
or two directions with index guiding3; all such cavi-
ties, however, suffer from intrinsic radiation losses
whose reduction ultimately requires a trade-off in
modal volume3–6 (except for Ref. 7), and any disorder
should also scatter light and limit the lifetime. With
a complete photonic bandgap (i.e., for all directions
and, in 3D, all polarizations), the dimensionless life-
time Q of the cavity increases exponentially with the
number of crystal periods surrounding the cavity, in-
dependent of its modal volume (which can approach a
half-wavelength diameter).1 Moreover, it has been
shown that the photonic bandgap is preserved even
when a small (bounded) amount of disorder is intro-
duced into the crystal,8–11 leading to the hope that op-
tical confinement is maintained in a disordered cav-
ity (with some evidence in 2D provided by Ref. 12).
Here we show that this hope is justified: by finite-
difference time-domain13 (FDTD) simulations for
crystals in both 2D and 3D, we demonstrate that the
only effect of the disorder is a slight change in the ex-
ponential rate at which Q increases with the number
of crystal periods, and also a small shift in the cavity
frequency � that could be compensated for by intro-
ducing a single external tuning parameter into the
cavity.14–17 We obtain a Q of 108 optical periods and a
half-wavelength single-mode diameter in a small (fi-
nite) 3D crystal with unphysically large fabrication
disorder.

Thus, with a complete-gap crystal, the only factors
limiting the lifetime of a cavity are the size of the
crystal that can be fabricated and the intrinsic ab-
sorption losses of the materials. For example, Si at
�=1.55 �m has a bulk extinction coefficient k that is
so small that it is difficult to measure, but an ex-
trapolation of the band-edge k tail18 is �10−12, giving
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a maximum Q�1012; before this point, however, elec-
tronic surface states and similar effects determined
by fabrication details may dominate absorption. The
resulting high Q and small modal volume are impor-
tant especially for nonlinear devices to minimize the
power requirements.19 Note that, although 1/Q is a
fractional bandwidth, one actually wants Q to be
much larger than a design bandwidth might suggest,
since the Q here is only that of radiative loss: the ra-
tio of twice the total Q ��� /bandwidth� to the loss Q
is the fractional loss.20 For comparison, we point out
that past dielectric cavities with very high Q values
required a substantial sacrifice in modal volume
compared to the theoretical optimum ��� /2n�3,
such as microspheres �Q�1010, modal volume�104

�optimum�21 or photonic-crystal heterostructures
�Q�106, modal volume�10�optimum�.6

We focus on two structures: in 2D, a square lattice
of dielectric rods in air (period a, radius 0.2a , �=12
�Si), shown in the inset of Fig. 1, which has a gap
(frequencies 0.286–0.421 2�c /a) for the TM polariza-
tion (E out of the plane)1; in 3D, an fcc lattice (lattice

Fig. 1. Q versus number of layers for a 2D cavity (the in-
set shows two layers), for disorder types (descending by Q):
position (red), no disorder (black), � (cyan), surface
+position (blue), and surface (magenta). Error bars show

the std. dev. over 15 runs.
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constant a) of air cylinders in dielectric ��=12� ori-
ented along the 111 direction22 (radius 0.293a, height
0.93a), forming an alternating stack of rods-in-air
and holes-in-dielectric layers with a complete gap
(frequencies 0.507–0.628 2�c /a), shown in the inset
of Fig. 2. The 3D structure has an �=12 substrate be-
low and to the sides, and air above with a hole layer
topmost, similar to experiment.23

In 2D, a cavity is formed by removing a single rod
(as in the inset of Fig. 1), giving a single confined
mode1 with �=0.3779 2�c /a shown in Fig. 3(a). In
3D, we also remove a rod from one of the rods-in-air
layers, giving a mode with �=0.5689 2�c /a that re-
sembles the TM mode of the analogous 2D cavity24; a
horizontal cross section of this mode is shown in Fig.
3(a) and a vertical cross section is given in the inset
of Fig. 2. Using FDTD with perfectly matched layer
absorbing boundaries,13 we excite the cavity modes
by a Gaussian pulse and extract � and Q from the re-
sponse by a filter diagonalization method.3,25,26 Q is
defined2,20 as the number of optical periods for the
energy to decay by exp�−2��, and modal volume V is
computed as ���E�2 /max ��E�2.27 For disorder, we com-
pute the mean and standard deviation (std. dev.) for
each result over 15 random configurations (except
where otherwise specified).

In 2D, with a resolution of 16 pixels/a, we examine
four types of random disorder, all with unrealistically
large magnitudes: surface [Fig. 3(b), described be-
low], position (random rod-center offsets in
�−0.15a ,0.15a�), surface+position [Fig. 3(c)], and rod
� variations within �−15% ,15% �. For surface disor-
der, 20 cylinders of random radius in �0,0.0625a� are
added and/or removed from the surface of each rod.
Figure 1 shows the resulting Q versus number n of
layers around the cavity (e.g., n=2 in the inset). Nei-
ther the exponential increase of Q (Fig. 1) nor the lo-
calized field pattern (Fig. 3) is substantially degraded
by even such large disorder. (Indeed, sometimes the

Fig. 2. Q versus the number of layers for cavity in the 3D
structure (left inset), for disorder types (descending by Q):
no disorder (black), height (blue), sidewall roughness (red).
Right inset: mode ��E�2 in a vertical cross section (three lay-
ers). Error bars show the std. dev. over 15 runs.
disorder happens to improve Q, since the perfect
structure is not optimized for Q.) � was 0.3779 2�c /a
for the perfect cavity and had a std. dev. of
1% /2% /3% /1% for surface/position/surf. +pos. /�
disorder, respectively. The modal volume (area) in all
cases was approximately �0.64� /2�2�std. dev. � 6% �.

This insensitivity of confinement to disorder de-
rives from the fact that the bandgap is preserved
(only shrunk slightly): disorder introduces states
only near the gap edges. We illustrate this by com-
puting the 2D gap as a function of � disorder
strength, plotted in Fig. 4 (using a plane-wave
expansion28 in a 9�9 supercell and extracting the
largest gap, averaged over 10 runs). The mean FDTD
mode � and its std. dev. (over 100 runs) is superim-
posed, corresponding to a well-defined localized mode
until the gap shrinks substantially (requiring over
50% � disorder). Once the bandgap closes entirely,
which is not shown, any observed localized modes
have no relation to the original cavity mode, and may
correspond instead to Anderson localization.

In 3D, with a resolution of 25 pixels/a (�17.7 pix-
els per in-plane lattice constant of the 2D cross sec-
tions), we examine two types of random disorder:
height disorder through variations �−5% ,5% � in the
height of the air cylinders (±26% or 	42% variation
in the thickness of a rod or hole layer, respectively),
and sidewall disorder (adding and/or removing cylin-
ders as in 2D) shown in Fig. 3(b). The resulting Q
versus number n of surrounding layers is shown in
Fig. 2, and the field pattern for sidewall disorder is in
Fig. 3(b). (n is defined so that the number of nearest-
neighbor rods surrounding the cavity is n−1 in plane

Fig. 3. Cavity mode Ez�blue/white/red=positive/zero/
negative� for a 2D structure with (a) no disorder, (b) surface
disorder, and (c) surface+position disorder, and for a (hori-
zontal) cross section of a 3D structure with (A) no disorder

and (B) sidewall disorder.



3194 OPTICS LETTERS / Vol. 30, No. 23 / December 1, 2005
and n vertically; the field plots show n=3. The total
number of vertical periods both above and below is
�2n /3, where a vertical period comprises three lay-
ers of holes.) Again Q is only slightly affected by dis-
order, the modal volume is roughly fixed at
�0.68� /2�3, and frequency �=0.5689 2�c /a has a std.
dev. of 0.3% /2% for the height/sidewall disorder.
(Here the sidewall disorder also causes a 3.6% sys-
tematic � shift, because addition and removal of cyl-
inders does not have a symmetric first-order effect in
3D.29)

We believe that this robust confinement is a gen-
eral feature of complete-gap systems for any suffi-
ciently bounded disorder, not limited to the examples
here.

This work was supported in part by the Materials
Research Science and Engineering Center program of
the National Science Foundation under Award DMR-
9400334, and also by a grant from the Lord Founda-
tion. A Rodriguez’s e-mail address is alexrod7
@mit.edu.

References

1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn,
Photonic Crystals: Molding the Flow of Light
(Princeton U. Press, 1995).

2. B. E. A. Saleh and M. C. Teich, Fundamentals of
Photonics (Wiley, 1991).

Fig. 4. 2D band gap and cavity mode frequencies versus
strength of � disorder (maximum percent variation of rod
�). Error bars show the std. dev. for 10/100 runs for gap/
cavity frequencies. The inset shows cavity structure (four
layers).
3. S. G. Johnson and J. D. Joannopoulos, Photonic
Crystals: The Road from Theory to Practice (Kluwer,
2002).

4. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu,
Appl. Phys. Lett. 81, 2680 (2002).

5. H. Y. Ryu and M. Notomi, Opt. Lett. 28, 2390 (2003).
6. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat.

Mater. 4, 207 (2005).
7. M. R. Watts, S. G. Johnson, H. A. Haus, and J. D.

Joannopoulos, Opt. Lett. 27, 1785 (2002).
8. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, J.

Appl. Phys. 78, 1415 (1995).
9. H. Li, B. Cheng, and D. Zhang, Phys. Rev. B 56, 10734

(1997).
10. M. A. Kaliteevski, J. Manzanares Martines, D.

Cassagne, and J. P. Albert, Phys. Status Solidi A 195,
612 (2003).

11. W. R. Frei and H. T. Johnson, Phys. Rev. B 70, 165116
(2004).

12. A. Yamilov and H. Cao, Phys. Rev. A 69, 031803(R)
(2004).

13. A. Taflove and S. C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-Domain
Method (Artech, 2000).

14. D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather,
Appl. Opt. 41, 5574 (2002).

15. N. C. Panoiu, M. Bahl, and R. M. Osgood, Opt. Express
12, 1605 (2004), http://www.opticsexpress.org

16. C.-W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I.
Smith, Y. Jeon, G. Barbastathis, S.-G. Kim, E. P. Ippen,
and L. C. Kimerling, Appl. Phys. Lett. 84, 1242 (2004).

17. T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S.
Noda, Electron. Lett. 41, 37 (2005).

18. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G.
Brooks, IEEE Trans. Electron Devices 31, 711 (1984).
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