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Efficient Computation of Power, Force, and Torque
in BEM Scattering Calculations

M. T. Homer Reid and Steven G. Johnson

Abstract—We present concise, computationally efficient for-
mulas for several quantities of interest—including absorbed and
scattered power, optical force (radiation pressure), and torque—
in scattering calculations performed using the boundary-element
method (BEM) [also known as the method of moments (MoM)].
Our formulas compute the quantities of interest directly from
the BEM surface currents with no need ever to compute the
scattered electromagnetic fields. We derive our new formulas
and demonstrate their effectiveness by computing power, force,
and torque in a number of example geometries. Free, open-
source software implementations of our formulas are available
for download online [1].

Index terms: Method of moments, electromagnetic propa-
gation, extinction coefficients, nanophotonics, Casimir effect,
nanosensors, force, torque

I. INTRODUCTION

This paper presents and compares several distinct formulas
for the time-average absorbed and scattered power, force
(radiation pressure), and torque exerted on material bodies
by incident fields. Our formulas, which are derived in the
context of the frequency-domain boundary-element method
[BEM, also known as the method of moments (MoM)],
express powers, forces, and torques (PFTs) in terms of vector–
matrix–vector products involving various matrices sandwiched
between the vectors of BEM surface-current coefficients. We
present the derivation of our formulas, compare their relative
merits, and apply them to a number of example geometries.

The primary goal of electromagnetic scattering solvers is to
compute the electric and magnetic fields in a given material
geometry illuminated by given incident fields or sources.
However, in many cases we are less interested in the fields
themselves than in certain derived quantities obtained from
them. For example, in a scattering problem we may be more
interested in the total absorbed power or the total scattering
cross section than in the individual fields at particular points
in space [2], [3]. Similarly, for the problem of a mesoscopic
structure [4], [5] or nanoparticle [6]–[8] illuminated by a laser,
we may seek the force or torque exerted on the particle by the
incident-field sources.

Of course, derived quantities such as power, force, and
torque may always be computed indirectly in any scattering
formalism by first computing the scattered fields and then post-
processing: powers and forces/torques are obtained respec-
tively by integrating the Poynting vector (PV) and the Maxwell
stress tensor (MST) over a bounding surface surrounding

M. T. Homer Reid is with the Department of Mathematics, Massachusetts
Institute of Technology.

S. G. Johnson is with the Department of Mathematics, Massachusetts
Institute of Technology.

the object in question, with values of the PV and MST at
each surface point computed using field components obtained
from the scattering solver. However, in practice the integration
may be numerically badly behaved due to large cancellations
from different regions of the bounding surface, requiring
large numbers of cubature points to obtain accurate results.
Moreover, in scattering formalisms such as the BEM—where,
unlike other techniques such as the finite-difference and finite-
element methods, the fields are not computed directly as part
of the solution to the problem—each field evaluation required
to evaluate the PV or MST integrals by numerical cubature
costs extra work.

Our goal here is to consider techniques for expressing PFTs
directly in terms of the surface currents that are the immediate
output of the BEM solution procedure. Since the PV and MST
are quadratic in the fields and the fields are linear in the
currents, it follows that PFTs are quadratic in currents and
may be generally expressed as bilinear products of the form

Q = c†Qc (1)

where Q is the quantity in question (a power force, or torque),
c is the vector of surface-current coefficients (obtained, in a
BEM scattering problem, by solving a linear system Mc = f
where M is the BEM matrix and the RHS vector f describes
the incident field), and Q is a Q-dependent matrix. As it turns
out, for a given quantity Q there are several distinct ways
to write matrices Q, each with their own merits, which we
discuss and compare here.

Expressing PFTs as surface-current bilinears like (1) is not
merely a matter of convenience, but is also the key to the
fluctuating-surface-current (FSC) approach to numerical mod-
eling of fluctuation-induced phenomena such as Casimir forces
and radiative heat transfer [9], [10]. Indeed, in recent work [11]
we have demonstrated the following correspondence: If, in
a classical deterministic scattering problem, a PFT quantity
Q may be expressed in the form of equation (1), then the
statistical average of Q over quantum and thermal fluctuations
of sources may be expressed in the form〈

Q
〉
= Tr

(
QΣ

)
(2)

where Q is the same matrix that appears in (1) and Σ
is a certain temperature-dependent matrix describing source
fluctuations inside bodies [11]. In this paper we are concerned
with classical deterministic problems, and thus PFT formulas
of the form (1); but we explore the implications of these
formulas with an eye toward applying them to fluctuation
phenomena through equation (2).

To date a variety a methods have been used to compute
PFTs for compact bodies. For bodies of highly symmetric
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shapes such as spheres or cylinders, exact results are available
in analytical form (such as Mie theory for spheres) [12], [13],
and these closed-form solutions may be used to compute PFTs
for such bodies [14]–[17], or extended to the case of spheroidal
bodies [18]. For bodies small compared to the incident wave-
length (“Rayleigh particles”), PFTs may be computed using
quasistatic approximations [19]–[23], while in the opposite
regime (bodies large compared to the incident wavelength) the
geometrical-optics approximation is available [24]–[26]. Radi-
ation forces for nonspherical bodies have also been computed
using quasi-analytical approaches (numerical methods based
on analytical solutions for special geometries), including T-
matrix methods [27] and discrete dipole approximations [28],
Among fully numerical techniques, compact-object PFTs have
been computed using finite-difference time-domain (FDTD)
methods [4], [8], [29]–[31] and finite-element methods [32]–
[34].

BEM techniques have been used by several authors to
characterize local power absorption [35]–[38], and were used
in Ref. 39 to compute total cross sections for scattering and
absorption by a compact body. Ref. 5 employed a BEM
technique to investigate the force and torque on a mesoscopic
body illuminated by a laser beam, while Ref. 40 used the BEM
to compute radiation forces on two-dimensional structures.
In all of these BEM studies, the standard BEM approach
was applied to solve for surface currents, after which the
surface currents were used to compute scattered fields. The
total absorbed/scattered power [39] or force [5], [40] was
obtained by numerically evaluating a surface integral over the
body or over a bounding surface.

An alternative BEM approach to the computation of ab-
sorbed power was suggested by Ref. 41, which noted that
the power absorbed by a compact body may be obtained
directly from the surface currents, obviating the intermediate
step of computing scattered fields. (This observation seems to
have been mentioned as something of a passing curiosity in
Ref. 41; although the authors note that the absorption may be
computed directly from the surface currents, computational
details are omitted, and thereafter the authors revert to the
usual practice of obtaining absorption and other quantities via
the intermediate device of computing scattered fields.)

Here we extend the observation of Ref. 41 by noting
that powers, forces, and torques (PFTs) may be computed
directly—in multiple ways—from the surface currents that are
the primary output of the BEM solver, yielding PFT formulas
of the form (1). We derive and compare these formulas in
Section II, then illustrate their efficacy with a number of
computational examples in Section III. All PFT formulas
discussed in this paper are implemented in SCUFF-EM [1],
a free, open-source BEM implementation.

II. PFTS FROM SURFACE-CURRENT BILINEARS

There are at least three distinct ways to write PFTs as
surface-current bilinears of the form (1). In this section we
discuss these and compare them qualitatively, saving quanti-
tative comparisons for the following section.

Preliminaries; six-vector notation. Before beginning we
state our context and introduce a shorthand notation that will

streamline later discussions. We consider compact homoge-
neous bodies illuminated by known incident fields, working in
the frequency domain with all fields and currents understood to
have time dependence ∝ e−iωt. SIE formulations for dielec-
tric bodies solve for electric and magnetic surface currents,
obtained from tangential fields at body surfaces according to1

K(x) ≡ n̂(x)×H(x), N(x) ≡ −n̂(x)×E(x). (3)

Here x lies on a body surface and n̂(x) is the outward-pointing
surface normal. In what follows it will be convenient to adopt
a 6-vector notation for fields, currents, and dyadic Green’s
functions (DGFs):

F ≡
(

E

H

)
, C ≡

(
K

N

)
, G ≡

(
ΓEE ΓEM

ΓME ΓMM

)
(4)

with ΓAB the usual 3×3 DGF giving the A-type field due to a
B-type current. In this language, equation (3) relating surface
currents to surface fields reads

C = N PF , N P(n̂) ≡
(

0 n̂×
−n̂× 0

)
(5)

(The significance of the “P” superscript on the 6 × 6 matrix
N P will become clear shortly.) We can also write a reciprocal
relation, giving surface fields from surface currents, by noting
from (3) that tangential fields are cross products of surface
currents with ±n̂, while normal fields are related to surface
charge densities according to {E,H} · n̂ = {σK

ε ,
σN

µ } with
σK,N = 1

iω∇ · {K,N}. The inverse of (5) thus reads

F = MC, M
(
n̂
)
≡

(
1
iωε n̂∇· n̂×
−n̂× 1

iωµ n̂∇·

)
. (6)

In equation (6) we may use the values of ε, µ for either the
exterior or interior medium; in either case we then obtain
the limiting values of the surface fields as the surface is
approached from that medium.

Equation (6) only applies to the fields on an object surface;
off the surface, fields are related to currents by convolutions,
which assume different forms depending on whether the
evaluation point lies inside or outside an object O:

F(x) =

+Gout(x,x′) ? C(x′) +Fout
sources(x), x /∈ O

−Gin(x,x′) ? C(x′) +F in
sources(x), x ∈ O

.

(7)
Here Gout,in are the DGFs for the homogeneous media outside
and inside the body, ? denotes convolution, and Fout,in

sources are
the fields of any sources lying outside and inside the body.

SIE formulations write integral equations relating surface
currents to incident fields; for example, in the PMCHWT
formulation [42] we have[

Gout + Gin
]
‖
? C = −F inc

‖ (8)

1We use the symbols K and N for two-dimensional surface current
densities, in contradistinction to the symbols J and M commonly used for
three-dimensional volume current densities.
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where ‖ selects surface-tangential vector components. Numer-
ical solvers approximate currents as finite expansions in a
discrete set of NBF basis functions,

C(x) ≈
∑

cαBα(x), (9)

where the six-vector basis set {Bα} typically contains separate
three-vector functions for electric and magnetic currents, i.e.
B =

(
b
0

)
or B =

(
0
b

)
where b is e.g. an RWG function [43].

The fields at a point x are related to the cα coefficients by the
discretized version of (7),

F(x) =


∑
α cαF

out
α (x) +Fout

sources(x), x /∈ O

−
∑
α cαF

in
α(x) +F in

sources(x) x ∈ O
(10)

where F in,out
α = Gin,out ? Bα is the six-vector of fields due to

a single unit-strength basis function. Upon discretization, the
integral equation (8) becomes an NBF×NBF linear system for
the {cα} coefficients:(

Mout + Min
)
c = −f inc (11)

where f inc describes the projections of the incident fields onto
the basis functions.

A. Displaced surface-integral PFT

A conceptually straightforward approach to computing PFTs
for an object O is simply to integrate the Poynting vector (PV)
P or Maxwell stress tensor (MST) T over a bounding surface
S surrounding the object but displaced from the object surface.
At a point on S at which the outward-pointing surface normal
is n̂, the fluxes of energy and û-directed linear momentum are

P · n̂ =
(
E∗ ×H

)
· n̂ (12a)

û ·T · n̂ = ûi

{
εE∗i Ej + µH∗i Hj −

δij
2

[
ε|E|2 + µ|H|2

]}
n̂j .

(12b)

Here ε, µ are the absolute material properties of the medium
outside O—which we assume to be lossless, as the definition
of the stress tensor in lossy media is problematic [44]—and
summation over repeated indices is implied. [The flux of û-
directed angular momentum about an origin x0, useful for
torque computations, follows from (12b) with the replacement
T → (x − x0) × T; in general, all of our force formulas
have immediate torque analogues, which we will not write
explicitly.] The time-average power absorbed by, and the û-
directed force on, all bodies contained in S are

P abs = −1

2
Re
∮
S

P(x) · n̂ dA,

= +
1

4

∮
S

{
F†(x)N P(n̂)F(x)

}
dA (13a)

F · û =
1

2
Re
∮
S

û ·T(x) · n̂ dA

=
1

4

∮
S

{
F†(x)N F(û, n̂)F(x) dA

}
(13b)

where we have expressed the PV and MST (12) in the six-
vector notation introduced above; the “power” matrix N P is

the same matrix that appears in (5), while the “force” matrix
N F is

N F(û, n̂) ≡
(
εNF(û, n̂) 0

0 µNF(û, n̂)

)
, (14)

NF(û, n̂) = ûn̂† + n̂û† − (û · n̂)1 (15)

where † denotes vector transposition and 1 is the 3 × 3 unit
matrix. [The 6 × 6 “torque” matrix N T has the same block
structure as (14) with x-dependent 3× 3 subblocks NT.] If x
lies in a region in which there are no incident-field sources,
then the total fields at x are given by summing surface-
current contributions [equation (10) with no sources], and the
n̂-directed power flux at x reads

1

2
Re P(x) · n(x) =

∑
αβ

c∗α

[
−F†α(x)N

P(n̂)Fβ(x)
]

︸ ︷︷ ︸
QPFLUX

x;αβ

cβ

= c†QPFLUX
x c. (16)

Integrating over S, the total absorbed power reads

P abs =
∑
αβ

c∗α

[∮
S
F†α(x)N

P(n̂)Fβ(x) dx

]
cβ

≈
∑
αβ

c∗α

NC∑
n=1

[
wnF†α(xn)N

P(n̂)Fβ(xn)
]

︸ ︷︷ ︸
QPABS

DSI;αβ

cβ

= c†QPABS
DSI c. (17)

where we have used an NC-point cubature rule with weights
and points {wn,xn} to integrate over S. Equations (16) and
(17) express the local Poynting flux and the total absorbed
power as surface-current bilinears of the form (1), with
equations for the force and torque following by replacing
N P → N F,T; we refer to these as the “displaced surface
integral PFT” (DSIPFT) expressions. If there are incident-field
sources in the region, their contributions must be added to (16)
and (17).

B. Overlap PFT

We obtain a considerable simplification by allowing the
bounding surface S in equation (13) to coincide with the
object surface ∂O. In this case, the PV and MST in the
integrand involve only the fields at the object surface, and the
convolution step taking fields to currents [equation (7)] may
be bypassed in favor of equation (6) yielding surface fields
directly from surface currents. Taking S → ∂O and using
(6) in (13) yields power and force expressions involving only
surface currents:

P abs =
1

4

∮
∂O

[
C†(x)N P(n̂)C(x)

]
dA (18a)

F · û =
1

4

∮
∂O

{
C†(x)

[
M†N F(û, n̂)M

]
C(x)

}
dA.

(18b)
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In three-vector notation, these expressions read

P abs =
1

2
Re

∮
∂O

K∗(x) ·
[
n̂× N̂(x)

]
dA

F · û =
1

2
Re

∮
∂O

{
σ∗K

[
û · (n̂×N)

]
− σ∗N

[
û · (n̂×K)

]
− û · n̂

2

[
µ
(
|K|2− |∇ ·K|

2

k2

)
+ ε
(
|N|2− |∇ ·N|

2

k2

)]}
dA

where σK,N = 1
iω∇ · {K,N} and ε, µ are again the exterior

material properties. Inserting the basis-function expansion
(9) into formula (18a), we obtain a surface-current bilinear
expression of the form (1) for the absorbed power:

P abs =
∑
αβ

c∗α

[
1

4

∮
∂O

B†αN
PBβ dA

]
︸ ︷︷ ︸

QPABS
Overlap;αβ

cβ

= c†QPABS
Overlapc (20)

again with similar formulas for the force and torque following
from the replacement N P →N T,F. We refer to equation (20)
and its force and torque analogues as “overlap PFT” (OPFT)
formulas.

An immediate advantage of the OPFT approach is that the
elements of the QOverlap matrices involve only local opera-
tors (no convolutions) sandwiched between basis functions
(“overlap integrals” or “Gram matrix elements”), and hence
these matrices are typically sparse. (This is the origin of the
term “overlap PFT.”) For example, in three-vector notation the
elements of QPABS

Overlap read

QPABS
Overlap;αβ = ±1

4

∫
supbα

dx

∫
supbβ

dx′
[
bα(x)× bβ(x

′)
]
· n̂

≡ 1

4

〈
n̂ ·
(
bα × bβ

)〉
(21)

where {bα,bβ} are three-vector (i.e. RWG) basis functions
and 〈, 〉 denotes an integral over basis-function supports.
[Elements of the QOverlap matrices for the i component of the
force involve additional overlap integrals of the form〈[
∇ ·bα

]
(n̂×bβ)i

〉
,
〈
n̂i
(
bα ·bβ

)〉
,
〈
n̂i
(
∇ ·bα

)(
∇ ·bβ

)〉
(22)

and the torque case is similar.] If the basis functions are
localized, then the overlap integrals vanish for all but a small
number of pairs of neighboring basis functions. For example,
RWG functions have nonzero overlaps with at most 5 other
RWG functions (twice that number considering electric and
magnetic currents), so for these functions the matrix in (20)
has at most 10 nonzero entries per row. For the particular case
of RWG functions, all overlap matrix elements are simple
polynomial integrals that may be easily evaluated in closed
analytical form.

An additional advantage of the OPFT approach is that, in
contrast to e.g. the DSIPFT expression (17), equation (20) does
not require modification to account for incident-field sources in
any region; indeed, because the surface currents are always the
tangential components of the total fields, they already reflect
the contributions of any such sources that may be present.

C. Equivalence-principle PFT

The overlap PFT formulas (18) follow from the DSIPFT
formulas (13) by replacing both field six-vectors F in (13)
with current six-vectors C. If we instead replace only one fac-
tor of F with C, we obtain yet a third set of formulas, whose
physical significance we may understand by appealing to the
equivalence-principle interpretation of the SIE formalism [13],
[45]; in this picture, a solid dielectric body O with surface
∂O is replaced by an empty volume O and equivalent electric
and magnetic currents {K,N} flowing on ∂O. The PFT on O
may then be computed as the work done on, and the force and
torque exerted on, the surface currents by the external fields.
In particular, the power absorbed by O is just the usual Joule
heating of the surface currents, while the force on O follows
from the Lorentz force on the currents:

P abs =
1

4
Re

∮
∂O
{K∗ ·E + N∗ ·H} dA (23a)

F =
1

4
Re

∮
∂O

{
σ∗KE + µ

(
K∗ ×H

)
+σ∗NH− ε

(
N∗ ×E

)}
dA (23b)

{To understand equations (23), recall that the time-average
absorbed power and force on a volume electric current
distribution J would be given by the usual Joule heating
P abs = 1

2Re
∫
(J∗ ·E) dV and the usual Lorentz force F =

1
2Re

∫
(ρ∗E + µJ∗×H) dV ; equation (23) simply modifies

these relations by adding magnetic-current terms, replacing
volume with surface integrations, and including an extra factor
of 1

2 to account for a well-known subtlety involving the fields
at body surfaces [45].} In six-vector language, equations (23)
read

P abs =
1

4
Re

∮
∂O

C†F dA (24a)

F · û = −1

4
Re

∮
∂O

C†M†(û)

(
ε 0
0 µ

)
F dA (24b)

We refer to equations (24) as the “equivalence-principle PFT”
(EPPFT) formulas.

Because these formulas involve the fields at the surface, in
principle we have the choice of using either the exterior or
interior expansion for F (equation 10). For the power, which
involves only tangential field components, the two expansions
yield equivalent results (because tangential field components
are continuous across surfaces) and the choice is dictated by
convenience: we use whichever of the two expansions does
not contain incident-field terms. In particular, for typical cases
involving incident-field sources outside the body, we choose
the interior expansion. On the other hand, the force and torque
expressions involve normal field components; since the interior
and exterior branches of (10) yield inequivalent results for
these quantities (and we require the exterior fields), here we
must use the exterior expansion.

Of course, the apparent novelty of the EPPFT expressions
(24) versus the DSIPFT expressions (13) or the OPFT ex-
pressions (18) is only superficial; if, in (24), we use (6) to
replace currents with fields, then after some algebra we recover
equations (13) for the case S = ∂O, while instead using (5)
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to replace fields with currents leads us back to the overlap
formulas (18). However, the form of (24) as written suggests
a computational procedure with distinct ramifications: If we
evaluate the currents in (24) as in the OPFT method [the basis-
function expansion (9)], but evaluate the fields as in the SIPFT
method [the convolution (10)], we obtain a hybrid method with
features intermediate between those of the other approaches.
Inserting (9) and (10) in (24a), we find

P abs =
∑
αβ

c∗α

[
1

4

∮
∂O

B†αGBβ dA
]

︸ ︷︷ ︸
QPABS

EP ;αβ

cβ

= c†QPABS
EP c (25)

again with similar expressions for the force and torque. The
elements of the QEP matrices involve the projections onto basis
functions of the fields of other basis functions; for example,
the elements of the power matrix QPABS

EP involve the quantities〈
bα ·Eβ

〉
and

〈
bα ·Hβ

〉
(26)

where bα is a three-vector (i.e. RWG) basis function and
{E,H}β are the fields due to basis function bβ populated
with unit strength. [For the u-directed force we additionally
require 〈

(∇ · bα)(û ·Eβ)
〉
,

〈
û · (bα ×Eβ)

〉
(27)

and their analogs with Eβ → Hβ ; the torque case is simi-
lar.] The quantities in equations (26) and (27) involve four-
dimensional integrals which, in contrast to overlap integrals
like (21), generally cannot be evaluated in closed form, and
which moreover involve integrand singularities if bα,bβ have
nonzero overlap. Although the BEM literature abounds with
techniques for computing singular integrals of this form [46]–
[48], the need to implement such specialized techniques for
computing matrix elements makes the EPPFT the least com-
putationally convenient of the approaches we consider.

An exception to this statement applies if we need only to
compute the power, not the force or torque. In this case, the
quantities we need for the EP computation—equation (26)—
happen to be precisely the quantities needed to compute matrix
elements of the discretized BEM matrices in the PMCHWT
formulation, equation (11). Thus, for a problem involving
incident-field sources lying outside an object O, the power
absorbed by O may be computed in the form

Pabs = −1

4
c†Minc (28)

where Min is the “interior” contribution to the BEM matrix
in (11), describing the interactions of surface currents on O
interacting via the DGF for the material medium interior to O.
Since this matrix must be computed to solve the system in the
first place, equation (28) amounts to an easy post-processing
computation of absorbed power.

D. Comparison of PFT formulas

The DSIPFT expression (17), the OPFT expression (20),
and the EPPFT expression (25) represent three distinct ways

of writing matrices Q that, when sandwiched between surface-
current vectors c as in (1), yield the time-average absorbed
power on a body O (similarly, we have three distinct ways
of writing Q matrices for the force and torque). With exact
representations of currents and fields and exact surface inte-
grations, all three formulas must of course predict identical
PFTs. In actual calculations involving finite basis sets and
finite numerical cubature, their predictions will differ, as will
their computational cost. To characterize these distinctions it is
useful to compare the expressions for the α, β matrix element
of e.g. the QPABS matrix obtained in each formalism:

QPABS
αβ =



NC∑
n=1

wn
4

∮
∂O

∮
∂O

B†αG
†N PGBβ dAdA′ DSIPFT

1

4

∮
∂O

B†αGBβ dA, EPPFT

1

4

∮
∂O

B†αN
PBβ dA, OPFT.

(29)
[For the DSIPFT case we have here explicitly written out
the convolutions implicit in the quantities Fα,β in (17).]
The key distinction between these formulas is the number of
appearances of G, each of which signifies a convolution step:
in the {O, EP, DSI} expressions, G appears {0, 1, 2} times.
These differences determine the relative cost and accuracy of
the various approaches.

Cost. The overlap PFT computation involves no convolu-
tions; instead, as noted above, the matrix elements are simple
overlap integrals between basis functions, which may typically
be evaluated in closed analytical form (in particular, this is
possible for RWG functions). Moreover, for localized basis
functions the OPFT matrices are sparse, ensuring that (1) is
an O(NBF) operation. Thus the OPFT approach is by far the
fastest of the PFT approaches.

The EPPFT computation involves one convolution, and the
matrix elements in this case are of the form (26-27), describing
the G−interactions of the basis functions. These are four-
dimensional integrals over basis functions—with integrand
singularities present if the functions overlap—whose evalua-
tion adds significant computational cost and inconvenience for
force and torque calculations. (However, as noted above, for
power computations the same integrals are already computed
as part of the BEM system solution, so this case requires no
further computation.) In contrast to the OPFT case, the QEP
matrices are dense, so the cost of evaluating (1) is O(N2

BF) in
this case.

In the DSIPFT case each matrix element involves two
convolutions plus a sum over NC cubature points, so here the
naı̈ve cost of evaluating (1) is O(NCN

2
BF).

Of course, this discussion assumes that we compute PFTs
using the vector-matrix-vector product formulas (1), with each
element of the Q matrix computed explicitly. For EPPFT and
DSIPFT calculations in classical, deterministic problems—the
context of equation (1)—it will typically be faster to do the
computation without forming this matrix. For example, to
evaluate the DSIPFT or EPPFT integrals (13) or (24) using
an NC-point cubature rule for

∮
S or

∮
∂O, we would first do



0018-926X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAP.2015.2438393, IEEE Transactions on Antennas and Propagation

6

a single O(NCNBF) step to compute and store the fields at
all cubature points, then a second O(NC) step to evaluate the
integrand at each cubature point. However, for applications to
fluctuation-induced phenomena [the context of equation (2)],
such an approach is not possible; here we must separately
compute the contribution of each individual pair of basis
functions to evaluate the matrix product trace in (2), and in
this case both DSIPFT and EPPFT are O(N2

BF) operations,
while OPFT remains O(NBF).

Accuracy. The number of occurrences of G also affects the
accuracy of the formulas. Indeed, each time we eliminate a G
factor in equation (29) (going from 2 to 1 to 0 factors as we
progress from DSIPFT to EPPFT to OPFT) we are replacing
one current-to-field convolution (10) with one instance of the
direct current-to-field relationship (6), with each such replace-
ment contributing some loss of accuracy. Indeed, the relations
between surface currents and total tangential fields, equations
(5) and (6), are only approximately satisfied in a finite solver,
and in particular the surface fields as computed from the direct
relation (5) are less accurate than those computed from the
convolution (10). [This is true even though the procedures of
(5) and (10) use the same surface-current inputs, which in a
finite solver are themselves only approximations of the exact
surface currents; the error present in these approximations is
compounded by using the additional approximation (5) instead
of the convolution (10).] Thus in principle we might expect
the accuracy hierarchy to be DSIPFT > EPPFT > OPFT.

This naı̈ve expectation is complicated by other considera-
tions. The DSIPFT case involves a numerical cubature over
the bounding surface S, while the EPPFT case involves a
numerical cubature over the object surface ∂O [or, equiv-
alently, numerical cubatures over basis-function supports of
the form (26-27)], and these numerical integrations introduce
additional errors. In contrast, the OPFT involves only overlap
integrals of the form (21-22), which (for RWG and other
simple basis functions) may be evaluated exactly in closed
form, ensuring no additional error contribution. In practice
this advantage seems to compensate the other sources of in-
accuracy expected for OPFT calculations, which we typically
find to be as accurate, if not more accurate, than calculations
using the other approaches. Since the OPFT is also by far the
fastest approach, in general it will thus be the optimal choice,
although exceptions exist in particular cases as discussed in
the following section.

E. Other power formulas

The power formulas considered thus far have been for the
absorbed power; here we note some similar expressions for
other physical quantities of interest.

Total power (extinction). The total (absorbed plus scattered)
power extinguished by a body from an incident field may be
computed as the work done on the surface currents by the
incident fields. Replacing total fields with incident fields in

(24a), we find

P tot =
1

2
Re

∮
C†F inc dA (30)

=
1

2
c†f inc (31)

= −1

2
c†Mc (32)

where f inc, the projection of the incident fields onto the
basis functions, is just the negative of the RHS vector in
the discretized system (11); in equation (32) we have used
equation (11) to write the total power as a surface-current
bilinear of the form (1) involving the BEM system matrix
M = Min + Mout. As both c and f inc are computed with
the solution of (11), equation (31) represents an O(NBF) post-
processing step with no further computation required. On the
other hand, the form of equation (32) and the fact that the BEM
matrix in the PMCHWT formulation is negative definite [11]
ensure that the total power is always positive, as expected on
physical grounds.

Scattered / radiated power. For a problem involving
incident-field sources lying outside a body, the scattered power
is the difference between the total and absorbed power. In the
OPFT formalism, we may subtract (20) from (31) to yield

P scat
Overlap = P tot − P abs

Overlap = c†
[1
2
f inc −QPABS

Overlapc
†
]

(33)

again an O(NBF) operation since since QPABS
Overlap is sparse.

Alternatively, in the EPPFT formalism, we have

P scat
EP = P tot − P abs

EP = c†
[1
2
f inc −QPABS

EP c
]

(34)

= −1

4
c†Moutc (35)

where we used equations (11) and (28). Equation (35) for the
scattered power is complementary to (28) for the absorbed
power; since the matrix Mout is already computed in the
process of solving (11), equation (35) is an O(N2

BF) post-
processing step requiring no further computation.

If the incident-field sources lie inside the body, we may
think of equation (35) as the equivalent of equation (28) with
interior and exterior media reversed; this is then the power
“absorbed” by the exterior medium from the incident-field
sources, or in other words the power radiated into the exterior
medium from the sources inside the body.

Scattering amplitude. The amplitude for scattering in the k̂
direction with a given polarization is obtained by projecting
the surface currents onto the fields of a k̂−traveling plane
wave of that polarization [49]:

F (k̂) =
iZk

4π

∮
C†FPW

k̂
dA (36)

=
iZk

4π
c†fPW

k̂
. (37)

where fPW
k̂

is the RHS vector in (11) that would be computed
if the incident field were a k̂−traveling plane wave.

Relation to the optical theorem. In a scattering problem in
which the surface currents C are induced by an incident field
consisting of a k̂-traveling plane wave, equation (37) gives the
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forward scattering amplitude. On the other hand, the vector
inner product in (37) is just twice the extinction as computed
by (31). Comparing (31) and (37) in this case, we find

P tot =
2π

kZ
Im F (k̂).

This is the well-known optical theorem, relating the extinction
to the imaginary part of the forward scattering amplitude [49].

III. COMPUTATIONAL EXAMPLES

A. Energy and Momentum Transfer in Mie Scattering

We first validate and compare our formulas by using them to
reproduce well-known results for a sphere irradiated by a plane
wave (Mie scattering). Analytical formulas for the absorbed
power, scattered power, and force (radiation pressure) in this
case may be found in standard textbooks [12].

Figures 1 and 2 plot the efficiencies of scattering, ab-
sorption, and z-directed force on a spherical nanoparticle of
radius R = 1µm, irradiated by a linearly-polarized z-traveling
plane wave with electric field Einc(x, t) = E0x̂e

i(kz−ωt). The
nanoparticle is composed of gold, modeled as a lossy dielectric
with frequency-dependent permittivity

εgold = ε0

(
1−

ω2
p

ω(ω + iγ)

)
(38)

with {ωp, γ} = {1.37 · 1016, 5.32 · 1013} rad / sec. Dashed
black lines indicate the results of Mie theory [12], while data
points indicate results obtained from the methods proposed in
this paper, using RWG basis functions for a sphere discretized
into N=206 triangular panels (inset). (For the DSIPFT we take
the bounding surface S to be a sphere of radius 10R and use a
Lebedev [50] cubature rule with NC=302 points.) Absorption
and scattering cross sections σabs,scat are obtained by dividing
the total absorbed and scattered power by the incident power
flux, σabs,scat = P abs,scat/I inc, where I inc = |E0|2

2Z0
for a plane

wave in vacuum. The force cross section is obtained by divid-
ing the total z-directed force on the particle by the incident
momentum flux, σforce = Fz/I

inc
M with I inc

M = |E0|2
2Z0c

for a plane
wave in vacuum. Efficiencies Qabs,scat,force are obtained from
cross sections σabs,scat,force by dividing by the geometrical cross
section presented by the particle, Q = σ/(πR2).

For power computations, the three methods we consider
yield equivalent accuracy at most frequencies. The exceptions
are (a) the low-frequency tail of the scattering efficiency,
where OPFT becomes inaccurate, and (b) the high-frequency
tail of the absorption efficiency, where both OPFT and DSIPFT
become inaccurate. Errors in the former case arise because the
low-frequency extinction is dominated by absorption, so the
OPFT scattered-power expression (33) involves the subtrac-
tion of two nearly equal numbers and thus incurs numerical
inaccuracies that are absent from the EPPFT expression (35).
Errors in the latter case arise because at high frequencies the
DSIPFT integrand oscillates over the bounding-sphere surface
more rapidly than can be resolved by our fixed-order cubature
scheme.

For force computations, at low frequencies both OPFT and
EPPFT exhibit slight inaccuracies due to imperfect resolution

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10

Fig. 1. Absorption and scattering efficiencies for a spherical gold nanoparticle
of radius R = 1µm irradiated by a linearly-polarized plane wave. Efficiencies
are cross sections normalized by the geometric cross section, Q = σ

πR2 . The
absorption and scattering cross sections are the total absorbed and scattered
power normalized by the incident power flux. Dashed lines are the predictions
of Mie theory. Data points indicate calculations using the methods of this
paper for a sphere discretized into N = 206 flat triangular panels (inset)
with surface currents described by RWG basis functions.
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Fig. 2. Force efficiency QF = σF

πR2 for the scattering problem of Figure
1. The force cross section σF is the total force on the particle divided
by the incident momentum flux. Upper inset: For calculations of power,
force, and torque (PFT) using the equivalence-principle (EPPFT) and overlap
(OPFT) methods, low-frequency errors are reduced by refining the mesh
discretization to N = 1210 panels. Lower inset: For calculations using
the displaced-surface-integral (DSIPFT) method, high-frequency errors are
reduced by refining the surface cubature rule to NC = 770 cubature points.

of cancellations from the MST integral over different parts
of the body surface; the EPPFT is somewhat more accurate
for the reasons discussed in the previous section. At high
frequencies the EPPFT is inaccurate, due most likely to
imperfect evaluation of singular integrals of the form (27). The
DSIPFT is the most accurate method at low frequencies, but
suffers the same high-frequency inaccuracies that are present
in the power case (Figure 1) when the field oscillations over
the bounding surface exceed the resolution of our fixed-order
cubature method.
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Fig. 3. Computational cost of power, force, and torque (PFT) calculations
using the various algorithms presented in this paper applied to sphere meshes
(like that pictured in the inset of Figure 1) with various numbers of panels.
The overlap (OPFT) method is always the most efficient method, typically by
several orders of magnitude.
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Fig. 4. z-directed force on a dielectric sphere due to a point dipole source
inside the sphere. The sphere has radius 1µm and relative dielectric constant
εrel = 10; it is discretized into a mesh like that in the inset of Figure
1, but with 924 panels. The point source is z-directed with frequency
ω = 3 · 1014 rad/sec and lies on the ẑ axis a distance z from the center
of the sphere. As the point source approaches the sphere surface (z/R→ 1),
the overlap (OPFT) and equivalence-principle (EPPFT) calculations incur
severe numerical inaccuracies, while the displaced-surface-integral (DSIPFT)
calculation remains unaffected.

Comparison of computational cost.
Figure 3 plots, for sphere meshes with various total numbers

of panels, the computation time required by our three methods
to compute the power, force, and torque for the Mie-scattering
problem of Figures 1 and 2 at the fixed frequency ω = 3 ·1014
rad/sec. The time plotted here is only the post-processing time
needed to compute PFTs given the surface-current vector c;
the cost of assembling and solving the linear system (11) for
c is common to all approaches and is omitted here.

For reasons discussed above, the OPFT is always the
fastest approach, typically by multiple orders of magnitude.
The EPPFT calculation of the power is relatively fast due
to the simplification noted above—namely, that the matrix
elements (26) needed for the power computation in this case
are already computed in assembling the BEM system (11), so
their computation adds no extra time to the PFT calculation.
On the other hand, the EPPFT matrices are dense, whereas the
OPFT matrices are sparse, so the cost of evaluating the vector-
matrix-vector products (1) is greater for EPPFT than for OPFT.
DSIPFT calculations are dominated by the linear-scaling cost
of evaluating the fields at the NC cubature points; the figure
shows the cases NC = {110, 302}, with the latter incurring
3× the cost of the former. Finally, the EPPFT calculation of
the force and torque is the most expensive of all methods, due
to the cost of evaluating the singular integrals (27).

Comparisons of computation time are of course heavily
implementation-dependent, and we would not expect the
precise speed ratios we found here to remain constant for
other implementations. However, our computational codes [1]
are implemented in C++ with significant effort invested in
optimization [48], so we are confident that at least the order-
of-magnitude cost ratios of Figure 3 are generally meaningful.

B. Point source inside dielectric sphere.

Figure (4) plots the z-directed force on a dielectric sphere
due to a z−directed dipole radiator inside the sphere. The
sphere has radius 1µm and relative dielectric constant εrel =
10 and is discretized as in the mesh inset of Figure 1, but
with 924 total panels. The dipole has frequency ω = 3 · 1014
rad/sec and is located on the positive z-axis a distance z from
the sphere center. For small values of z, all three approaches
yield equivalent results. However, as the dipole approaches
the sphere surface (z/R → 1), the OPFT and EPPFT incur
severe numerical errors due to inaccurate resolution of rapidly-
varying surface fields near the dipole. This problem does not
affect the DSIPFT calculation, for which the fields are only
evaluated on the displaced surface S (a sphere of radius 10R
in this case).

In contrast to the inaccuracies exhibited by the various meth-
ods in the cases of Figures 1 and 2—which may be reduced
by using finer surface meshes and surface-cubature grids—
the inaccuracy exhibited by OPFT and EPPFT in the case of
Figure 4 is intrinsic to this source configuration; any method
based on PV or MST integrations over an object surface will
be badly behaved as point sources approach that surface. In
particular, when we calculate nonequilibrium Casimir forces
and heat-transfer rates using the fluctuating-surface-current
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Fig. 5. z-directed force (a) and torque (b) on a chiral gold nanoparticle
illuminated from below by a plane wave traveling in the positive z direction
with left circular polarization (red data points) or right circular polarization
(blue data points). The force is the same for the two incident polarizations,
while the torque changes sign when the incident polarization is reversed.

approach [11], we effectively simulate distributions of sources
lying throughout the interior of compact bodies, including at
points arbitrarily close to the surface. For such problems it
seems hopeless to expect accurate OPFT or EPPFT results
even with high-resolution meshing; for such cases DSIPFT
appears to be the only viable option.

C. Force and Torque on a Chiral Nanoparticle in a Circularly-
Polarized Field

We next consider a chiral nanoparticle illuminated by a
circularly-polarized plane wave. The particle is depicted in
the inset of Figure 5(a); it is constructed from two quarter-
length sections of a torus of {inner, outer} radii {R, 5R} (here
R = 1µm) with one section rotated through π degrees and
both ends capped with hemispherical endcaps. The particle
is composed of gold with permittivity given by equation
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Fig. 6. z-directed torque on the lower (blue data points) and upper (red data
points) members of a pair of chiral gold nanoparticles with opposite chirality
separated by a surface–surface separation equal to the inner radius of the
particle. The particle pair is illuminated from below by a linearly-polarized
plane wave traveling in the positive z direction. Now not only the magnitudes
but also the signs of the torques on both particles are frequency dependent,
with counter-rotating and co-rotating frequency regimes.

(38). The particle is illuminated from below by a plane wave
traveling in the positive ẑ direction and either left- or right-
circular polarization, i.e. we have

Einc(x, t) = E0(x̂± iŷ)ei(kz−ωt)

with k = ω/c and E0 = 1 V/m. Figures 5(a) and 5(b) respec-
tively plot the force and torque on the particle as a function
of frequency for both right-circularly polarized incident fields
(blue circles) and left-circularly polarized incident fields (red
squares). The force on the particle is the same for the two
incident polarizations, while the torque changes sign when the
incident polarization is reversed.

D. Frequency-Dependent Direction of Rotation on a Pair of
Chiral Nanoparticles in a Linearly-Polarized Field

In the previous examples—which involved isolated
nanoparticles—the PFTs could in principle have been com-
puted by standard methods involving PV or MST integrations
over distant bounding spheres surrounding the object. The
methods we propose in this paper—particularly the OPFT
approach—really comes into their own for geometries involv-
ing two or more closely separated bodies on which we wish
separately to resolve the PFTs. In such cases, any bounding
surface surrounding only one of the bodies in question must
unavoidably lie close to both bodies, and the stress-tensor
integral over that surface will be particularly cumbersome,
whereas the OPFT technique proposed in this paper is straight-
forward. An example of such a geometry is provided by
pairing the chiral gold nanoparticle of the previous section
with a partner gold nanoparticle of opposite chirality, separated
by a surface-surface separation d = 1µm (equal to the inner
particle radius), and irradating the pair from below with a
linearly, not circularly, polarized plane wave, Einc(x, t) =
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E0x̂e
i(kz−ωt). Figure 6 plots the torque on each particle, with

the blue (red) data points corresponding to the lower (upper)
particle. Now not only the magnitudes but also the signs of
the torques on the two particles are frequency-dependent, with
the particles either co-rotating, counter-rotating, or not rotating
depending on the frequency.

IV. CONCLUSIONS

The DSIPFT formulas (13), the OPFT formulas (18), and
the EPPFT formulas (24) represent three distinct ways of
computing PFTs from surface currents. With exact currents
and exact surface integrations, the three approaches yield
equivalent results; in practical solvers—with finite basis sets
and approximate surface cubatures—the three approaches lead
to three numerical algorithms with differing efficiency, accu-
racy, and ease of implementation.

In almost all cases the OPFT formalism will be the correct
choice; OPFT computations are always orders of magnitude
faster than the other approaches, and (typically) equally if not
more accurate. There are, however, at least two exceptions.
(1) In cases where the extinction is dominated by absorption,
such as the low-frequency tail of the scattering-efficiency curve
in Figure 1, the OPFT scattered-power computation exhibits
cancellation errors and is best replaced with EPPFT. (2) For
cases involving sources inside bodies approaching the body
surface (Figure 4), both OPFT and EPPFT are badly behaved
and should be replaced with DSIPFT.

For an object O containing a volume distribution of electric
current J in the presence of electromagnetic fields E,H, it
is known [51] that the the time-average i-directed force on
O is given by Fi = 1

2ω Im
∫
O J∗ · ∂iE dV , where ∂iE is

the derivative of E in the ith cartesian direction. It would be
of interest to explore the consequences of this formula for
equivalence-principle force and torque calculations.

In closing, we emphasize that all formulas derived in this
paper are implemented in SCUFF-EM, a free, open-source soft-
ware implementation of the BEM in the EFIE and PMCHWT
formulations which is available for download online [1].
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