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Abstract: We have calculated the optically-induced force between coupled 
high-Q whispering gallery modes of microsphere resonators. Attractive and 
repulsive forces are found, depending whether the bi-sphere mode is 
symmetric or antisymmetric. The magnitude of the force is linearly 
proportional to the total power in the spheres and consequently linearly 
enhanced by Q. Forces on the order of 100 nN are found for Q=108, large 
enough to cause displacements in the range of 1μm when the sphere is 
attached to a fiber stem with spring constant 0.004 N/m. 
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Modal splitting arising from coupling between closely-spaced waveguides can be observed in 
a range of waveguide geometries [1]. Due to overlap of the waveguide fields, symmetric and 
antisymmetric combinations of the unperturbed modes split in frequency. In a previous paper 
[2], we have shown that for nanophotonic, high-index-contrast strip waveguides, the attractive 
and repulsive forces resulting from this splitting are large enough to cause significant 
displacements. Moreover, the optical force is directly proportional to the optical power in the 
waveguide modes, suggesting the use of resonant phenomena to further magnify force values. 

Whispering gallery mode (WGM) resonances in microspheres are known to have 
extremely high experimental values of cavity quality factor Q, yielding large optical energy 
enhancements in the microsphere relative to the input power [3–8]. Moreover, modal splitting 
between coupled microspheres has previously been demonstrated in Refs. [9–12]. For certain 
choices of the angular mode numbers, a WGM resembles the mode of a curved strip 
waveguide running around the sphere equator. Efficient methods of coupling to such WGM 
modes from tapered fiber [8] or integrated waveguides [13] have been experimentally 
demonstrated and should allow controlled excitation of either symmetric or antisymmetric 
modes of two-sphere systems. In this paper, we calculate the resulting attractive and repulsive 
forces between such symmetric and antisymmetric “waveguide-like” modes and show that the 
optical force is magnified by the cavity Q.  

A particular WGM is specified by polarization and three mode numbers, the radial mode 
number n, the angular mode number l, and the azimuthal mode number m [14]. We focus on 
TE-polarized (

  

� 

E  perpendicular to the radial direction), fundamental radial modes with l=m. 
The light in such modes is confined not only near the sphere surface, but also near the equator 
of the sphere. We will consider two microspheres separated by a small gap. Modes of the 
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bisphere system can be categorized as either antisymmetric or symmetric, as depicted in the 
inset to Fig. 1.  

The force between two weakly-coupled spheres may be calculated from the frequency 
shift due to coupling [2]. A full derivation is given in the Appendix 1 below. The optical force 
F is: 

 F = − 1
ω

dω
dξ

U = − 1
ωo + Δω

d ωo + Δω( )
dξ

U ≈ − 1
ωo

dΔω
dξ

U, (1) 

where U is the total electromagnetic field energy, and ωo is the unperturbed modal frequency 
of an isolated sphere. Positive and negative values indicate repulsion and attraction 
respectively. While the frequency shift Δω can be directly calculated using vector spherical 
harmonic expansion [11], such methods become prohibitive for large values of l. We employ 
a perturbative approach, allowing the force to be calculated to first order using only the 
unperturbed WGM’s of the individual spheres. First order results should be sufficient for all 
data presented here, as the calculated fractional frequency shifts were less than 0.06%. While 
the modes of a perfect sphere have a 2l+1 angular degeneracy, slight ellipticities in real, 
fabricated microspheres remove the degeneracy associated with modes of different m [15], 
with a resulting frequency spacing of many times the linewidth [8, 16]. Nondegenerate 
perturbation theory thus suffices for practical calculations. Similar perturbative methods have 
previously been used to calculate modal splitting for waveguide-waveguide [1], waveguide-
microsphere [17, 18], and microsphere-microsphere [10] coupling.  

The analytical expression for the frequency shift is derived in Appendix 2. The final 
result is: 

 

  

Δω
ωo

= − 1

2

dV (ε2 −1) E1
2 + (ε1 −1) E2

2 ± (ε1 −1)
� 

E 1
* ⋅

� 

E 2 + (ε2 −1)
� 

E 2
* ⋅

� 

E 1( )[ ]∫
dV ε1 E1

2 +ε2 E2
2[ ]∫

 , (2) 

where 
  

� 

E 1 and 
  

� 

E 2  are the unperturbed WGM modes of sphere 1 and sphere 2. The numerator 
can be separated into two terms, which we will call the tail:  

dV (ε2 −1) E1
2 + (ε1 −1) E2

2[ ]∫ , 

and the overlap: 

  

dV (ε1 −1)
� 

E 1
* ⋅

� 

E 2 + (ε2 −1)
� 

E 2
* ⋅

� 

E 1[ ]∫ . 

The tail depends on the integrated power of one sphere’s modal profile over the volume of the 
other sphere. Physically, the resulting frequency shift can be interpreted as a change in the 
effective path length of the WGM mode of one sphere due to the close proximity of the other 
sphere (see Ref. [10], which calls this effect the “β-mechanism”). The overlap is a “direct” 
modal coupling term, resulting from overlap of the WGM modes of the two spheres (also 
known as the “α-mechanism” [10]). We will consider the optical force resulting from the 
distance dependence of the total frequency shift, incorporating both coupling effects. 

The frequency shift Δω  was calculated by numerical evaluation of the modal overlap 
integrals in Eq. (2). From numerical convergence testing, the finite-grid resolution error (for 
Cartesian grid spacing of 0.001a, where a is the sphere radius) is estimated to be less than 4%. 
Results are shown in Fig. 1 for two sets of angular mode numbers, l = m = 111 and 
l = m = 184. The refractive index of the silica microspheres was taken to be 1.47. For these 
modes, we calculated x ≡ ka = 2πa /λ = 80.7466  and 131.512, respectively. For a wavelength 
of 1.55 μm, l = m = 111 corresponds to a radius of 19.9 μm and l = m = 184 to a radius of 
32.4 μm.  

The optical force between two spheres for either symmetric or antisymmetric modes is 
shown in Fig. 1. Force is plotted as the dimensionless combination Fλ /U  (left axis) as a  
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Fig. 1. Force as a function of separation for coupled microspheres for two different angular 
mode numbers. Negative values indicate attractive forces. Left and bottom axes use 
dimensionless units. Right and top axes show the force as a function of distance in physical 
units, assuming a coupled input power of 1mW to each sphere and a Qo of 108. At a 
wavelength of 1.55 μm, l = m = 111 corresponds to a sphere radius (a) of 19.9 μm and 
l = m = 184  to a radius of 32.4 μm. Inset shows modal symmetries. For antisymmetric modes 

(top inset, upper two data curves), the electric field perpendicular to the page points in opposite 
directions in the two spheres. For symmetric modes (bottom inset, lower two data curves), the 
opposite is true. Red and blue correspond to electric fields pointing in and out of the page, 
respectively. Arrows indicate direction of propagation. 

 
function of d /λ  (bottom axis), the edge-to-edge separation in units of the wavelength. The 
symmetric mode of the bi-sphere system gives a negative (attractive) force, while the 
antisymmetric mode gives a positive (repulsive) force. The trend is the same as for the linear 
waveguides studied in [2]. It can be seen from Fig. 1 that the values of the attractive and 
repulsive force are not equal and opposite; the force resulting from the symmetric mode is 
slightly larger. Comparing force values for the two sets of mode numbers, we see that for 
fixed d /λ , the magnitude of the force is smaller for the higher mode number. As mode 
number increases, light is more tightly confined within the sphere, resulting in weaker modal 
overlap and smaller forces. For all calculations presented in the figure, the force is a 
monotonically decreasing function of distance. At shorter separations, however, previous 
work [2] suggests that field-enhancement effects [19] could lead to nonmonotonic behavior. 

To calculate the optical force in physical units, we write the total electromagnetic field 
energy in terms of the coupled input power and cavity quality factor. Under critical coupling 
conditions [18], the total energy in a single sphere on resonance is U1 = P(Qo / 2) /ωo , where 
P is the power coupled into a sphere from an external source and Qo is the intrinsic quality 
factor of the resonator. The total energy in the bi-sphere system is then U ≈ 2P(Qo / 2) /ωo . 
(Small corrections to the total Q due to coupling between the two spheres will have negligible 
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effect on the total energy, since they are higher-order in the modal overlap integrals that 
determine the frequency shift [18].) Then 

 F = Fλ
U

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

U

λ
= Fλ

U

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

PQo

ωoλ
= Fλ

U

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

PQo

2πc
,  

and the force is directly proportional to PQo. Experimental Qo values greater than 108 have 
been measured for 20-35 μm radius spheres at a wavelength of 1.55 μm [7]. Taking Qo = 108 
and P = 1 mW, PQo/2πc = 53 μN. The right and top axes of Fig. 1 show the force as a 
function of distance in physical units. For sphere separations less than 500 nm, optical forces 
are in the order of 100 nN. Assuming a lower Qo of 107 or 106 will reduce the magnitude of 
the force by a factor of 10 or 100 accordingly. 

To gain intuition for the magnitude of the predicted forces, we calculate the static 
equilibrium displacements of the spheres. The fabrication process for microspheres involves 
melting the tip of a silica fiber, leaving the sphere attached to a fiber stem. We consider the 
case where the two fiber stems are aligned parallel to one another; the optical force between 
the spheres at their tips will cause the stems to bend. The spring constant of the fiber stem 
may be written as k = 3EI / l 3, where E is the bulk modulus of silica (37 GPa), I is the 
moment of inertia of the fiber ( I = πD4 /64 , where D is the fiber diameter), and l is the length 
of the fiber stem [20]. For a given k, we can find the equilibrium separation d by setting the 
spring force F = −kd /2 equal and opposite to the separation-dependent optical force. For 
simplicity, we assume that the power coupled into the spheres is independent of displacement, 
a reasonable assumption for displacements much less than either the sphere diameter or the 
fiber length. For fiber lengths l in the range of 5 mm–1 cm and diameters D in the range of 
10–125 μm, the spring constant k ranges from 5x10-5–10.6 N/m. Clearly, the equilibrium 
displacement will increase with decreasing spring constant. However, for low enough values 
of the spring constant, displacements due to thermal fluctuations will become comparable to 
displacements resulting from the optical force. A conservative estimate of the effect of 
thermal noise can be obtained by considering a simple measurement of static deflection. 
Assuming that the measurement is made after any transient motion has died off (e.g. after 
waiting times greater than the mechanical ringdown time), the thermal displacement can be 

estimated from the equipartition theorem, 
1
2

k BT = 1
2

k x 2 . The root-mean-square 

displacement due to fluctuations is then xrms ≡ x2 = k BT /k  [21]. We note that spectral 

analysis of time-dependent displacement measurements can further minimize thermal effects 
and yield better sensitivity [21], whether under static excitation conditions or, for example, 
pulsed excitation at the mechanical resonance frequency of the fiber stem. 

In Fig. 2, we plot the magnitude of the equilibrium separation d and root-mean-square 
displacement xrms as a function of spring constant. xrms has been multiplied by 1000 to show 
both quantities on the same graph. For spring constants k > 0.004 N/m, the optically-induced 
equilibrium separation is greater than 1000 times xrms, and we can safely ignore the effects of 
thermal noise. The optical displacements in this range are greater than one micron and have 
equal magnitude for the attractive and repulsive states. For larger spring constants, the 
attractive state induces a larger displacement, corresponding to larger force magnitudes at 
smaller separations as shown in Fig. 1. As a numerical example, the choice of length l = 6.0 
mm and D = 20 μm (achieved by tapering the fiber stem) gives a spring constant of 0.004 
N/m. The equilibrium displacements are 1.16 μm and 0.98 μm for the n = m = 111 and 184 
states, respectively. For a larger fiber diameter D = 125 μm and a length l = 1 cm, the spring 
constant k = 1.33 N/m. For n = m = 111, the equilibrium displacements are 159 nm for the  
attractive mode and 114 nm for the repulsive mode. For n = m = 184, the displacements are 
101 nm and 67 nm, respectively. Equilibrium displacements for other values of QoP may 
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Fig. 2. Magnitude of equilibrium displacement of a sphere due to the optical force as a function 
of the spring constant k of the attached fiber stem. The optical displacement is larger than 1000 
times the estimated thermal displacement (solid black line) for spring constants greater than 
0.002 N/m. 

 
easily be deduced from the graph by a simple scaling argument. For a particular k, the 
equilibrium displacement d is a solution to the equation Fopt (d) = −kd / 2. Reducing QoP by a 

factor α, Fopt → αFopt  and d is the solution to the characteristic equation for k → k /α . In 
other words, a reduction of Qo to 107 will result in the same equilibrium displacement if the 
spring constant is reduced by a factor of 10. 

In the calculations above, we have considered two identical, high-Q spheres. In practice, 
identical spheres with perfectly coinciding eigenfrequencies cannot be fabricated. As a result, 
tuning will be required to align resonant frequencies of the two spheres. In Ref. [22], stress-
tuning of high-Q (109) microsphere resonances by half a free spectral range (Δν = 400 GHz, 
corresponding to a ~1% axial strain) was achieved. Fortunately, it should not be necessary to 
align resonances with identical mode numbers to achieve a significant force; l and m may 
differ between the two spheres. To quantify this claim, we consider the behavior of the tail 
and overlap integrals (defined following Eq. 2 above) for mismatched l and m. For l = 111, we 
calculate that a mismatch Δm = 8 ( m1 = l, m2 = l − 8) only reduces the integrals by ≤80% of 
their Δm = 0 values. The frequency shift should thus be of the same order of magnitude as for 
matched spheres. A small mismatch in l between the spheres is also tolerable. For a single 
sphere, the effect of a small change Δl in the mode number is to slightly increase the radial 
and angular mode confinement. Consequently, the tail and overlap for modes l1 = m1 and l2 = 
m2 with l1 < l2 should be no smaller than for two spheres with mode numbers l2, m1 and l2, m2, 
and the effect of a l mismatch can be estimated by using the larger l value in the force 
calculation. As seen from the results of Fig. 1, even a large change in l from 111 to 184 only 
reduces the force by a factor of order unity; slight l mismatches should preserve the order of 
magnitude of the optical force. In summary, fabrication differences between the two spheres 
are not expected to degrade the optical force significantly, provided that two nearby 
resonances can be tuned to align; both resonances should, however, satisfy the condition that 
m − l << l . 
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In addition to optically-induced forces between the microspheres, Van der Waals forces 
and electrostatic forces will also be present. The Van der Waals force between the spheres is 
bounded above by the nonretarded expression Fvdw = Aa /12d 2  [23], where the value of the 

Hamaker constant A ≈ 6 ×10−20 J  for silica. For a sphere radius a=20 μm and separation of 
100 nm, Fvdw ≈ 3 pN, roughly four orders of magnitude smaller than the optical force. The 
electrostatic force arises from stray charges on the silica spheres. Assuming a uniform charge 
distribution, Fes = kQ1Q2 /(2a + d)2, where Q1 and Q2 are the total charges on sphere 1 and 2 

respectively, and k ≈ 9.0 ×109 Nm2/C2. For the values of a and d above, 

Fes /(Q1Q2) ≈ 5.6 ×1018 N/C2. It is very difficult to predict the total charge values a priori, as 
they are likely to depend sensitively on details of sample preparation and experimental 
conditions. As a very rough indicator of the expected surface charge, we note that the authors 
of Ref. [24] measured surface charge densities for a test mass of silica in vacuum ranging 
from 10-14 and 10-11 C/cm2; for our system, such values would result in electrostatic forces 
ranging anywhere from ~ 10-9  to 1 nN. Regardless of their magnitudes, we expect that the 
electrostatic and Van der Waals forces can easily be distinguished from the optical force due 
to the linear increase of the optical force with optical power. In addition, both the electrostatic 
and Van der Waals forces are nonresonant in nature, unlike the optical force. 

Subsequent to the submission of this manuscript, similar results were published by Ng et 
al in Ref. [25], which also studies the attractive and repulsive forces between a pair of 
microspheres resulting from the excitation of morphology-dependent (or whispering-gallery-
mode) resonances. Ng et al focus on smaller spheres (size parameters kR ~ 28) than those 
studied here (size parameters kR ~ 80–130). For smaller spheres, direct, numerical calculation 
of the full, coupled fields of the bisphere system can be employed. The force is then found 
from numerical integration of the Maxwell stress tensor. For larger spheres, direct calculation 
becomes increasingly difficult due to the necessity of including higher-order terms in the 
vector spherical-harmonic expansion. The perturbative formulation we have presented here is 
particularly suitable in this regime. An additional difference between the work of Ng et al and 
the results presented here is the choice of excitation conditions. Ref. [25] considers excitation 
of the WGM resonance by an external plane-wave source, while we consider controlled 
excitation of the individual spheres by e.g. evanescent-wave coupling. Nevertheless, the 
attainment of qualitatively similar results in different physical regimes and using different 
methodologies strongly suggests the robustness of the attractive and repulsive optical force 
phenomenon in coupled-microsphere systems. 

Note that like Ref. [25], we also predict the magnitude of the resonant, attractive force to 
be larger than that of the repulsive force. For symmetric states, the tail and overlap terms in 
Eq. (2) tend to add together, while for the antisymmetric state, they partially cancel. As the 
separation between the spheres increases, we observe that the overlap term dominates the tail 
term, and the forces for the symmetric and antisymmetric states become nearly equal and 
opposite. 

In conclusion, we have shown that large displacements of high-Q silica microspheres 
result from optical coupling in bi-sphere systems. Along with previous theoretical results on 
linear waveguides [2, 26] and multilayer films [27], these results suggest an expanding 
possibility of manipulating the position of integrated optical components using light signals. 
We are hopeful that experimental observation of such effects will open up a wide range of 
possibilities for all-optical reconfiguration of integrated-optical devices and nanostructured, 
artificial materials. 
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Appendix 1 

Here we derive a simple expression for the optically-induced force resulting from coupling of 
the guided modes of two dielectric objects separated by a distance ξ . A simple argument 
follows from a quantum “photon” picture, but a more complicated, purely classical proof 
gives the same result. 

Quantum Argument 

Consider a closed system of two waveguides separated by a distance ξ . Assume initially that 
an eigenmode of the full system with frequency ω  is excited such that the total 
electromagnetic field energy is U.  An adiabatic change in the separation Δξ  will shift the 
eigenmode frequency by an amount Δω . Total energy conservation then implies that the 
mechanical force on either object is given by 

 F = − dU

dξ
 (3) 

with the convention that positive (negative) values correspond to repulsive (attractive) forces. 
The field energy may be expressed as   U = N�ω , where N is the total photon number and   �ω  
is the energy per photon. Assuming that the photon number is both well-defined in the 
classical limit and is unchanged by the adiabatic waveguide shift due to the absence of 
absorption/loss mechanisms,  

 
  

F = − d (N�ω)

dξ
= −N�

dω
dξ

= − 1

ω
dω
dξ

U  (4) 

Classical Argument 

Alternately, we can derive the same force expression by expressing the electromagnetic field 
energy in terms of the eigenmodes of the system for initial separation ξ : 

 
  

U = 1
4π

1
2

Re dV
� 

E ξ
* ⋅

� 

D ξ +
� 

B ξ
* ⋅

� 

H ξ( )∫[ ],  (5) 

where the (complex) fields are given by a particular solution of Maxwell’s equations at 
frequency ω , 

 
  

∇ ×
� 

H ξ = iω
� 

D ξ  (6) 

 
  

∇ ×
� 

E ξ = −iω
� 

B ξ  (7) 
and may be labeled by (implicit) mode numbers. An adiabatic shift in separation results in a 
small shift in both the eigenmode frequency and the spatial profiles of the eigenmodes. 
Applying 

  

� 

E ξ
* ⋅∂ξ  (∂ξ = ∂ /∂ξ ) to Eq. (6) and 

  

� 

H ξ
* ⋅∂ξ  to Eq. (7) and subtracting gives 

 
  

� 

E ξ
* ⋅ ∇ ×∂ξ

� 

H ξ( )−
� 

H ξ
* ⋅ ∇ ×∂ξ

� 

E ξ( )=
� 

E ξ
* ⋅ i∂ξ ω

� 

D ξ + iω∂ξ
� 

D ξ[ ]+
� 

H ξ
* ⋅ i∂ξ ω

� 

B ξ + iω∂ξ
� 

B ξ[ ]. 
  (8) 

Integrating the equations over all of space, using the vector identity   

 
  

� 

b ⋅ ∇ × � 

a ( )= ∇ ⋅ � 

a ×
� 

b ( )+ � 

a ⋅ ∇ ×
� 

b ( ),  

and noting that the surface terms vanish gives 

 
  

ω∂ξ dV∫
� 

E ξ
* ⋅

� 

D ξ +
� 

B ξ
* ⋅

� 

H ξ( )= i ∂ξ ω( ) dV
� 

E ξ
* ⋅

� 

D ξ +
� 

B ξ
* ⋅

� 

H ξ( )∫  (9) 

Using Eq. (5), we conclude that 

 ω∂ξU = U∂ξ ω  (10) 

#8069 - $15.00 USD Received 8 July 2005; revised 23 September 2005; accepted 26 September 2005

(C) 2005 OSA 3 October 2005 / Vol. 13,  No. 20  / OPTICS EXPRESS  8293



and the force may be written as 

 F = − ∂U

∂ξ
= − 1

ω
∂ω
∂ξ

U, (11) 

in agreement with our previous argument. 
 We note that for waveguides that are uniform along some (axial) direction, the 
guided modes of the coupled system can be labeled by a wave number k. A shift in separation 
will preserve translational invariance; as a result, all ∂ /∂ξ  derivatives should be taken at fixed 
k as in  [2]. 
 
Appendix 2 

We have derived the frequency shift due to modal splitting from perturbation theory. 
For a single, isolated sphere, Maxwell’s equations can be recast as a generalized 

Hermitian eigenproblem:  

 
  

∇ × ∇ ×
� 

E i −
ωi
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

εi −1( )
� 

E i =
ωi
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

� 

E i  (12) 

where i=1 or 2 labels the sphere and εi  is the dielectric constant of sphere i as a function of 

position.  Defining ˆ Θ ≡ ∇ × ∇×, ˆ A i = ε i −1, and λ i ≡ ω i /c( )2 and adopting Dirac notation to 

write 
  

ψi ≡
� 

E i , Eq. (12) may be rewritten as 

 ˆ Θ − λ i
ˆ A i( )ψi = λ i ψi  (13) 

For two, non-overlapping spheres, the total dielectric function can be written as 
ε1 +ε2 −1, where the constant is subtracted to insure that the dielectric constant is equal to one 
outside the spheres. Maxwell’s equations then become  

 ˆ Θ ψ − λ ˆ A 1 + ˆ A 2[ ]ψ = λ ψ , (14) 

where ψ  is the wavefunction (field) of the total system and λ  its eigenvalue. For identical 
spheres, we can expand the total wavefunction in terms of the single-sphere wavefunctions as 

  

ψ = ψ1 ± ψ2 + ψ(1) +�, where ψ(1)  represents a first order correction. Similarly, the 

eigenvalue can be expanded as   λ = λ(0) + λ(1) +�. Substituting the expansions into Eq. (14) 
and making use of Eq. (13), the solution for the zeroth order eigenvalue of the combined 
system is simply λ(0) = λ1 = λ2 . Left-multiplying Eq. (14) by either ψ1  or ψ2  and keeping 
all first-order terms yields the pair of equations 

 λ(0) ψ1
ˆ A 2 ψ1 ± ψ1

ˆ A 2 ψ2 + ψ1
ˆ A 2 ψ(1){ }+ λ(1) ψ1 1+ ˆ A 1( )ψ1 = 0  (15)

 λ(0) ψ2
ˆ A 1 ψ1 ± ψ2

ˆ A 1 ψ2 + ψ2
ˆ A 1 ψ(1){ }± λ(1) ψ2 1+ ˆ A 2( )ψ2 = 0 (16) 

where the inner product is defined as 
  

ψi ψ j ≡ dV
� 

E i
* ⋅

� 

E j( )∫ . We can assume that 

ψ1
ˆ A 2 ψ(1) << ψ1

ˆ A 2 ψ2  since inside sphere 2, the shift ψ (1)  in the total wavefunction is 

small compared to the value of the original single-sphere wavefunction ψ2 . Similarly, for 

sphere 1, ψ2
ˆ A 1 ψ(1) << ψ2

ˆ A 1 ψ1 . Adding Eqs. (15) and (16) and reverting to 

electromagnetic field notation gives the final expression for the frequency shift, 
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1

2

λ(1)

λ(0)
= Δω

ωo

= − 1

2

dV (ε2 −1) E1
2 + (ε1 −1) E2

2 ± (ε1 −1)
� 

E 1
* ⋅

� 

E 2 + (ε2 −1)
� 

E 2
* ⋅

� 

E 1( )[ ]∫
dV ε1 E1

2 +ε2 E2
2[ ]∫

.  (17) 

Strictly speaking, the modes of a microsphere resonator are not perfectly confined, and can be 
described in the near field by a “leaky mode” whose frequency has a small imaginary part 
[28]. However, for very high-Q modes, the imaginary part of the frequency and the 
corresponding radiating field pattern far from the spheres can be neglected for our purpose of 
computing the shift in the real part of the frequency. A parallel derivation to the one above 
incorporating the modified, leaky-mode overlap integrals of [15] shows explicitly that the 
corrections to Re[Δω] scale as 1/Q. 
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