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ABSTRACT

We describe the use of high-index-contrast, photonic-crystal wavegides for tunable time delays. The waveguide
is designed such that the operating frequency is near a photonic band edge. In this slow light region, a small
change in index yields a large change in group velocity, and consequently in time delay. Figures of merit for
tunable time delay devices are introduced, including sensitivity, length, and dispersion. We show that a simple
quadratic band model is a good predictor of the figures of merit for realistic, 3D, high-index-contrast structures.
By cascading two grated waveguides, we can obtain a flat tunable time delay across the operating bandwidth.
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1. INTRODUCTION

Delaying an optical signal is useful for a number of applications, including optical buffering, signal processing,
logic, radio-frequency (RF) photonics, and enhanced nonlinearities.1 Several recent research efforts have fo-
cussed on replacing relatively bulky fiber-optic delay-line systems2 with compact integrated devices. Approaches
have included the use of all-pass filters1, 3, 4 and coupled-resonator optical waveguides.5–13 Here, we examine
an alternate approach to tunable, integrated time delays: slow-light, band-edge photonic-crystal waveguides.
Previous work in ideal, 1-D structures has suggested that near a photonic band edge, a large delay tunability can
be achieved for a small change in refractive index.14 We investigate this slow-light enhancement phenomenon in
realistic, three-dimensional structures amenable to on-chip fabrication using established lithographic techniques.
In contrast to other work,15 our structures are designed to operate in transmission rather than reflection and
use uniform rather than chirped gratings. We show that cascading two gratings gives a flat tunable time delay
across large operating bandwidths >100GHZ.

The outline of the paper is as follows. In Sects. 2 and 3 we describe the principle of operation of our device
and introduce relevant figures of merit to describe tunable time delays, namely sensitivity, length, and dispersion.
We then introduce a quadratic band model to predict the dependence of the figures of merit on distance from the
band edge and grating strength in Sect. 4. The validity of the quadratic band model is demonstrated by explicit
comparison to calculations for a realistic, three-dimensional structure in Sect. 5, simplifying device design and
optimization. Sect. 6 illustrates how two gratings can be cascaded to compensate for dispersion near the band
edge. Using the quadratic band model, we show that nearly-flat time delays can be achieved across the operating
bandwidth. Sect. 7 summarizes our results.
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Figure 1. (a) Types of 1-D periodic gratings. (b) Typical band structure of a 1-D periodic grating. The band gap is
shaded light gray. (c) Magnified view of the band structure near the band edge, illustrating how a small shift in refractive
index can lead to a large shift in group velocity.

2. PRINCIPLE OF OPERATION

We begin by describing the principle of operation of our slow-light, band-edge tunable time delay device. A
wide variety of 1-, 2-, and 3-D periodic, dielectric structures have dispersion relations with zero group velocity
at the edge of the Brillouin zone.16 Here we will focus on 1-D periodic gratings with finite width and height,
such as those shown in Fig. 1(a), which can be relatively easily integrated on-chip. A grating may be made,
for example, by etching teeth in the side of the waveguide, grooves in its top surface, or holes spaced along its
length. Such gratings have band structures with the general features shown in Fig. 1(b). The light cone region
indicates modes that are extended in either the air or the substrate and is shaded grey. Guided modes of the
grating are plotted as solid lines and specified by a frequency ω and a wave vector k along the waveguide axis. A
range of typical 1-D periodic structures exhibit a band gap (shaded light gray) in the guided modes lying below
the light line. At the edge of the band gap, the group velocity dω/dk of a guided mode goes to zero. Fig. 1(c)
shows a magnified view of this region. A small shift in refractive index from n to n′, induced for example by
thermal, optical, or electrical tuning, will cause a small shift in the band. For constant operating frequency,
indicated by the horizontal dotted line, a large change in group velocity can result. A large change in group
velocity corresponds to a large change in the time required to propagate through a fixed length of grating, and
hence a highly-tunable time delay.

Strictly speaking, the use of a band structure to describe the grating is a bulk analyis. For a finite grating
length, transmission through the grating is determined not only by the guided modes of an infinite grating,
but by Fabry-Perot reflections from the grating ends. However, the magnitude of such reflections can be made
arbitrarily small by appropriate tapering of the grating ends, as proved rigorously in Ref. 17. We thus adopt a
bulk analysis to define figures of merit for our device.

3. FIGURES OF MERIT

We introduce three figures of merit useful for characterizing any tunable time-delay device.

The first is the sensitivity, a dimensionless figure of merit given by the fractional change in time delay over
the fractional change in index:

s ≡ ∆τ/τ

∆n/n
=

∆ (1/vg)∆n

1/vg

1
∆n/n

, (1)

where τ is the time delay, vg is the waveguide group velocity, and ∆ (1/vg)∆n = 1/v′g − 1/vg is the change in
group velocity due to a shift from n to n′ = n + ∆n. s indicates the advantage of the slow-light waveguide
structure as compared to a bulk material. For bulk, ω = ck/n and s=1.
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For a fixed fractional index shift ∆n/n and a desired tunable delay ∆τ , the required length is given by

L =
∣
∣
∣
∣

∆τ

∆(1/vg)∆n

∣
∣
∣
∣
=

∣
∣
∣
∣

∆τ

∆n/n

vg

s

∣
∣
∣
∣
. (2)

Waveguides with low group velocity and high sensitivity allow a shorter tuning region, leading to lower power
and ease of integration.

Sensitivity is high near the band edge because of group-velocity dispersion (d2ω/dk2 �= 0), but dispersion can
also limit the performance of the device. It is useful to define a dispersion figure of merit to measure the amount
of pulse spreading relative to the typical size 1/∆ω of temporal features (e.g. pulses or chirp autocorrelations18),
where ∆ω is the bandwidth.

d ≡ τ |ω − τ |ω−∆ω

1/∆ω
=

L∆(1/vg)∆ω

1/∆ω
(3)

where ∆ (1/vg)∆ω ≡ 1
vg

∣
∣
∣
ω
− 1

vg

∣
∣
∣
ω−∆ω

is the change in inverse group velocity across the bandwidth. Making use

of Eq. 2, d may alternatively be written as

d = |∆τ |∆ω
∆ (1/vg)∆ω∣
∣∆ (1/vg)∆n

∣
∣
. (4)

4. QUADRATIC BAND MODEL

We next use an approximate model for the dispersion relation near the band edge to yield useful approximations
for the figures of merit above. Near the band edge ωbe, ω(k) can be approximated by a quadratic curve,

ω(k) = ωbe − α(π/a − k)2,

where α = − 1
2 d2ω/dk2

∣
∣
π/a

. Large values of α correspond to large curvature of the band structure: the group
velocity changes from a large, non-zero value to zero over a small frequency range. Such behavior is characteristic
of weak gratings, which have a small band gap. Strong gratings, which have larger band gaps, have small values
of α.

The shifted band may similarly be written as

ω′(k) = ωbe + δω − (α + δα)(π/a − k)2.

Let ∆ωbe ≡ ωbe − ω. Then

s ≈ − 1
∆n/n

(

1 − 1
√

(1 + δω/∆ωbe)(1 + δα/α)

)

. (5)

As the operating frequency approaches the band edge, |s| increases until it reaches a limiting value of |n/∆n|.
Unlike in a bulk medium, s diverges as ∆n/n → 0. The divergence in s can be interpreted as a signature of
slow-light enhancement of the time-delay tunability, since s increases with decreasing vg.

The length is given by

L ≈
∣
∣
∣
∣
∣

2∆τ
√

α∆ωbe

1 − [(1 + δω/∆ωbe)(1 + δα/α)]−1/2

∣
∣
∣
∣
∣
. (6)

L decreases to zero near the band edge, scaling as L = 2|∆τ(α∆ωbe)1/2| for |∆ωbe| � |δω|. For a given, desired
time delay and a fixed distance from the band edge, small α (corresponding to strong gratings) give the shortest
device lengths.

The dispersion figure of merit is approximated by

d ≈ L∆ω

2
√

α

[
1√

∆ωbe

− 1√
∆ωbe + ∆ω

]

. (7)
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Figure 2. (a) 3-D perspective view of a slow-light grating structure. (b) Top view. (c) Band structure.

Because L scales as
√

α (up to small corrections that are first order in δα/α ∝ ∆n/n), d is nearly independent
of α within the quadratic band model. Approaching the band edge, dispersion increases to a limiting value
of |∆τ |∆ω. This quantity can be interpreted as a tunable delay-bandwidth product. Specifying an allowable
dispersive spread limits the achievable time delay for a given bandwidth. At the band edge, this limit takes the
form |∆τ | < d/∆ω.

We note that in general, the values of s and L depend on the available tunable index shift, ∆n/n. For this
reason, different device designs should be compared using a fixed ∆n/n value. However, the quadratic band
model expressions above show that L is actually independent of the index shift for frequencies sufficiently close
to the band edge, though s is not. The dispersion figure of merit d is also independent of the index shift, since it
is defined entirely in terms of the unshifted band, for which the operating frequency is closest to the band edge
and the dispersive effects are most significant.

5. NUMERICAL RESULTS

To explicitly verify the utility of the quadratic band model, we present exact numerical results for the figures of
merit for a realistic slow-light structure. We consider the structure shown in Figure 2 (a) and (b), a silicon strip
waveguide with grated sidewalls19 resting on a silicon-dioxide substrate. Silicon, in particular, has low absorption
near 1.55µm, high refractive index, and large change in index with temperature; the index varies by >1% from
100 to 300 C̊.20

Sensitivity, length, and dispersion figures of merit were calculated from the dispersion relation of the structure,
which was obtained from fully-vectorial solutions of Maxwell’s equations in a plane-wave basis.21 Structural
parameters were determined by maximizing the size of the first band gap under the constraint that the minimum
feature size be at least 0.15µm. The parameters are h=0.26µm, wi=0.15µm, a=0.35µm, d′=0.15µm, d=0.20µm,
and w=1.0224µm. For nSi=3.4845 and nSiO2=1.45, the first band gap was 23.5% of the midgap frequency for odd
modes with respect to the mirror plane of the structure ( �E mostly parallel to the substrate). For nSi=3.4845,
the band edge frequency was calculated to be ωbe = 0.22718 2πc/a for the lowest band, or ωbe/2π=190THz
(λ=1.54µm). For n′

Si=3.45 (∆n/n=−0.01), the band edge shifted to ωbe = 0.22880 2πc/a, or ωbe/2π=200THz
(λ=1.53µm). Figure 2 (c) shows the lowest band near the band edge.

Figs. 3 and 4 show the results of the exact numerical calculation (symbols) overlayed on the expressions for
s, L, and d obtained from the quadratic band model of Eqs. 5, 6, and 7 (solid lines). As can be seen from the
figure, the quadratic band model is an excellent predictor of the results within at least 1% from the band edge.
In general, we expect the range of validity of the quadratic band model to decrease as the band gap is decreased.
Values of δω (0.001622πc/a) and α (1.550 ca/2π), and δα (0.025 ca/2π) were obtained from a fit to the data of
Fig. 2 (c) at k = π/a. Figure 3 (a) exhibits the expected increase of s as the operating frequency approaches the
band edge (see Eq. 5). Figure 3 (b) exhibits the expected linear scaling of L with the required time delay, ∆τ
(see Eq. 6). From Eq. 7, we expect d to scale linearly with the tunable delay ∆τ , as shown in Figure 4(a). The
dependence on bandwidth ∆ω is more complex, as shown in Figure 4(b).
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Figure 3. (a) Sensitivity figure of merit for the structure of Fig. 2 as a function of fractional frequency from the band edge.
(b) Required length for different amounts of tunable time delay. Symbols/solid lines are exact/quadratic-approximation
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Figure 4. Dispersion figures of merit for the structure of Fig. 2 as a function of fractional frequency from the band
edge for (a) fixed bandwidth ∆ω/2π=10GHz and (b) fixed time delay ∆τ=1ns. Symbols/solid lines are exact/quadratic-
approximation calculations for a fractional index shift ∆n/n = −0.01.

To illustrate the utility of the figures of merit, let us consider a tunable time delay of 1ns. Assuming that we
can operate at a frequency 2% away from the band edge, Figure 3 (b) shows that a length of 0.4m is required.
Simple estimates show that meters of grating can easily be fit onto chips with areas less than 0.1cm2. For a 1GHz
signal bandwidth, the pulse duration is ∼1ns, and the tunable time delay is comparable to the pulse duration.
Meanwhile, the dispersive spread may be obtained from Figure 4 (b) and is less than one-hundredth of the pulse
width. For a 10GHz bandwidth, the pulse width is 10 times shorter, and a tunable delay of 1ns corresponds to
10 times the pulse width. However, the dispersive spread is now comparable to the pulse width. Moving toward
larger bandwidths and longer time delays suggests the use of dispersion compensation, as discussed in Section 6
below.

6. DISPERSION COMPENSATION

Signal dispersion can be compensated by using a sequence of two tapered gratings, as shown in Figure 6. The
light first travels through a grating with period a1, where a1 and the other structural parameters are chosen to
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Figure 5. Device design including adiabatically-tapered waveguide segments and dispersion compensation. Insets show
the band diagram corresponding to each of the two grating regions.

place the operating frequency at the edge of the lowest band, which has negative curvature. A small decrease
in the grating refractive index will reduce the size of the band gap, raising the lowest band and increasing the
group velocity. After travelling through the grating, the light enters a second grating with period a2. a2 is
chosen larger than a1, such that the operating frequency falls in the upper band, which has negative curvature.
A small decrease in the grating refractive index again reduces the band gap size, shifting the second band down
and increasing the group velocity. The net effect of a refractive index shift for the entire device is to increase the
total group velocity. Dispersion compensation is a standard practice in optical-fiber communication systems2

and Fiber Bragg Gratings.22 Similarly here, it is clear that for fixed refractive index (e.g. either the shifted or
unshifted band), choosing the dispersion coefficient of the two bands to be equal and opposite at the operating
frequency ωo yields a net zero-group-velocity-dispersion point for grating lengths L1 = L2. Residual pulse
spreading is then governed by weaker, third- and higher-order dispersion.

In the case of a tunable grating, a further quantity of interest is how the tunable delay ∆τ varies across the
bandwidth. Assume that gratings 1 and 2 are designed to have the same band-edge curvature (α) and to shift
by the same amount δω under tuning. We will center the operating bandwidth midway between the unshifted
band edges, such that ωo = (ωbe,1 + ωbe,2)/2. Then the dispersion relations for the gratings may be written as

ω1(k) = ωo +
∆
2
− α(π/a1 − k1)2 (8)

ω
′
1(k) = ωo +

∆
2

+ δω − α(π/a1 − k1)2 (9)

ω2(k) = ωo − ∆
2

+ α(k2 − π/a2)2 (10)

ω
′
2(k) = ωo − ∆

2
− δω + α(k2 − π/a2)2 (11)

(12)

where ∆/2 ≡ ωbe,1−ωo = ωo−ωbe,2. (Small curvature corrections proportional to δα/α << 1 have been omitted
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for simplicity.) The total tunable time delay is given by

∆τ =
L

2

[

∆
(

1
vg,1

)

+ ∆
(

1
vg,2

)]

(13)

where

∆
(

1
vg,1

)

=
1

2
√

α

[

1
√

∆/2 + δω − (ω − ωo)
− 1

√

∆/2 − (ω − ωo)

]

, (14)

∆
(

1
vg,2

)

=
1

2
√

α

[

1
√

∆/2 + δω − (ωo − ω)
− 1

√

∆/2 − (ωo − ω)

]

, (15)

and L = L1 + L2, with L1 = L2 from the dispersion compensation condition above.

In Fig. 6 we plot the dispersion-compensated tunable delay per unit length, ∆τ/L as a function of frequency.
Values of δω and α are as in Section 5 above. We have additionally set ∆/2=0.00454 (2πc/a1), corresponding to
a 4% separation of the band edge frequencies of the two gratings. ∆τ/L is shown in units of c, the speed of light,
and the frequency is expressed in dimensionless units as (ω−ωo)/(∆/2). (All time delays are negative due to our
convention that the unshifted band has lower group velocity.) The time delay due to grating 1 alone, shown by
the dashed line, diverges at the upper end of the frequency range, where ω → ωbe,1 and (ω −ωo)/(∆/2) = 1. At
lower frequencies, away from the band edge, the time delay approaches a constant. Meanwhile, the time delay
due to grating 2 alone, shown by the dashed-dotted line, diverges at the lower end of the frequency range at the
band edge of grating 2. The average delay, which enters Eq. 13, diverges at both band edges and is flat across
the center of the band, giving a constant time delay. The value is equal to

∆τ/L =
1

2
√

α

[

1
√

∆/2 + δω
− 1

√

∆/2

]

≈ −0.8434c−1. (16)

In physical units, this corresponds to a tunable delay of 2.811ns per meter of device length. The variation in
tunable delay per unit length is, moreover, less than 0.03% across a 100GHz bandwidth (|(ω − ωo)/(∆/2)| <
0.0128) and less than 3% across a 1THz bandwidth.
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7. CONCLUSION

We have shown that grated waveguides operated in transmission near a photonic band edge enhance the tunability
of a time-delay device. The enhancement is due to slow light speeds near the band edge, which result in a large
change of group velocity for a small change in index and hence a shorter device length. Explicit numerical
calculations for a realistic grating verify that figures of merit for the device are well predicted from a simple
quadratic band model. Cascading two adiabatically-tapered gratings both compensates signal dispersion and
gives rise to a flat tunable time delay across the operating bandwidth. Optimization, fabrication, and optical
characterization of slow-light structures are ongoing.23
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