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Accurate finite-difference time-domain simulation
of anisotropic media by subpixel smoothing
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Finite-difference time-domain methods suffer from reduced accuracy when discretizing discontinuous mate-
rials. We previously showed that accuracy can be significantly improved by using subpixel smoothing of the
isotropic dielectric function, but only if the smoothing scheme is properly designed. Using recent develop-
ments in perturbation theory that were applied to spectral methods, we extend this idea to anisotropic me-
dia and demonstrate that the generalized smoothing consistently reduces the errors and even attains
second-order convergence with resolution. © 2009 Optical Society of America

OCIS codes: 000.4430, 050.1755, 160.1190.
We show how accuracy in finite-difference time-
domain (FDTD) simulations [1] can be significantly
improved for interfaces between anisotropic materi-
als by careful selection of a subpixel smoothing
scheme based on recent developments in perturba-
tion theory [2]. This extends our previous work for in-
terfaces between isotropic media [3], combined with a
recently proposed scheme for stable FDTD in aniso-
tropic media [4], and replaces our previous heuristic
proposal for anisotropic-material interfaces [5]. Ordi-
narily, the presence of discontinuous material inter-
faces degrades the accuracy of FDTD to first-order
�O��x�� from the usual second-order �O��x2�� accu-
racy [6], but our work demonstrates how an appropri-
ate choice of subpixel smoothing can both restore
second-order asymptotic accuracy and give the low-
est errors compared with competing schemes even at
modest resolutions. Subpixel smoothing has an addi-
tional benefit: it allows the simulation to respond
continuously to changes in the geometry, such as dur-
ing optimization or parameter studies, rather than
changing in discontinuous jumps as interfaces cross
pixel boundaries. This technique additionally yields
much smoother convergence of the error with reso-
lution, which makes it easier to evaluate the accu-
racy and enables the possibility of extrapolation to
gain another order of accuracy [4]. The ability to
handle anisotropic materials is becoming increas-
ingly important via the use of anisotropic materials
to represent arbitrary coordinate transformations in
Maxwell’s equations [7], most prominently to design
cloaking metamaterials [8]. Our smoothing scheme
requires preprocessing of the materials and does not
otherwise modify the FDTD algorithm. It is therefore
particularly simple to implement (free software is
available [9]).

Our basic approach, as described previously [2,3],
is to smooth the structure to eliminate the disconti-
nuity before discretizing, but because the smoothing
itself changes the geometry we use first-order pertur-
bation theory to select a smoothing with zero first-
order effect. For isotropic materials, this approach

made rigorous a smoothing scheme that had previ-
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ously been proposed heuristically [10–12] and ex-
plained its second-order accuracy [3]. Advances in
perturbation theory have enabled us to extend this
scheme to interfaces between anisotropic materials,
initially for a plane-wave method [2]. Here, we adapt
the technique to FDTD, combined with a recent
FDTD scheme with improved stability for anisotropic
media [4]. Although this Letter focuses on the case of
anisotropic electric permittivity �, exactly the same
smoothing and discretization schemes apply to mag-
netic permeabilities µ owing to the equivalence in
Maxwell’s equations under interchange of �/µ and
E /H.

We define an interface-relative coordinate frame as
in Fig. 1, so that the first component “1” is the direc-
tion normal to the interface. Previously, for an inter-
face between two isotropic materials �a and �b, we
showed that the proper smoothed permittivity (in
this coordinate frame) at each point is [3]

Fig. 1. (Color online) Schematic 2D Yee FDTD discretiza-
tion near a dielectric interface, showing the method [4]
used to compute the part of Ex that comes from Dy and the

−1
locations where various � components are required.
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where � . . . � denotes an average over one pixel. For an
interface between anisotropic materials, we showed
that the following subpixel smoothing scheme is the
appropriate choice (having zero first-order perturba-
tion) [2]:

�̃ = �−1��������, �2�

where �(�) and its inverse are defined by
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The derivation of this result is nontrivial [2] and we
will not repeat it here, but we point out that Eq. (1) is
now obtained as the special case for isotropic �.

An additional difficulty for anistropic media occurs
in FDTD: to accurately discretize the spatial deriva-
tives, each field component is discretized on a differ-
ent grid. In the standard Yee discretization for grid
coordinates �i , j ,k�= �i�x , j�y ,k�z�, the Ex and Dx
components are discretized at �i+0.5, j ,k�, while
Ey /Dy are at �i , j+0.5,k� and Ez /Dz are at �i , j ,k
+0.5� [1]. At each time step, E=�−1D must be com-
puted, but any off-diagonal parts of � couple compo-
nents stored at different locations. For example, a
nonzero ��xy�−1 means that the computation of Ex re-
quires Dy, but the value of Dy is not available at the
same grid point as Ex, as depicted in Fig. 1. One ap-
proach is to average the four adjacent Dy values and
use them in updating Ex, along with ��xy�−1 at the Ex
point [3,4]. This approach, however, is theoretically
unstable and leads to divergences for a long simula-
tion [4]. Instead, a modified technique was recently
shown to satisfy a necessary condition for stability
with Hermitian � [4]: as depicted in Fig. 1, one first
averages Dy at �i , j±0.5,k� and multiplies by ��xy�−1 at
�i , j ,k�, and then averages the two results at �i , j ,k�

and �i+1, j ,k� to update Ex at �i+0.5, j ,k�. (Although
[4] derives no sufficient condition for stability with in-
homogeneous media once the Yee time discretization
is included, this method has been stable in all nu-
merical experiments to date [4].) We use this scheme
here, and find that it greatly improves stability com-
pared with the simpler scheme from our previous
work [3]. The subpixel averaging is performed as fol-
lows. At the Ex point �i+0.5, j ,k� [light gray dot (or-
ange online) in Fig. 1], the smoothed �̃ is computed
by Eq. (2), averaging over the pixel centered at that
point. Then �̃ is inverted to obtain ��̃−1�xx, which is
stored at the Ex point. The subpixel averaging �̃ is
also performed for a pixel centered at the �i , j ,k�
point [black dot (blue online)] halfway between two
Dy points [dark gray dot (red online)], and ��̃−1�xy is
computed and stored at that point. This is similar for
other components. (Note that the �̃ tensor from (2)
must be rotated from the interface-normal to Carte-
sian coordinates at each point.) Thus, for each Yee
cell in three dimensions, the subpixel averaging is
performed four times, obtaining ��̃−1�xx at �i
+0.5, j ,k�, ��̃−1�yy at �i , j+0.5,k�, ��̃−1�zz at �i , j ,k
+0.5�, and all the off-diagonal components are at
�i , j ,k�—in other words, we apply the same averaging
procedure in Eq. (2) to pixels centered around differ-
ent points/corners in the Yee cell, and then for each
point we store only the components of �−1 necessary
for that point. Each component of �−1 need only be
stored at most once per Yee cell, so no additional stor-
age is required compared to other anisotropic FDTD
schemes. After this smoothing, the anisotropic FDTD
scheme proceeds without modification.

To illustrate the discretization error, we compute
an eigenfrequency � of a periodic (square in 2D or cu-
bic in 3D, period a) lattice of dielectric ellipsoids
made of �a surrounded by �b, a photonic crystal [13].
We choose �a,b to be random positive-definite sym-
metric matrices with random eigenvalues in the in-
terval [1,5] (1.45, 2.81, and 4.98) for �a and in [9,13]
(8.49, 8.78, and 11.52) for �b. We compute the lowest
� for an arbitrary Bloch wave vector k
= �0.4,0.2,0.3�2� /a, giving wavelengths comparable
with the feature sizes. In an FDTD simulation with
Bloch-periodic boundaries and a Gaussian pulse
source, we analyze the response with a filter-
diagonalization method [14] to obtain the eigenfre-
quency �, obtaining the relative error 	�−�0	 /�0 by
comparison with the “exact” �0 from a plane-wave
calculation [5] at a high resolution. We looked at ei-
genvalue bands 1 and 15 (in 2D) or 1 and 13 (in 3D),
where the higher band is clearly non-plane-wave-like
(see inset fields), to counter suggestions that subpixel
averaging may perform poorly for higher bands [4].

We compare the new smoothing technique of Eq.
(2) to the nonsmoothed case as well as to two simple
smoothing techniques: using the mean ��� [15] and
also the harmonic mean ��−1�−1. We do not compare
with a previous heuristic that we had proposed with-
out the benefit of perturbation theory [5], since our
previous paper already demonstrated that this heu-
ristic (which does not yield zero first-order perturba-

tion) is much less accurate than the new method [2],
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and first-order FDTD accuracy for that heuristic was
also shown in [4] [who did not examine the isotropic
case where Eq. (1) remains correct].

Results from 2D and 3D simulations are shown in
Figs. 2 and 3, respectively. In both cases, similar to
our previous results for isotropic materials [3], the
new smoothing algorithm has the lowest error, often
by 1 order of magnitude or more, and it is the only
technique that appears to give second-order accuracy
in the limit of high resolution. (The simple mean ���
does better than the harmonic mean ��−1�−1, probably
because it treats roughly two of the three field com-
ponents correctly [3].) Similar accuracy is obtained
for both lower and higher (non-plane-wave-like)

Fig. 2. (Color online) Relative error ��/� for an eigenmode
calculation with a square lattice (period a) of 2D aniso-
tropic ellipsoids (right inset) versus spatial resolution
(units of pixels per vacuum wavelength �) for a variety of
subpixel smoothing techniques. Straight lines for perfect
linear (dashed) and perfect quadratic (solid) convergence
are shown for reference. Most curves are for the first eigen-
value band (left inset shows Ez in unit cell), with vacuum
wavelength �=4.85a. Hollow squares show new method for
band 15 (middle inset), with �=1.7a. Maximum resolution
for all curves is 100 pixels/a.

Fig. 3. (Color online) Relative error ��/� for an eigenmode
calculation with a cubic lattice (period a) of 3D anisotropic
ellipsoids (right inset) versus spatial resolution (units of
pixels per vacuum wavelength �), for a variety of subpixel
smoothing techniques. Straight lines for perfect linear
(dashed) and perfect quadratic (solid) convergence are
shown for reference. Most curves are for the first eigen-
value band (left inset shows Ex in xy cross-section of unit
cell), with vacuum wavelength �=5.15a. Hollow squares
show new method for band 13 (middle inset), with �
=2.52a. New method for bands 1 and 13 is shown for reso-
lution up to 100 pixels/a.
bands at comparable resolutions per wavelength (al-
though higher bands require greater absolute reso-
lution per a, of course, because their wavelengths are
smaller). As we have noted, apparent quadratic con-
vergence obtained in a single structure [5] can some-
times be fortuitous [2], but we have confidence in
these results (obtained now in multiple settings) be-
cause they are backed by a clear theory rather than
an ad hoc heuristic.

Because the new smoothing scheme greatly im-
proves the accuracy of FDTD simulation for aniso-
tropic materials, without increasing the
computational/storage cost (other than a one-time
preprocessing step), it should be an attractive tech-
nique and subsumes our previous scheme [3]. A re-
maining challenge is to accurately handle objects
with sharp corners, where the resulting field singu-
larities are known to degrade the accuracy to be-
tween first- and second-order once the smoothing
eliminates the first-order error [3]. We are hopeful
that an accurate smoothing can be developed for cor-
ners once the corresponding perturbation theory is
derived.
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