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We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by
numerical computation of the forces between the exact microstructures, rather than homogeneous approxima-
tions. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduc-
tion in the attractive force can be achieved through suitable material engineering. We compute the exact force
for a chiral bent-cross pattern, as well as forces for an idealized “omega”-particle medium in the dilute
approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We
find that these microstructure effects dominate the force for separations where chirality was predicted to have
a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal
circumstances the effects of chirality are less than 107 of the total force, making them virtually undetectable

in experiments.
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I. INTRODUCTION

It has been proposed that dielectric metamaterials might
exhibit repulsive Casimir forces in vacuum where planar
structures have only attraction.'~> However, these predictions
used effective-medium approximations (EMAs) for the
metamaterials, often treating the EMA terms as free param-
eters. While certain effective-medium parameters give repul-
sion, these are known to be physically impossible based on
causality/passivity arguments.* Furthermore, when the con-
stituent materials are restricted to have unit magnetic perme-
ability (as is common at frequencies relevant for Casimir
measurements), a recent theorem? implies that one cannot
have repulsion in the effective-medium (large-separation) re-
gime when the materials are vacuum-separated (although re-
pulsion is possible outside of this regime®). However, it is
still possible that significant reduction or modulation of the
Casimir force can occur as a result of metamaterial effects. A
recent EMA analysis of chiral metamaterials’ implies such a
force reduction, and even repulsion, due to chirality. Unfor-
tunately, chirality effects vanish at large separations where
the EMA should be valid and are strongest at small separa-
tions where the EMA is questionable. Therefore, the question
of whether chiral metamaterial effects can significantly re-
duce the Casimir force, at least in theory, remains open. An-
swering this question requires accurate calculations using the
exact microstructure of the metamaterials, rather than a ho-
mogeneous EMA. Recent advances®'4 have made the treat-
ment of such complex structures possible. In this paper, we
apply these methods to rigorously test the EMA predictions
for chiral metamaterials against numerical calculations incor-
porating the microstructures. We are able to distinguish chi-
ral metamaterial effects from other “nonideal” effects such as
pairwise surface-surface attractions and find that the former
are overwhelmed except at large separations, where they are
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only 107 or less of the total force. After providing back-
ground and definitions in Sec. II, we examine the force be-
tween two media composed of chiral bent-arm crosses in
Sec. III. We then examine a more “ideal” isotropic chiral
medium in Sec. IV. We conclude that while there is a regime
in which the chiral metamaterial viewpoint does give correct
predictions of the Casimir force, the effect is virtually unde-
tectable.

II. BACKGROUND AND DEFINITIONS

Dielectric and metallic metamaterials are defined by an
inhomogeneous permittivity £(x,w), but at sufficiently long
wavelengths (large separations in the Casimir context) they
can be accurately modeled in the EMA by homogeneous
constitutive parameters [e.g., e(w), u(w)] that can be very
different from the constituent materials. The Casimir force
between two bodies, however, is naturally expressed as an
integral over imaginary frequency w=i&.!> The force in the
EMA will then depend on the effective (i), u(i§), etc.,
over a range of imaginary frequencies.’ Early works'->1¢ pre-
dicted repulsive effects by a putative e(ié) <u(ié) for one
body. However, no such repulsion was found for “magnetic”
metamaterials based on actual structures, in which &(ié)
> u(ié) for all €317 Basically, while these metamaterials can
have almost any € and u at a given real w via resonances, on
the imaginary-w axis the important features come from the
behavior at low & (long wavelengths). In this limit, w(ié)
—u(0) ~ =& 31718 where u(0) <&(0). Therefore, there is no
repulsion or force reduction in the EMA regime for this
model. More recently, Ref. 7 studied chiral metamaterials,
which in addition to & and u are characterized in the EMA
by a chirality « coupling D to H and B to E. k— -« by a
spatial inversion (x——x) of the microstructure. For any k,
the EMA predicts that the force between two media of the
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FIG. 1. (Color online) Interactions between two chiral metama-
terials (Ref. 20). Shaded box indicates a unit cell; the structures are
periodic in the transverse direction. Nearest-neighbor bars on op-
posing structures are shaded yellow. In the EMA, the forces should
obey Fgc<Fqpc. By contrast, in the pairwise-force approximation
the force is determined by the number of overlapping nearest-
neighbor bars, as indicated: Foc->> Fgc when the centers are aligned
(left column) but Foc< Fsc when they are displaced by L/2 (right
column).

same chirality (SC) should be lower than for media of the
opposite chirality (OC) with the size of this difference in-
creasing with . Because, in general, x~ &7!8 this effect is
largest at short separations and goes to zero at large separa-
tions. Therefore, to get a useful prediction (e.g., force reduc-
tion due to chirality), we are forced to consider the predic-
tions of the EMA at intermediate separations. However, not
only does the EMA fail at sufficiently small separations but
the force in that limit is eventually described by the proxim-
ity force approximation (PFA)'? in which there are only pair-
wise attractions. One should therefore be cautious of any
EMA prediction that differs qualitatively from PFA in this
limit. An analysis based on pairwise attractions would find
little effect due to chirality. Instead, the behavior would be
dominated by small-scale features such as the shortest dis-
tance between two components of the microstructures. Thus
far, no attempt has been made to determine which behavior
dominates, and we do this as follows: if the materials behave
as homogeneous, chiral media, the relative chirality should
be the only source of a force difference between the SC and
OC cases, where Fc> Fyc, independent of the transverse
displacement x. However, if the force is governed by pair-
wise attraction, it should exhibit a strong x dependence. We
can therefore directly test the validity of the EMA by com-
paring the force for different values of x.

III. BENT-ARM CROSSES

We first examine a realistic structure proposed in Ref. 20
and shown in Fig. 1. A unit cell of each “medium” consists
of a single bilayer of two bent-arm crosses, one spiraling
clockwise and the other counterclockwise. Their ordering in
the z direction determines the chirality of the medium. We
omit the dielectric polyimide in which the metal was embed-
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FIG. 2. (Color online) Relative force difference (Fpc
—Fgc)/ Foc for the left (red) and right (blue) columns of Fig. 1 for
PEC (solid) and dispersive gold for a=1 um (dashed). From Fig.
1, the sign difference is due to proximity effects. The inset shows a
zoom of the large-z regime, along with the EMA prediction (black).

ded in Ref. 20, as this eliminates a chirality-independent at-
traction between the layers. The exact Casimir force between
the periodic structures of Fig. 1 is computed using a finite-
difference time-domain method.'>'* Ten bilayers in the z di-
rection are included on each side; adding more layers does
not change the results. We compute the force for two differ-
ent material types: perfect electric conductors (PEC) and dis-
persive gold. For gold we take a plasma model with ),
=1.37X 10" rad/s. The latter model requires a definite
value for the length scale a, which we take to be a=1 um.
The results shown in Fig. 2 [each force difference is normal-
ized by Fc(x)] are similar for both PEC and dispersive gold
and are not consistent with the EMA: even the sign of
Foc(x)—Fgc(x) can be changed as a function of x for z/a
<0.75. Larger z/a still exhibit a strong x dependence in the
force.

These results for low z/a can be qualitatively described
by pairwise nearest-neighbor attractions. Consider, for in-
stance, the two cases diagrammed in Fig. 1. First, when the
centers of the unit cells are aligned, there is approximately a
four-bar overlap in the SC case and an eight-bar overlap in
the OC case. If the force is proportional to the number of
overlapping nearest-neighbor bars, we expect Foc>Fgc.
When the centers are displaced by x=L/2, SC has a four-bar
overlap and OC has a three-bar overlap, so we expect Foc
< Fyc, and the relative force difference should be reduced by
approximately 1/4. This prediction, based purely on pairwise
attraction, captures the behavior for z/a<<0.75. For larger
z/a the sign of Foc—Fgc is the same in both cases, and the
magnitude of the force difference is comparable to the EMA
prediction. However, in this limit chiral effects are very
small (accounting for only 0.1% of the force). Furthermore,
as the force difference is still highly x dependent, and other
transverse displacements may still switch the sign of the
force difference. We therefore cannot determine if this is
really an ideal chiral effect or not.

IV. OMEGA PARTICLES

As we have seen, when the chirality of the microstructure
is thought to have a large effect on the force, this effect can
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FIG. 3. (Color online) Top: unit cell of isotropic chiral metama-
terial: PEC omega particles in vacuum. Shaded cube indicates rela-
tive positions in unit cell. Bottom: effective-medium parameters, as
a function of imaginary frequency w=i§, deduced directly from
imaginary-w scattering data. w(0)# 1 because the particles are
PEC.

actually be attributed to pairwise forces rather than chiral
metamaterial effects. However, the predictions of Ref. 20
were based on isotropic, chiral media, and the bent-arm
crosses of Fig. 1 are highly anisotropic. It is possible that the
effects of this anisotropy dominate those of chirality. To ob-
tain a chirality with minimal anisotropy, in this section we
consider a more idealized system: the so-called “omega”
particles,'®?° shown in Fig. 3. Each individual particle was
predicted to have a strong chiral response, and when as-
sembled into a period-a unit cell of high symmetry should
form an isotropic chiral metamaterial. The unit-cell configu-
ration is shown in Fig. 3 (top). Figure 3 (bottom) shows the
obtained EMA parameters (discussed in Sec. IV B), making
this an isotropic chiral metamaterial. In fact, by picking a
unit cell of lower symmetry (see below), we find that aniso-
tropy quickly dominates chiral metamaterial effects. To make
the medium as homogeneous as possible, the omega particles
are relatively closely packed, and as dispersion had little
qualitative role in the previous results, we take the particles
to be PEC for simplicity.

A. Computational method

In this section, we outline the computational method used
to compute Casimir forces between the omega particles of
Fig. 3. Force computations for a structure as complex as Fig.
3 are very difficult for finite-difference methods because of
the disparity of size between the periodicity a and the wire
diameter 0.016a. Instead, we employ a boundary-element
formulation'? that computes the scattering matrices of ob-
jects in imaginary w using a nonuniform mesh of the sur-
faces, shown in Fig. 3. In addition, we use a dilute approxi-
mation (justified in Sec. IV C) in which multiple scattering
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events within a given structure are neglected, so only the
scattering matrices of individual particles are required. The
force between two periodic structures is then computed from
the scattering matrices (see Ref. 11 for a detailed derivation,
and a partial review of precursors®~'). The force computa-
tion is summarized as follows: first, the scattering matrix for
each omega particle is numerically computed in a spherical
multipole basis. This leads to a matrix of scattering ampli-
tudes Fyr v prymp» Where [, =I=m=I[,and I', -I'=m'=I’,
are the respective moments of the incident and scattered
spherical waves, and P,P’' € {M,E} their polarization. Sec-
ond, the scattering matrix is converted to a plane-wave basis,
where for each w the plane-wave has transverse wave vector
k , and polarization P=s,p. Third, to get the scattering from
the unit cell of Fig. 3 we sum the scattering matrices from
the twelve individual omega particles, each rotated and dis-
placed appropriately. The rotations are applied to the spheri-
cal multipole moments via a rotation of the spherical har-
monics, and the displacements are applied in the plane-wave
basis via plane-wave translation matrices. Fourth, the two-
dimensional periodicity of the lattice is incorporated into the
problem: for scattering from a unit cell in the plane-wave
basis, one computes the scattering coefficients between plane
waves of arbitrary k| and k';, P and P’. When the scattered
fields are summed over all unit cells of a periodic structure
(in two dimensions), the scattering matrix gains a factor
S0P (k, k' +G)/a?, where {G} are the reciprocal lattice
vectors. Therefore, only scattering between plane waves
where k| —k' =G are needed. Finally, to simulate a semi-
infinite omega medium in z, we apply the translation matri-
ces to the scattering amplitude of an entire unit cell, dis-
placed by integer multiples of a in z. With this method, we
can quickly compute forces for many configurations, e.g.,
many x—z displacements. For the present computations, we
find that /=3 and k, within the first three Brillouin zones
suffice to get the force (and the force difference) to high
precision.

B. Results

To demonstrate that we have an isotropic, chiral medium
in the EMA, we extract the effective-medium parameters
e(if), u(if), and «(i¢) [Fig. 3 (bottom)] from the scattering
matrix at k | . Parameter retrieval?® from reflection and trans-
mission at normal incidence cannot be used because for
imaginary o the transmission decreases exponentially with
the thickness of the medium. Instead, we compute the specu-
lar reflection coefficients Ry (w,k ) and Ry,(w,k ). For each
frequency w=ié&, these quantities (given in Ref. 7) can be
expanded to quadratic order in |k,|<¢ and . The coeffi-
cients of each term are determined by a fit (with |k |
< ¢/10).

The results of the force computations are shown in Fig. 4
and are similar in form to Fig. 2. We examine the relative
force difference at each z/a—normalizing by the minimum
force is convenient to obtain a positive difference that can be
plotted on a log scale. The shaded areas of each color repre-
sent the range of values that the force assumes for all trans-
verse (x) displacements. Their spread (the x dependence) in-
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FIG. 4. (Color online) Forces (in dilute approximation) between
chiral media from Fig. 3 for the SC (blue) and OC (red) cases. The
range of the force across all transverse (x) displacements is shaded
and normalized by the minimum of the force over all x. For z
=<3.1a, chirality is not well defined (curves overlap). Only when
curves are distinct and x independent can the systems be described
as chiral metamaterials. Inset: frequency integrand of the relative
force difference at z=3.6a. The smallness of the w=0 term is an
indicator that this difference is due to chirality and not anisotropy
(see text).

dicates breakdown of the EMA, and for z=<3.la it is so
severe that the red and blue force curves overlap. When these
curves separate, but before they sharpen [the blue (SC) curve
goes to zero], we have an intermediate regime where chiral
effects are competing with proximity effects. Only when the
curve thickness is much less than the relative force differ-
ence (=10% for z=3.6a) is EMA accurate. As mentioned
above, we designed the unit cell to be highly isotropic, for
which the EMA parameters €, u, k are truly scalars. For a
less isotropic unit cell (e.g., only one omega particle per unit
cell), the relative force difference can be made much larger,
but the source of this difference is ambiguous, as in Fig. 2.
For two purely chiral materials in the EMA regime, the zero-
frequency component of the force difference is exactly zero’
so the magnitude of the zero-frequency component is an in-
dication of whether the force difference arises from chirality
alone. In Fig. 4 (inset) we display the frequency integrand at
z=3.6a, indicating that the force difference in the isotropic
case is indeed due to chirality. However, we have found that
the frequency integrand for less isotropic unit cells has a
large zero-frequency component, indicating that anisotropy
and proximity effects play a large role in that case. This
could also explain the results of Fig. 2 for larger z.

C. Dilute approximation

We now comment on the validity of the effective-medium
picture and the dilute approximation. One can compute the
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Casimir force and the force difference from the EMA param-
eters of Fig. 3. For the range of z/a in Fig. 4, this gives the
correct force between the two media but overestimates the
force difference by roughly 30%. This is because the error
terms in the EMA above are O(ki), the same order as the
chirality contributions ~R§p to the force.” The Clausius-
Mossotti (C-M) equation allows us to check the validity of
the dilute approximation. C-M relates polarizabilities of par-
ticles to the effective-medium parameters.'®?! We compute
the polarizabilities from C-M, working backward from the
effective-medium parameters of Fig. 3 (expanding C-M to
first order in the polarizability), and plug this into the full
C-M to compute the nondilute correction. The relative force
difference of Fig. 4 is changed by <15%. C-M is obtained in
the static limit, whereas at finite imaginary  the exponential
field decay reduces the interactions, so this is an overesti-
mate.

V. CONCLUSIONS

Based on numerical calculations involving the exact mi-
crostructure of possible chiral metamaterials, we find that to
observe an unambiguous effect of chirality in isotropic, chi-
ral metamaterials, one must measure the total force to four
digits of accuracy. Given that it is controversial whether even
1% accuracy can be obtained in Casimir measurements for
simple geometries,”> combined with the restrictions on
length scales that are imposed by the need to fabricate a
complex microstructure, detecting such a 10~* effect appears
virtually impossible. Although these calculations are for spe-
cific metamaterial structures, they are for two of the most
promising known chiral structures, for idealized perfect met-
als, and moreover we find that two radically different struc-
tures yield similarly small chiral effects. While this does not
preclude the possibility of observing other interesting Ca-
simir effects in metamaterials (especially if they rely on the
w— 0 response of the metamaterial), it suggests serious limi-
tations for finite-w effects. Further, this analysis highlights
the importance of accounting for the exact microstructures
involved, as they can have an important effect on the con-
clusions reached.
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