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Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces
in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD)
scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest
and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions,
introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and
monotonic force dependence on sidewall separation, both for previously solved geometries to validate our
method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic
dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane
with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries
and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a
silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows
off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and
even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.
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I. INTRODUCTION

The Casimir force, arising from quantum fluctuations of
the electromagnetic field [1], has been widely studied over
the past few decades [2–5] and verified by many experiments.
Until recently, most works on the subject had been restricted to
simple geometries, such as parallel plates or similar approxi-
mations thereof. However, new theoretical methods capable of
computing the force in arbitrary geometries have already begun
to explore the strong geometry dependence of the force and
have demonstrated a number of interesting effects [6–15]. A
substantial motivation for the study of this effect is from recent
progress in the field of nanotechnology, especially in the fabri-
cation of micro-electro-mechanical systems (MEMS), where
Casimir forces have been observed [16] and may play a signif-
icant role in “stiction” and other phenomena involving small
surface separations. Currently, most work on Casimir forces is
carried out by specialists in the field. To help open this field to
other scientists and engineers, such as the MEMS community,
we believe it fruitful to frame the calculation of the force in a
fashion that may be more accessible to broader audiences.

In Ref. [17], with that goal in mind, we introduced a
theoretical framework for computing Casimir forces via the
standard finite-difference time-domain (FDTD) method of
classical computational electromagnetism [18] (for which
software is already widely available). The purpose of this
manuscript is to describe how these computations may
be implemented in higher dimensions and to demonstrate the
flexibility and strengths of this approach. In particular, we
demonstrate calculations of Casimir forces in two-dimensional
(2D) and three-dimensional (3D) geometries, including 3D
geometries without any rotational or translational symmetry.
Furthermore, we describe a harmonic expansion technique
that substantially increases the speed of the computation
for many systems, allowing Casimir forces to be efficiently
computed even on single computers, although parallel FDTD
software is also common and greatly expands the range of
accessible problems.

Our manuscript is organized as follows: First, in Sec. II,
we briefly describe the algorithm presented in Ref. [17] to
compute Casimir forces in the time domain. This is followed
by an important modification involving a harmonic expansion
technique that greatly reduces the computational cost of the
method. Second, Sec. III presents a number of calculations
in two- and three-dimensional geometries. In particular,
Sec. III A presents calculations of the force in the pistonlike
structure of Ref. [7], and these are checked against previous
results. These calculations demonstrate both the validity of
our approach and the desirable properties of the harmonic ex-
pansion. In subsequent sections, we demonstrate computations
exploiting various symmetries in three dimensions: translation
invariance, cylindrical symmetry, and periodic boundaries.
These symmetries transform the calculation into the solution
of a set of two-dimensional problems. Finally, in Sec. III E, we
demonstrate a fully three-dimensional computation involving
the stable levitation of a sphere in a high-dielectric fluid above
an indented metal surface. We exploit a freely available FDTD
code [19], which handles symmetries and cylindrical coordi-
nates and also is scriptable or programmable to automatically
run the sequence of FDTD simulations required to determine
the Casimir force [20]. Finally, in the Appendix, we present
details of the derivations of the harmonic expansion and an
optimization of the computation of g(t).

II. HARMONIC EXPANSION

In this section we briefly summarize the method of
Ref. [17] and introduce an additional step which greatly
reduces the computational cost of running simulations in
higher dimensions.

In Ref. [17], we described a method to calculate Casimir
forces in the time domain. Our approach involves a modifica-
tion of the well-known stress-tensor method [21], in which the
force on an object can be found by integrating the Minkowski
stress tensor around a surface S surrounding the object (Fig. 1),
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FIG. 1. (Color online) Schematic showing the two-dimensional
pistonlike configuration of Ref. [22]. Two perfectly conducting
circular cylinders of radius R, separated by a distance a, are
sandwiched between two perfectly conducting plates (the materials
are either perfect metallic or perfect magnetic conductors). The
separation between the blocks and the cylinder surface is denoted
as h.

and over all frequencies. Our recent approach [17] abandons
the frequency domain altogether in favor of a purely time-
domain scheme in which the force on an object is computed via
a series of independent FDTD calculations in which sources
are placed at each point on S. The electromagnetic response to
these sources is then integrated in time against a predetermined
function g(−t).

The main purpose of this approach is to compute the effect
of the entire frequency spectrum in a single simulation for
each source, rather than a separate set of calculations for each
frequency as in most previous work [11].

We exactly transform the problem into a mathematically
equivalent system in which an arbitrary dissipation is in-
troduced. This dissipation will cause the electromagnetic
response to converge rapidly, greatly reducing the simulation
time. In particular, a frequency-independent, spatially uniform
conductivity σ is chosen so that the force will converge very
rapidly as a function of simulation time. For all values of σ ,
the force will converge to the same value, but the optimal σ

results in the shortest simulation time and will depend on the
system under consideration. Unless otherwise stated, for the
simulations in this article, we use σ = 1 (in units of 2πc/a, a

being a typical length scale in the problem).
In particular, the Casimir force is given by

Fi = Im
h̄

π

∫ ∞

0
dtg(−t)

[
�E

i (t) + �H
i (t)

]
, (1)

where g(t) is a geometry-independent function discussed
further in the Appendix, and the �(t) are functions of the
electromagnetic fields on the surface S defined in our previous
work [17].

Written in terms of the electric field response in direction i

at (t, x) to a source current J (t, x) = δ(t)δ(x − x′) in direction
j , Eij (t ; x, x′), the quantity �E

i (t) is defined as

�E
i (t) ≡

∫
S

dSj (x)

[
Eij (t ; x, x) − 1

2
δij

∑
k

Ekk(t ; x, x)

]

≡
∫

dSj (x)�E
ij (t ; x, x),

where dSj (x) ≡ dS(x)nj (x), dS(x) is the differential area
element, and n(x) is the unit normal vector to S at x. A similar
definition holds for �H

i (t) involving the magnetic field Green’s
function Hij .

As described in Ref. [17], computation of the Casimir
force entails finding both �E(t ; x, x) and the �H (t ; x, x) field

response with a separate time-domain simulation for every
point x ∈ S.

Although each individual simulation can be performed very
efficiently on modern computers, the surface S will, in general,
consist of hundreds or thousands of pixels or voxels. This re-
quires a large number of time-domain simulations, this number
being highly dependent upon the resolution and shape of S,
making the computation potentially very costly in practice.

We can dramatically reduce the number of required simu-
lations by reformulating the force in terms of a harmonic ex-
pansion in �E(t ; x, x), involving the distributed field responses
to distributed currents. This is done as follows [an analogous
derivation holds for �H (t ; x, x)].

As S is assumed to be a compact surface, we can rewrite
�ij (t ; x, x) as an integral over S:

�E
ij (t ; x, x) =

∫
S

dS(x′)�E
ij (t ; x, x′)δS(x − x′), (2)

where in this integral dS is a scalar unit of area, and δS denotes
a δ function with respect to integrals over the surface S. Given
a set of orthonormal basis functions [fn(x)] defined on and
complete over S, we can make the following expansion of the
δ function, valid for all points x, x′ ∈ S:

δS(x − x′) =
∑

n

f̄n(x)fn(x′). (3)

The fn(x) can be an arbitrary set of functions, assuming that
they are complete and orthonormal on S.1

Inserting this expansion of the δ function into Eq. (2) and
rearranging terms yields

�E
ij (t ; x, x) =

∑
n

f̄n(x)

(∫
S

dS(x′)�E
ij (t ; x, x′)fn(x′)

)
. (4)

The term in large parentheses can be understood in a physical
context: It is the electric-field response at position x and time
t to a current source on the surface S of the form J (x, t) =
δ(t)fn(x). We denote this quantity by �E

ij ;n:

�E
ij ;n(t, x) ≡

∫
S

dS(x′)�E
ij (t ; x, x′)fn(x′), (5)

where the n subscript indicates that this is a field in response
to a current source determined by fn(x). �E

ij ;n(t, x) is exactly
what can be measured in an FDTD simulation using a current
J (x, t) = δ(t)fn(x) for each n. This equivalence is illustrated
in Fig. 2.

The procedure is now only slightly modified from the one
outlined in Ref. [17]: After defining a geometry and a surface
S of integration, one will additionally need to specify a set
of harmonic basis functions [fn(x)] on S. For each harmonic
moment n, one inserts a current function J(x, t) = δ(t)fn(x)
on S and measures the field response �ij ;n(x, t). Summing over
all harmonic moments will yield the total force.

In the following section, we take as our harmonic source
basis the Fourier cosine series for each side of S considered
separately, which provides a convenient and efficient basis for

1Non-orthogonal functions may be used, but this case greatly
complicates the analysis and will not be treated here.
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FIG. 2. (Color online) Differing harmonic expansions of the
source currents (red) on the surface S. The left part shows an
expansion using point sources, where each dot represents a different
simulation. The right part corresponds to using fn(x) ∼ cos(x) for
each side of S. Either basis forms a complete basis for all functions
in S.

computation. We then illustrate its application to systems of
perfect conductors and dielectrics in two and three dimensions.
Three-dimensional systems with cylindrical symmetry are
treated separately, as the harmonic expansion (as derived in
the Appendix) becomes considerably simpler in this case.

III. NUMERICAL IMPLEMENTATION

In principle, any surface S and any harmonic source basis
can be used. Point sources, as discussed in Ref. [17], are a
simple, although highly inefficient, example. However, many
common FDTD algorithms (including the one we employ in
this article) involve simulation on a discretized grid. For these
applications, a rectangular surface S with an expansion basis
separately defined on each face of S is the simplest. In this case,
the field integration along each face can be performed to high
accuracy and converges rapidly. The Fourier cosine series on a
discrete grid is essentially a discrete cosine transform (DCT), a
well-known discrete orthogonal basis with rapid convergence
properties [23]. This is in contrast to discretizing some basis
such as spherical harmonics that are only approximately
orthogonal when discretized on a rectangular grid.

A. Two-dimensional systems

In this section we consider a variant of the pistonlike
configuration of Ref. [7], shown as the inset to Fig. 3. This
system consists of two cylindrical rods sandwiched between
two sidewalls, and is of interest because of the nonmonotonic
dependence of the Casimir force between the two blocks as
the vertical wall separation h/a is varied. The case of perfect
metallic sidewalls [ε(x) = −∞]2 has been solved previously
[22]; here we also treat the case of perfect magnetic conductor
sidewalls [µ(x) = −∞] as a simple demonstration of method
using magnetic materials.

Although three-dimensional in nature, the system is trans-
lation invariant in the z direction and involves only perfect
metallic or magnetic conductors. As discussed in Ref. [11]

2A perfect metal corresponds to ε(ω) = −∞ at real frequencies and
ε(iξ ) = +∞ at imaginary frequencies, but any infinite permittivity
has the same opaque effect in a numerical simulation, and there is no
reason here to prefer one over the other.
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FIG. 3. (Color online) Force for the double cylinders of Ref. [22]
as a function of sidewall separation h/a, normalized by the proximity
force approximation (PFA) FPFA = h̄cζ (3)d/8πa3. Red, blue, and
black squares show the TE, TM, and total force, respectively, in the
presence of metallic sidewalls, as computed by the FDTD method
(squares). The solid lines indicate the results from the scattering
calculations of Ref. [22], showing excellent agreement. Dashed lines
indicate the same force components, but in the presence of perfect
magnetic-conductor sidewalls (computed via FDTD). Note that the
total force is nonmonotonic for electric sidewalls and monotonic for
magnetic sidewalls.

this situation can actually be treated as the two-dimensional
problem depicted in Fig. 2 using a slightly different form
for g(−t) in Eq. (1) (given in the Appendix). The reason we
consider the three-dimensional case is that we can directly
compare the results for the case of metallic sidewalls to the
high-precision scattering calculations of Ref. [22] (which uses
a specialized exponentially convergent basis for cylinder or
plane geometries).

For this system, the surface S consists of four faces, each
of which is a line segment of some length L parametrized by a
single variable x. We employ a cosine basis for our harmonic
expansion on each face of S. The basis functions for each side
are then

fn(x) =
√

2

L
cos

(nπx

L

)
, n = 0, 1, . . . , (6)

where L is the length of the edge, and fn(x) = 0 for all points
x not on that edge of S. These functions, and their equivalence
to a computation using δ-function sources as basis functions,
are shown in Fig. 2.

In the case of our FDTD algorithm, space is discretized
on a Yee grid [18], and in most cases x will turn out
to lie in between two grid points. One can run separate
simulations in which each edge of S is displaced in the
appropriate direction so that all of its sources lie on a grid point.
However, we find that it is sufficient to place suitably averaged
currents on neighboring grid points, as several available FDTD
implementations provide features to accurately interpolate
currents from any location onto the grid.

The force, as a function of the vertical sidewall separation
h/a, and for both TE and TM field components, is shown in
Fig. 3 and checked against previously known results for the
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t=0.7 t=1.7

FIG. 4. (Color online) �E
yy;n=2(t, x) snapshots (blue, positive;

white, zero; red, negative) for the n = 2 term in the harmonic cosine
expansion on the leftmost face of S for the double-block configuration
of Ref. [7] at selected times (in units of a/c).

case of perfect metallic sidewalls [22]. We also show the force
(dashed lines) for the case of perfect magnetic conductor
sidewalls.

In the case of metallic sidewalls, the force is nonmonotonic
in h/a. As explained in Ref. [22], this is from the competition
between the TM force, which dominates for large h/a but
is suppressed for small h/a, and the TE force, which has
the opposite behavior, explained via the method of images
for the conducting walls. Switching to perfect magnetic
conductor sidewalls causes the TM force to be enhanced for
small h/a and the TE force to be suppressed, because the
image currents flip sign for magnetic conductors compared
to electric conductors. As shown in Fig. 3, this results in a
monotonic force for this case.

The result of the above calculation is a time-dependent field
similar to that of Fig. 4, which when manipulated as prescribed
in the previous section, will yield the Casimir force. As in
Ref. [17], our ability to express the force for a dissipationless
system (perfect-metal blocks in vacuum) in terms of the
response of an artificial dissipative system (σ �= 0) means that
the fields, such as those shown in Fig. 4, rapidly decay away,
and hence only a short simulation is required for each source
term.

In addition, Fig. 5 shows the convergence of the harmonic
expansion as a function of n. Asymptotically for large n,
an n−1/4 power law is clearly discernible. The explanation
for this convergence follows readily from the geometry
of S: the electric field E(x), when viewed as a function
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FIG. 5. (Color online) Relative contribution of harmonic moment
n in the cosine basis to the total Casimir force for the double-block
configuration (shown in the inset).

along S, will have nonzero first derivatives at the corners.
However, the cosine series used here always has a vanishing
derivative. This implies that its cosine transform components
will decay asymptotically as n−2 [24]. As �E is related to
the correlation function 〈E(x)E(x)〉, their contributions will
decay as n−4. One could instead consider a Fourier series
defined around the whole perimeter of S, but the convergence
rate will be the same because the derivatives of the fields
will be discontinuous around the corners of S. A circular
surface would have no corners in the continuous case, but on
a discretized grid would effectively have many corners and
hence poor convergence with resolution.

B. Dispersive materials

Dispersion in FDTD in general requires fitting an actual
dispersion to a simple model (e.g., a series of Lorentzians or
Drude peaks). Assuming this has been done, these models can
then be analytically continued onto the complex conductivity
contour.

As an example of a calculation involving dispersive
materials, we consider in this section a geometry recently used
to measure the classical optical force between two suspended
waveguides [25], confirming a prediction [26] that the sign
of the classical force depends on the relative phase of modes
excited in the two waveguides. We now compute the Casimir
force in the same geometry, which consists of two identical
silicon waveguides in empty space. We model silicon as a
dielectric with dispersion given by

ε(ω) = εf + εf − ε0

1 − (
ω
ω0

)2 , (7)

where ω0 = 6.6 × 1015 rad/s, and ε0 = 1.035, εf = 11.87.
This dispersion can be implemented in FDTD by the standard
technique of auxiliary differential equations [18] mapped into
the complex-ω plane as explained in Ref. [17].

The system is translation invariant in the z direction. If
it consisted only of perfect conductors, we could use the
trick of the previous section and compute the force in only
one 2D simulation. However, dielectrics hybridize the two
polarizations and require an explicit kz integral, as discussed
in Ref. [11]. Each value of kz corresponds to a separate
two-dimensional simulation with Bloch-periodic boundary
conditions. The value of the force for each kz is smooth
and rapidly decaying, so in general only a few kz points are
needed.

To simulate the infinite open space around the waveguides,
it is ideal to have “absorbing boundaries” so that waves from
sources on S do not reflect back from the boundaries. We
employ the standard technique of PMLs, which are a thin layer
of artificial absorbing material placed adjacent to the boundary
and designed to have nearly zero reflections [18]. The results
are shown in red in Fig. 6. We also show (in blue) the force
obtained using the PFA calculations based on the Lifshitz
formula [27,28]. For the PFA, we assume two parallel silicon
plates, infinite in both directions perpendicular to the force and
having the same thickness as the waveguides in the direction
parallel to the force, computing the PFA contribution from
the surface area of the waveguide. As expected, at distances
smaller than the waveguide width, the actual and PFA results
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FIG. 6. (Color online) Force per unit length between long
silicon waveguides suspended in air [25], determined by the FDTD
method (red triangles). Also shown is the analogous one-dimensional
computation assuming silicon plates of finite thickness (blue dashes),
and the result F = π 2/240d4A for perfect metals (assuming plate
area A equal to the interaction area of the waveguides).

are in good agreement, while as the waveguide separation
increases, the PFA becomes more inaccurate. For example, by
a separation of 300 nm, the PFA result is off by 50%. We also
show for comparison the force for the same surface between
two perfectly metallic plates, also assuming infinite extent in
both transverse directions.

C. Three dimensions with cylindrical symmetry

In the case of cylindrical symmetry, we can employ a
cylindrical surface S and a complex exponential basis eimφ

in the φ direction. For a geometry with cylindrical symmetry
and a separable source with eimφ dependence, the resulting
fields are also separable with the same φ dependence, and the
unknowns reduce to a two-dimensional (r, z) problem for each
m. This results in a substantial reduction in computational
costs compared to a full three-dimensional computation.

Treating the reduced system as a two-dimensional space
with coordinates (r, z), the expression for the force (as derived
in the Appendix) is now

Fi =
∑

n

∫ ∞

0
dt Im [g(−t)]

∫
S

dsj (x)�ij ;n(x, t), (8)

where the m dependence has been absorbed into the definition
of � above:

�ij ;n(x, t) ≡ �ij ;n,m=0(x, t) + 2
∑
m>0

Re [�ij ;n,m(x, t)], (9)

and dsj = dsnj (x), ds being a one-dimensional Cartesian line
element. As derived in the Appendix, the Jacobian factor r

obtained from converting to cylindrical coordinates cancels
out, so that the one-dimensional (r-independent) measure ds

is the appropriate one to use in the surface integration. Also,
the 2Re [· · ·] comes from the fact that the +m and −m terms
are complex conjugates. Although the exponentials eimφ are
complex, only the real part of the field response appears in
Eq. (9), allowing us to use Im [g(−t)] alone in Eq. (8).
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FIG. 7. (Color online) Force as a function of outer sidewall
spacing h/a for the cylindrically symmetric piston configuration
shown in the figure. Both plates are perfect metals, and the forces
for both perfect metallic and perfect magnetic conductor sidewalls
are shown. Note that in contrast to Fig. 3, here the force is monotonic
in h/a for the metallic case and nonmonotonic for the magnetic case.

Given an eimφ dependence in the fields, one can write
Maxwell’s equations in cylindrical coordinates to obtain a
two-dimensional equation involving only the fields in the (r, z)
plane. This simplification is incorporated into many FDTD
solvers, as in the one we currently employ [19], with the
computational cell being restricted to the (r, z) plane and m

appearing as a parameter. When this is the case, the implemen-
tation of cylindrical symmetry is almost identical to the two-
dimensional situation. The only difference is that now there is
an additional index m over which the force must be summed.

To illustrate the use of this algorithm with cylindrical
symmetry, we examine the 3D system shown in the inset of
Fig. 7. This configuration is similar to the configuration of
cylindrical rods in Fig. 3, except that instead of translational
(z) invariance we impose rotational (φ) invariance. In this
case, the two sidewalls are joined to form a cylindrical tube.
We examine the force between the two blocks as a function of
h/a (the h = 0 case has been solved analytically [29]).

Because of the two-dimensional nature of this problem,
computation time is comparable to that of the two-dimensional
double-block geometry of the previous section. Rough results
(at resolution 40, accurate to within a few percentage points)
can be obtained rapidly on a single computer (about 5 min
running on eight processors) are shown in Fig. 7 for each
value of h/a. Only indices n,m ∈ {0, 1, 2} are needed for the
result to have converged to within 1%, after which the error is
dominated by the spatial discretization. PML is used along the
top and bottom walls of the tube.

In contrast to the case of two pistons with translational
symmetry, the force for metallic sidewalls is monotonic in h/a.
Somewhat surprisingly, when the sidewalls are switched to
perfect magnetic conductors the force becomes nonmonotonic
again. Although the use of perfectly magnetic conductor
sidewalls in this example is unphysical, it demonstrates the
use of a general-purpose algorithm to examine the material
dependence of the Casimir force. If we wished to use dispersive
and/or anisotropic materials, no additional code would be
required.
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FIG. 8. (Color online) The Casimir force between a periodic
array of silicon waveguides and a silicon-silica substrate, as the
array-substrate separation is varied. The system is periodic in the
x direction and translation invariant in the z direction, so the comput-
ation involves a set of two-dimensional simulations.

D. Periodic boundary conditions

Periodic dielectric systems are of interest in many ap-
plications. The purpose of this section is to demonstrate
computations involving a periodic array of dispersive silicon
dielectric waveguides above a silica substrate, shown in Fig. 8.

As discussed in Ref. [11], the Casimir force for periodic
systems can be computed as an integral over all Bloch wave
vectors in the directions of periodicity. Here, there are two
directions, x and z, that are periodic (the latter being the limit
in which the period goes to zero). The force is then given by∫ ∞

0

∫ ∞

0
Fkz,kx

dkzdkx, (10)

where Fkz,kx
is the force computed from one simulation of the

unit cell using Bloch-periodic boundary conditions with wave
vector k = (kx, 0, kz). In the present case, the unit cell is of
period 1 µm in the x direction and of zero length in the z

direction, so the computations are effectively two dimensional
(although they must be integrated over kz).

We use the dispersive model of Eq. (7) for silicon, whereas
for silica we use [7]

ε(ω) = 1 +
3∑

j=1

Cjω
2
j

ω2
j − ω2

, (11)

where (C1, C2, C3)= (0.829, 0.095, 1.098) and (ω1, ω2, ω3)=
(0.867, 1.508, 203.4) × 1014 (rad/s).

E. Full 3D computations

As a final demonstration, we compute the Casimir force for
a fully three-dimensional system, without the use of special
symmetries. The system used is depicted in Fig. 9.

This setup demonstrates stable levitation with the aid of a
fluid medium, which has been explored previously in Ref. [8].
With this example, we present a setup similar to that used
previously to measure repulsive Casimir forces [5], with the
hope that this system may be experimentally feasible.

Bromobenzene

Metal

Silica

Gravity
Casimir1µm

FIG. 9. (Color online) Three-dimensional configuration showing
stable levitation. At the equilibrium point, the force of gravity
counters the Casimir force, while the Casimir force from the walls of
the spherical indentation confine the sphere laterally.

A silica sphere sits atop a perfect metal plane that has
a spherical indentation in it. The sphere is immersed in
bromobenzene. As the system satisfies εsphere < εfluid < εplane,
the sphere feels a repulsive Casimir force upward [5]. This is
balanced by the downward force of gravity, which confines
the sphere vertically. In addition, the Casimir repulsion from
the sides of the spherical indentation confine the sphere
in the lateral direction. The radius of the sphere is 1 µm,
and the circular indentation in the metal is formed from a
circle of radius 2 µm, with a center 1 µm above the plane. For
computational simplicity, in this model we neglect dispersion
and use the zero-frequency values for the dielectrics, as
the basic effect does not depend upon the dispersion (the
precise values for the equilibrium separations will be changed
with dispersive materials). These are ε = 2.02 for silica and
ε = 4.30. For the gravitational force we use densities of
1.49 g/cm3 for bromobenzene and 1.96 g/cm3 for silica.
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FIG. 10. (Color online) Total (Casimir + gravity) vertical (z)
force on the silica sphere (depicted in the inset) as the height h of the
sphere’s surface above the indentation surface is varied. The point of
vertical equilibrium occurs at h ∼ 450 nm.
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FIG. 11. (Color online) Casimir restoring force on the sphere as
a function of lateral displacement dx, when the vertical position is
fixed at h = 450 nm, the height at which gravity balances the Casimir
force.

An efficient strategy to determine the stable point is to first
calculate the force on the glass sphere when its axis is aligned
with the symmetry axis of the indentation. This configuration
is cylindrically symmetric and can be efficiently computed as
in the previous section. Results for a specific configuration,
with a sphere radius of 500 nm and an indentation radius of
1 µm, are shown in Fig. 10.

The force of gravity is balanced against the Casimir force
at a height of h = 450 nm. To determine the strength of lateral
confinement, we perform a fully three-dimensional computa-
tion in which the center of the sphere is displaced laterally from
equilibrium by a distance �x (the vertical position is held fixed
at the equilibrium value h = 450 nm). The results are shown in
Fig. 11. It is seen that over a fairly wide range (|�x| < 100 nm)
the linear term is a good approximation to the force, whereas
for larger displacements the Casimir force begins to increase
more rapidly. Of course, at these larger separations the vertical
force is no longer zero, because of the curvature of the
indentation, and so must be recomputed as well.

The fully three-dimensional computations are rather large,
and require roughly 100 CPU hours per force point. However,
these Casimir calculations parallelize very easily—every
source term, polarization, and k point can be computed in
parallel, and individual FDTD calculations can be parallelized
in our existing software—so we can compute each force point
in under an hour on a supercomputer (with 1000 + processors).
In contrast, the 2D and cylindrical calculations require tens of
minutes per force point. We believe that this method is usable
in situations involving complex three-dimensional materials
(e.g., periodic systems or systems with anisotropic materials).

IV. CONCLUDING REMARKS

We have demonstrated a practical implementation of a
general FDTD method for computing Casimir forces via a
harmonic expansion in source currents. The utility of such
a method is that many different systems (dispersive,
anisotropic, periodic boundary conditions) can all be simulated
with the same algorithm.

In practice, the harmonic expansion converges rapidly with
higher harmonic moments, making the overall computation
complexity of the FDTD method O(N1+1/d ) for N grid
points and d spatial dimensions. This arises from the O(N )
number of computations needed for one FDTD time step,
while the time increment used will vary inversely with the
spatial resolution [18], leading to O(N1/d ) time steps per
simulation. In addition, there is a constant factor proportional
to the number of terms retained in the harmonic expansion,
as an independent simulation is required for each term. For
comparison, without a harmonic expansion one would have
to run a separate simulation for each point on S. In that
case, there would be O(N (d−1)/d ) points, leading to an overall
computational cost of O(N2) [17].

We do not claim that this is the most efficient technique for
computing Casimir forces, as there are other works that have
also demonstrated very efficient methods capable of handling
arbitrary three-dimensional geometries, such as a recently
developed boundary-element method [12]. However, these
integral-equation methods and their implementations must be
substantially revised when new types of materials or boundary
conditions are desired that change the underlying Green’s
function (e.g., going from metals to dielectrics, periodic
boundary conditions, or isotropic to anisotropic materials),
whereas very general FDTD codes, requiring no modifications,
are available off the shelf.

As a final remark we comment on the application of this
method to computing Casimir-Polder (CP) potentials involving
atoms [30] and surfaces. A CP potential for an isotropic particle
is determined from 〈E2〉 = �E , given by the Green’s function
of the geometry in the absence of the particle. The CP force
is the gradient of this quantity, which can be computed with
the time-domain method in a small number of simulations.
Computing the CP potential or force everywhere in space,
however, requires the computation of the Green’s function at
each point in space, which is expensive [O(N2)].
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APPENDIX

A. Simplified computation of g(t)

In Ref. [17] we introduced a geometry-independent func-
tion g(t), which resulted from the Fourier transform of a certain
function of frequency, termed g(ξ ), which is given by [17]

g(ξ ) = −iξ

(
1 + iσ

ξ

)
1 + iσ/2ξ√

1 + iσ/ξ
�(ξ ). (A1)

Once g(t) is known, it can be integrated against the fields in
time, allowing one to compute a decaying time series that will,
when integrated over time, yield the correct Casimir force.
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g(ξ ) has the behavior that it diverges in the high-frequency
limit. For large ξ , g(ξ ) has the form

g(ξ ) → g1(ξ ) ≡ ξ

i
�(ξ ) + σ�(ξ ) as ξ → ∞. (A2)

Viewing g1(ξ ) as a function, we could only compute its
Fourier transform g1(t) by introducing a cutoff in the frequency
integral at the Nyquist frequency, since the time signal is
only defined up to a finite sampling rate and the integral of
a divergent function may appear to be undefined in the limit
of no cutoff.

Applying this procedure to compute g(−t) yields a time
series that has strong oscillations at the Nyquist frequency. The
amplitude of these oscillations can be quite high, increasing
the time needed to obtain convergence and also making any
physical interpretation of the time series more difficult.

These oscillations are entirely from the high-frequency
behavior of g(ξ ), where g(ξ ) ∼ g1(ξ ). However, g(t) and g(ξ )
only appear when when they are being integrated against
smooth, rapidly decaying field functions �(x, t) or �(x, ξ ).
In this case, g can be viewed as a tempered distribution (such
as the δ function) [31]. Although g(ξ ) diverges for large ξ , this
divergence is only a power law, so it is a tempered distribution
and its Fourier transform is well defined without any trunca-
tion. In particular, the Fourier transform of g1(ξ ) is given by

g1(−t) = i

2π

(
1

t2
+ σ

t

)
. (A3)

Adding and subtracting the term g1(ξ ) from g(ξ ), the
remaining term decays to zero for large ξ and can be Fourier
transformed numerically without the use of a high-frequency
cutoff, allowing g(−t) to be computed as the sum of g1(t) plus
the Fourier transform of a well-behaved function. This results
in a much smoother g(−t) that will give the same final force
as the g(−t) used in Ref. [17], but will also have a much more
well-behaved time dependence.

In Fig. 12 we plot the convergence of the force as a function
of time for the same system using the g(−t) obtained by
use of a high-frequency cutoff and for one in which g1(ξ )
is transformed analytically and the remainder is transformed
without a cutoff. The inset plots Im g(−t) obtained without
using a cutoff (since the real part is not used in this article) for
σ = 10. If a complex harmonic basis is used, one must take
care to use the full g(t) and not only its imaginary part.

1. Further simplification

In addition to the treatment of the high-frequency di-
vergence in the previous section, we find it convenient to
also Fourier transform the low-frequency singularity of g(ξ )
analytically. As discussed in Ref. [17], the low-frequency limit
of g(ξ ) is given by

g(ξ ) → g2(ξ ) ≡
√

i

2

σ 3/2

ξ 1/2
�(ξ ) as ξ → 0. (A4)

The Fourier transform of g2(ξ ), viewed as a distribution, is

g2(−t) = i

4
√

π

σ 3/2

t1/2
. (A5)

After removing both the high- and low-frequency diver-
gences of g(ξ ), we perform a numerical Fourier transform
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FIG. 12. (Color online) Plot of the force error (force after a finite
time integration versus the force after a very long run time) for g(t)
determined from a numerical transform as in Ref. [17] and from
the analytic transform of the high-frequency components. (Inset)
Im [g(−t)] obtained without a cutoff, in which the high-frequency
divergence is integrated analytically. Compare with Fig. 1 of Ref. [17].

on the function δg(ξ ) ≡ g(ξ ) − g1(ξ ) − g2(ξ ), which is well-
behaved in both the high- and low-frequency limits.

In the present text we are only concerned with real sources,
in which case all fields �(x, t) are real and only the imaginary
part of g(−t) contributes to the force in Eq. (1). The imaginary
part of g(−t) is then

Im [g(−t)] = Im [δg(−t)] + 1

2π

(
1

t2
+ σ

t

)

+ 1

4
√

π

σ 3/2

t1/2
. (A6)

2. Perfect conductors and z invariance

As discussed in Ref. [11], the stress-tensor frequency
integral for a three-dimensional z-invariant system involving
only vacuum and perfect metallic conductors is identical in
value to the integral of the stress tensor for the associated
two-dimensional system (corresponding to taking a z = 0
cross section), with an extra factor of iω/2 in the frequency
integrand. In the time domain, this corresponds to solving the
two-dimensional system with a new g(−t).

In this case the Fourier transform can be performed
analytically. The result is

Im [g(−t)] = 1

2π

(
2

t3
+ 3σ

2t2
+ σ 2

2t

)
. (A7)

B. Harmonic expansion in cylindrical coordinates

The extension of the above derivation to three dimensions
and non-Cartesian coordinate systems is straightforward, as
the only difference is in the representation of the δ function.
Because the case of rotational invariance presents some
simplification, we will explicitly present the result for this
case below.

For cylindrical symmetry, we work in cylindrical co-
ordinates (r, φ, z) and choose a surface S that is also
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rotationally invariant about the z axis. S is then a surface
of revolution, consisting of the rotation of a parametrized
curve (r(s), φ = 0, z(s)) about the z axis. The most practical
harmonic expansion basis consists of functions of the form
fn(x)eimφ . Given a φ dependence, many FDTD solvers will
solve a modified set of Maxwell’s equations involving only
the (r, z) coordinates. In this case, for each m the problem is
reduced to a two-dimensional problem where both sources and
fields are specified only in the (r, z) plane.

Once the fields are determined in the (r, z) plane, the force
contribution for each m is given by∫ 2π

0
dφ

∫
S

dsj (x)r(x)e−imφ

∫ 2π

0
dφ′

×
∫

S

ds(x′)r(x′)eimφ′
δS(x − x′)�E

ij ;m(t ; x, x′), (A8)

where the values of x range over the full three-dimensional
(r, φ, z) system. Here we introduce the Cartesian line element
ds along the one-dimensional surface S in anticipation
of the cancellation of the Jacobian factor r(x) from the
integration over S. We have explicitly written only the
contribution for �E , the contribution for �H being identical in
form.

In cylindrical coordinates, the representation of the δ

function is

δ(x − x′) = 1

2πr(x)
δ(φ − φ′)δ(r − r ′)δ(z − z′). (A9)

For simplicity, assume that S consists entirely of z = const
and r = const surfaces (the more general case follows by an
analogous derivation). In these cases, the surface δ function δS

is given by

δS(x − x′) = 1

2πr(x)
δ(φ − φ′)δ(r − r ′), z = const

δS(x − x′) = 1

2πr(x)
δ(φ − φ′)δ(z − z′), r = const.

In either case, we see that upon substitution of either form of
δS into Eq. (A8), we obtain a cancellation with the first r(x)
factor. Now, one picks an appropriate decomposition of δS into
functions fn (a choice of r = const or z = const merely implies
that the fn will either be functions of z, or r , respectively).
We denote either case as fn(x), with the r and z dependence
implicit.

We now consider the contribution for each value of n. The
integral over x′ is

�E
ij ;nm(t, x)=

∫ 2π

0
dφ′

∫
S

ds(x′)r(x′)�E
ij ;nm(t, x, x′)fn(x′)eimφ′

.

As noted in the text, �E
ij ;nm(t, x) is simply the field measured

in the FDTD simulation because of a three-dimensional current
source of the form fn(x)eimφ . In the case of cylindrical
symmetry, this field must have a φ dependence of the form
eimφ :

�E
ij ;nm(t, r, z, φ) = �E

ij ;nm(t, r, z)eimφ. (A10)

This factor of eimφ cancels with the remaining e−imφ . The
integral over φ then produces a factor of 2π that cancels the one
introduced by δS . After removing these factors, the problem
is reduced to one of integrating the field responses entirely
in the (r, z) plane. The contribution for each n and m is then

∫
S

dsj (x)f̄n(x)�E
ij ;nm(t, r, z). (A11)

If one chooses the fn(x) to be real valued, the contributions
for +m and −m are related by complex conjugation. The sum
over m can then be rewritten as the real part of a sum over only
nonnegative values of m. The final result for the force from
the electric field terms is then

Fi =
∫ ∞

0
dt Im [g(−t)]

×
∑

n

∫
S

dsj (r, z)fn(r, z)�E
ij ;n(t, r, z), (A12)

where the m dependence has been absorbed into the definition
of �ij ;n as follows:

�E
ij ;n(t, r, z) ≡ �E

ij ;n,m=0(t, r, z)

+ 2
∑
m>0

Re
[
�E

ij ;nm(t, r, z)
]
. (A13)

We have also explicitly included the dependence on r

and z to emphasize that the integrals are confined to the
two-dimensional (r, z) plane. The force receives an analogous
contribution from the magnetic-field terms.
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