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Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional
numerical scattering technique
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We develop a general numerical method to calculate the nonequilibrium radiative heat transfer between a plate
and compact objects of arbitrary shapes, making the first accurate theoretical predictions for the total heat transfer
and the spatial heat flux profile for three-dimensional compact objects including corners or tips. In contrast to
the known sphere-plate heat transfer, we find qualitatively different scaling laws for cylinders and cones at small
separations, and, in contrast to a flat or slightly curved object, a sharp cone exhibits a local minimum in the
spatially resolved heat flux directly below the tip. Our results may have important implications for near-field
thermal writing and surface roughness.
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I. INTRODUCTION

We make the first accurate theoretical predictions for near-
field thermal transfer from three-dimensional (3D) compact
objects of arbitrary shapes (including corners or tips) to a
dielectric substrate. Our work is motivated by studies of
noncontact thermal writing with a hot, sharp object1,2 as
well as recent experiments in near-field thermal transfer for
spheres and plates.3,4 These experiments have confirmed the
theoretical predictions5,6 that radiative heat transfer between
two bodies at different temperatures is greatly enhanced
as their separation is reduced to submicron scales, due to
contributions from evanescent waves. This promises inter-
esting new nonequilibrium physics at submicron separations;
however, until recently the only rigorous theoretical results
for thermal transfer concerned parallel plates. In the past
years rigorous theoretical predictions for sphere-sphere7 and
sphere-plate8,9 geometries as well as general formalisms
for planar structures10 and arbitrary shapes8,11 have been
presented. However, taken by themselves these techniques are
limited to objects for which the scattering matrices are known
analytically (e.g., spheres and plates in three dimensions) and
cannot be directly applied to, e.g., cones and (finite) cylinders.
As an alternative, stochastic finite-difference time-domain
methods have been used to examine heat transfer for periodic
structures,12 but this method is not computationally well
suited for compact objects in three dimensions. Therefore,
nothing is yet known about the effects of, e.g., sharp tips on
radiative thermal transfer. In order to investigate these effects,
we develop a method capable of handling arbitrary compact
objects and apply it to nontrivial shapes. The first part of
our method builds on the scattering-theory formulations of
Refs. 8,10,11. Our formalism differs in several ways from
previous methods, the most important of which is the use of a
three-body detailed-balance argument (described below) and
a cylindrical wave multipole basis, in which a novel Gaussian
quadrature approach is used to discretize the scattering matrix.
Unlike the usual spherical wave basis, this allows us to
concentrate our resolution on the surfaces adjacent to the
substrate. The second part of our method involves the use of a

boundary-element method, in which the object is described
by a generic surface mesh,13 to numerically compute the
scattering matrices of the compact object in the cylindrical
wave basis. In addition to the previously known sphere-plate
heat transfer, we study both cylinder-plate and cone-plate
configurations (see the sketch in Fig. 1), for which no known
analytic solution exists. Our results exhibit clear scaling laws
for the total heat transfer that distinguish locally flat structures
(e.g., cylinders and spheres) from locally sharp structures
(cones). In addition, we study the spatial distribution of the
heat flux over the substrate, a result that is of importance for the
so-called “heat stamp” application.14,15 Previous treatments of
this subject have approximated the heating/writing element as
either a point dipole16 or a large sphere,14 neither of which
correctly represents the shape of a real hot tip (e.g., an atomic
force microscope tip). Our results show that the heat flux
pattern depends strongly on the shape of the tip. Cones in
particular have a flux pattern exhibiting an unusual feature: a
local minimum in the heat flux directly below the tip, which
we can explain with a modified dipole picture.

II. METHOD

In our setup, an object A at (local) temperature TA faces a
dielectric plate P at temperature TP , in an environment E that
is also at temperature TP . We use the framework of Rytov’s
theory,17 in which all sources emit radiation independently. In
contrast to previous studies, we aim at the spatially resolved
heat flux and take into account the environmental temperature.
Although this quantity is not symmetric in A and P (as is the
total transfer),7 we can still avoid the explicit calculation of
the nontrivial radiation of A, employing detailed balance18 for
three objects: at every point in space, the full flux from A at
temperature TA must equal the flux from P and E at tempera-
ture TA (with opposite signs), and we can completely describe
the system with radiative sources from P and E only. To
compute the power flux, we first compute the nonequilibrium
electric-field correlator 〈E(x) ⊗ E∗(x′)〉neq

j due to radiation
from j = P,E for general x �= x′; the total correlator contains
an additional equilibrium contribution,8,10,11 which does not
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FIG. 1. (Color online) Total thermal transfer between a silica plate
and doped silicon objects of various shapes. The plate is semi-infinite,
and the objects all have heights equal to 1 μm in the z direction. The
plate/environment temperature is TP = 300 K and the objects are at
temperature TA = 600 K. Red dots denote results with the sphere
scattering matrix determined analytically, the only case in which we
have an analytic solution for the scattering matrix.

contribute to the Poynting flux (which is obtained at the end
by taking limx ′→x∇x ′ × 〈E ⊗ E′∗〉neq) which is expressed as
an integral of the general form

〈
E ⊗ E′∗〉neq

j
=

∫ ∞

0

dω

2π
�(ω,Tj )〈E ⊗ E′∗〉neq

j,ω,

where � = ω4[exp(h̄ω/kBT ) − 1]−1,17,18 h̄ is Planck’s con-
stant, and kB is the Boltzmann constant. Unless otherwise
noted, we consider each frequency ω separately and drop the
ω subscript below.

The correlator takes on a simple form in an orthogonal
basis Eα(ω; x) for the field degrees of freedom (in our case,
these will be cylindrical waves in the ±z direction), indexed
by a (discrete or continuous) index α, and representing the
correlator as a matrix D. In matrix notation (with implied
summation over repeated indices),

〈E(x) ⊗ E∗(x′)〉neq
j = (

Dj

)
α′,α Eα′ (x) ⊗ E∗

α(x′). (1)

The total relevant nonequilibrium part is given by Dtotal =
DP + DE , where DP/E involve sources only from P or E.
The correlators DP/E are obtained from the “unperturbed”
correlators D0

P/E ; D0
P involves the plate sources without A,

and D0
E involves the environment sources with neither A nor

P present. The D0
j are known analytically (see below), and the

full correlators Dj can be determined from them by use of the
Lippmann-Schwinger equation.8,19 In our notation,

Dj = OjD
0
jO

†
j , j = P,E. (2)

The Oj are matrices that describe the scattering of incoming
and outgoing fields with the allowance for sources in between
the objects, described explicitly in Ref. 20. These are con-
structed from the more conventional incoming or outgoing

scattering matrices FP/A
19,21 for objects P and A individually.

As object P is a plate, FP is known analytically. As FA

cannot be determined analytically for a general object A, the
computation of the scattering matrix elements is accomplished
via a boundary-element method,13 described below. The z

component of the Poynting flux at position x, Sx, and the total
power flux ST through the the surface of P at z = 0 can both be
expressed as operator traces: Sx/T = Re Tr

[
Sx/T Dtotal

]
, with

(Sx)α′,α = − i
ω

ẑ
{
Eα(x) × [∇ × Eα′ (x)]∗

}
and (ST )α′,α given

below.
We employ a cylindrical wave basis of fields Es,m,kρ ,p(x) in

which the waves (also known as Bessel beams) propagate in
the ±z direction.22 The variable s = ± refers to the direction
of propagation; m is the (integer) angular moment of the
field, 0 � kρ < ∞ is the radial wave vector, and p = M,N

is the polarization. The composite index in this case is
α = {s,m,kρ,p}. This basis is especially well suited to the case
considered here in which objects have rotational symmetry
about the z axis, as different values of m are decoupled.

To compute the elements of FA, we use a boundary-element
method (BEM).13,23 In this framework, the surface of object
A is discretized into a mesh; our numerical method then
computes the induced currents from an incident multipole field
Eα(x); here α = {s,m,kρ,p}. The multipole moments of this
current distribution are then computed in a straightforward
manner,22 which yields the scattering matrix FA.19 Because
the cylindrical wave basis distinguishes between waves in the
±z direction (unlike a spherical wave basis), and because the
near-field thermal transport mostly depends on reflections from
adjacent surfaces, we are able to concentrate most of our BEM
mesh resolution on the part of A nearest the plate, allowing us
to solve problems that are numerically intractable in a spherical
wave basis. For example, in the mesh for a cone below we use
∼250 times more resolution at the tip than at the base.

One complication of cylindrical multipoles is that kρ is a
continuous index and matrix multiplication is turned to inte-
gration. For computational purposes, this integration must be
approximated as a discrete sum by numerical quadrature. We
approximate the integral over kρ using a Gaussian quadrature
scheme24 for high accuracy. For example, consider the scat-
tering matrix FA of object A; its action on an incident electric
field can be discretized as (for simplicity, the summation over

m and p is suppressed) FAEkρ,i
= ∫ ∞

0
dk′

ρ

2π
(FA)k′

ρ ;kρ,i
Ek′

ρ
≈∑N

j=0 wj (FA)j,i Ekρ,j
, where the sets {wj,kρ,j } form a set of

one-dimensional quadrature weights and points, respectively,
and (FA)j,i = (FA)kρ,j ,kρ,i

are the elements of the continuous
scattering matrix.

The analytic expression for the nonequilibrium electric-
field correlator of a plate at temperature TP and environment
at T = 0 expressed in the plane-wave basis is well known.17,20

Transforming plane waves to cylindrical waves, it is a simple
exercise to reexpress this correlator in the basis of cylindrical
multipoles:22

(
D0

P

)
α′,α = δα′,αδs,+

(
1 − ∣∣rkρ,p

∣∣2

4qkρ

χp + Im rkρ,p

2|q|kρ

χe

)
.

Here rkρ,p are the Fresnel coefficients for a dielectric plate,
χp(e) = 1 for kρ < ω (kρ > ω) and zero otherwise, q =√

ω2−k2
ρ ,
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and δi,j is the Kronecker (Dirac) delta function on discrete
(continuous) indices; the δs,+ reflects the fact that only waves
propagating in the +z direction are emitted by the plate. The
expression for the environment correlator D0

E is given by the
same expression as D0

P with r = 0 and δs,+ replaced with
δs,−. Finally, the matrix elements for the total power flux are
(ST )α′,α = 2πqkρ

ω
δkρ,k′

ρ
δp,p′ (−s ′)δp′,N [(χp − χe)s]δp,M .

For the surface meshes, we use approximately 2500 panels
(discretized surface elements) to get 1% convergence for the
total power transfer, with the panels highly concentrated on
the area of the objects nearest to the plate. For the spatially
resolved heat flux, we will require more fine meshes of 12 000
panels for the cones (see below). In spherical coordinates, there
is a distinction between polar (	) and azimuthal moments m;
for our semianalytic sphere-plate calculations, we require 	 up
to 60. However, far fewer m are required (due to rotational
symmetry), and we require only azimuthal moments up to
|m| = 10 for 1% accuracy. For each m we perform the ω and
kρ integrations using 28 and 48 Gaussian quadrature points,
respectively. For our study, object A is composed of doped
silicon while the substrate B is silica. For the doped silicon
dispersion we use a standard Drude-Lorentz model25 with a
dopant density of 1.4 × 1019cm−3, while for silica we use
measured optical data.3

III. RESULTS

Figure 1 shows the geometry dependence of the total
heat transfer rate between different compact objects and a
dielectric plate, over surface-surface separations z from several
microns down to 20 nm. In addition to the expected near-field
enhancement, we observe several crossings as, e.g., the broader
surface area of the R = 0.5-μm-radius sphere competes with
the smaller but flatter surface of the d = 0.4-μm-diameter
cylinder. For smaller z, the ratio of the transfer between
the d = 0.4- and 0.2-μm cylinders approaches the ratio of
their surface areas (within 6% at z = 20 nm), as would be
expected from a proximity approximation (PA).7,8 The sphere-
plate exhibits the 1/z power law as predicted by PA3,4,8 to
within 10% for z < 0.1 μm, while the cylinder-plate exhibits
agreement to within approximately 10% over this range using
a PA based on the integral of the plate-plate heat transfer
rate over the cylinder front face and vertical sidewalls. The
contribution from the sidewalls can be ignored (leading to
a ∼ 1/z2 transfer rate)6 for z/d � 0.01. In contrast to the
sphere and cylinders, the cones have a logarithmic divergence
as z → 0, which results from the scale invariance of the
plate-cone configuration when z � 1 μm and h̄c/kBT (the
latter eliminating material-dispersion effects).26 To check the
accuracy of our numerical scattering method, we also plot the
results for the sphere where FA is calculated semianalytically,8

shown as red dots, which agrees to within 1%.
For thermal writing applications, an important factor to

consider is not only the total power delivered to the plate
but also the spatial extent over which this delivery occurs.
In order to examine this, we envision a scenario in which a
critical magnitude of the z-directed Poynting flux is required
in order for some change to occur on the plate, for example,
the patterning of a thermal mask for later etching.2 Figure 2
plots the Poynting flux at x = 0 as a function of z, which will
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FIG. 2. (Color online) Poynting flux at the origin for the ge-
ometries of Fig. 1 with plate/environment temperature TP = 300 K
and object temperature TA = 600 K, using the single polarization
approximation (SPA) for the sphere and cylinders. The light pink line
denotes the sphere-plate without the SPA, and the horizontal dashed
line denotes the threshold used for the cross-sectional flux profiles of
Fig. 3.

tell us how close the object must be before it can effect this
patterning. The cylinders and spheres converge to the same
∼ 1/z2 profile for small z (as expected from a PA), whereas
the cones all follow 1/z2 profiles with different coefficients.
This 1/z2 dependence follows from the scale invariance of the
scattering problem for small z, combined with the fact that
there is a 1/z cutoff in the range of kρ that contributes to the
transfer, so that the total number of modes that contribute is
proportional to

∫ 1/z

0 dkρkρ ∼ 1/z2. In this calculation we have
found that the results for spheres and cylinders are dominated
by the N polarization (E ⊥ ẑ), mirroring similar phenomena
in other near-field cases,27 that results from the behavior of
the Fresnel coefficients for high kρ . This is fortunate because
we have found that the M contribution to the Poynting flux
requires much higher mesh resolution to converge; although
we achieve this for cones by switching to a mesh of 12 000
panels, this resolution is intractable for spheres and cylinders,
so for computing the spatially resolved Poynting vector in
the latter cases we use the single polarization approximation
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FIG. 3. (Color online) Spatially resolved heat flux profiles at the
substrate surface. z is chosen to fix the Poynting flux at x = 0 at
10−3(2π )2hc/μm4.
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FIG. 4. (Color online) Spatially resolved heat flux profiles (arbi-
trary units) at the substrate surface for all three cones at z = 70 nm.
The profiles are normalized so that their maximal value is equal to
one. For comparison, the profile for a cylinder of radius d = 200 nm
(using the SPA) is shown as well.

(SPA) of neglecting the M contributions. We check the SPA
for a sphere by plotting the full results in Fig. 2, finding that
the error from the SPA is <20% at the largest z, decaying to
<10% at smaller z.

Figure 3 plots the Poynting flux as a function of x showing
the heat transfer profile. For each object, we chose z to
have the same x = 0 Poynting flux of 10−3(2π )2hc/μm4 (the
horizontal dashed line in Fig. 2), corresponding to a sphere-
plate separation of ≈200 nm. The cylinders and 120◦ cone all
reach this threshold at comparable separations, whereas the
90◦ cone is at less than half the separation, and the 40◦ cone
does not even reach this threshold within the range considered.

Fixing the peak Poynting flux to 10−3(2π )2hc/μm,4 in
Fig. 3 we plot the Poynting flux profiles for these shapes as a
function of x. The widths for the cylinders are narrower than

the sphere, implying that the cylinders can write higher spatial
resolution. Surprisingly, the cones do not exhibit this simple
behavior. Rather, the Poynting flux profiles for the two cones
are nonmonotonic in x, with a local minimum at x = 0. The
degree of nonmonotonicity appears to increase as the cone
becomes sharper.

To confirm this, we plot the Poynting flux for all three
cones in Fig. 4 at a fixed z = 70 nm; for ease of comparison,
all curves are scaled to have a maximum of one. We also show
the d = 200-nm cylinder (using the SPA) for comparison. The
relative strength of the dip at x = 0 increases as θ decreases,
approaching half the maximum at θ = 40◦. It is interesting
to note that this effect allows a sharp cone to write rings
rather than spot profiles, and that these rings can be as finely
resolved as the spots for a cylinder. We believe the explanation
for the dip in the Poynting flux is that, as the cone tip becomes
sharper, its radiation pattern approaches that of a point dipole
with the axis normal to the plate, which has zero Poynting
flux at x = 0. This explanation predicts that a very thin
cylinder with d � z should also have a dip in the Poynting
flux at x = 0, which we have confirmed numerically (without
approximation). This may also have implications for surface
roughness, where the many tiplike features in a roughened
surface could lead to results that differ qualitatively from PA
predictions.
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