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Elimination of cross talk in waveguide intersections
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We present general criteria for crossing perpendicular waveguides with nearly 100% throughput and 0% cross
talk. Our design applies even when the waveguide width is of the order of the wavelength. The theoretical
basis for this phenomenon is explained in terms of symmetry considerations and resonant tunneling and is then
illustrated with numerical simulations for both a two-dimensional photonic crystal and a conventional high-
index-contrast waveguide crossing. Cross-talk reduction by up to 8 orders of magnitude is achieved relative to
unmodified crossings.  1998 Optical Society of America
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The ability to intersect waveguides is crucial in
constructing integrated optical circuits, owing to the
desire for complex systems involving multiple wave-
guides. We present a novel theoretical framework
for achieving low cross talk and high throughput
in perpendicular intersections, based on symmetry
considerations that can be systematically applied to
any optical system. The transmission spectra are
predictable without detailed calculations and are
robust under perturbations that do not break the
symmetry. The focus of this design is the elimination
of cross talk; additional considerations are required for
maximization of throughput when radiation losses are
present. We illustrate the theory with two example
systems, a two-dimensional photonic crystal and a
conventional dielectric-waveguide intersection, and
show how one can produce eff icient crossing, by assem-
bling well-understood elements that are independently
tuned. In contrast, previous studies of waveguide in-
tersections1,2 have lacked general principles that could
be applied a priori to diverse systems. Moreover,
they have typically been concerned with shallow-angle
crossings for wavelengths many times smaller than the
waveguide width. Although perpendicular crossings
in such systems exhibit negligible cross talk, the cross
talk is close to 10% when the waveguide width is of
the order of half a wavelength (as seen below). Our
design applies even when the waveguide width is
small, permitting single-mode waveguides with opti-
mal miniaturization. Simulations of our structures
show peak throughputs of nearly unity, with cross talk
as low as 1029.

The fundamental idea is to consider coupling of the
four branches, or ports, of the intersection in terms of
a resonant cavity at the center. If the resonant modes
that are excited from the input port can be prevented
by symmetry from decaying into the transverse ports,
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then cross talk is eliminated and the system reduces
to the well-known phenomenon of resonant tunneling
through a cavity. This situation can be achieved by
means of the following conditions (see also Fig. 1):

• Each waveguide must have a mirror symmetry
plane through its axis and perpendicular to the other
waveguide and have a single guided mode in the
frequency range of interest. This mode will be either
even or odd with respect to the mirror plane.

• The center of the intersection must be occupied by
a resonant cavity that is symmetric with respect to the
mirror planes of both waveguides.

• Two resonant modes must exist in the cavity, each
of which is even with respect to one waveguide’s mirror

Fig. 1. Abstract diagram of symmetry requirements for
waveguide crossing, showing waveguide mode profiles and
resonant-cavity mode contours. By symmetry, the solid-
line modes cannot couple with the dashed-line modes and
vice versa.
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plane and odd with respect to the other. These modes
should be the only resonant modes in the frequency
range of interest.

If these requirements are satisfied, then each reso-
nant state will couple to modes in just one waveguide
and be orthogonal to modes in the other waveguide,
as shown in Fig. 1. (For simplicity, we depict a lowest-
order even waveguide mode.) Therefore, under the ap-
proximation that the ports couple to one another only
through the resonant cavity, cross talk will be prohibi-
ted. The transmission to the output port is described
by resonant tunneling, and one can use coupled-mode
theory3 to show that the throughput spectrum will
be a Lorentzian curve peaked at unity on resonance.
The width of the Lorentzian is given by the inverse
of the cavity’s quality factor Q, which is proportional to
the lifetime of the resonance mode.

Perfect throughput will not be attained, however,
owing to a combination of two effects: direct coupling
and radiation loss. First, the input port can directly
couple with the transverse ports, resulting in cross
talk, which can be decreased arbitrarily but at the ex-
pense of the throughput bandwidth. Making the cav-
ity larger reduces direct coupling, since this increases
the distance between the localized waveguide modes.
The drawback to increased cavity size is that it can
either create extraneous resonance modes or, as in the
case of the photonic crystal cavities described below, in-
crease the Q of the resonance. Second, many systems
suffer from losses that are due to radiation or other
mechanisms. If these losses do not couple strongly to
the transverse waveguide, then their primary effect
will be to decrease throughput and increase ref lection.3

The required parity of the cavity modes is easy to
achieve in practice, owing to the fact that a perpen-
dicular intersection of identical waveguides typically
has C4v symmetry (the symmetry group of the square).
In this case, any nonaccidental degenerate modes (such
as many higher-order modes) will necessarily be a pair
having the requisite symmetry from Fig. 1, as that
is the only two-dimensional irreducible representation
of C4v.4

A realization of the intersection design can be made
in a photonic crystal,5 for which the bandgap in
the bulk material prevents any radiation losses. For
ease of computation we use a two-dimensional crystal
consisting of a square lattice of dielectric rods in
air. The rods have lattice constant a, radius 0.2a,
and dielectric constant 11.56. This structure prohibits
propagation of TM light (in-plane magnetic field) in the
frequency range 0.286 to 0.421 cya.5 Removing a row
or column of rods produces a waveguide.5 Increasing
the radius of a single rod to 0.33a creates a resonant
cavity, leading to doubly degenerate modes of the
requisite symmetry with a frequency of 0.361 cya (i.e.,
a wavelength in air of 2.77a).6

These elements are then combined into a intersec-
tion, and we simulate the collective behavior of several
structural variations (Fig. 2) using a finite-difference
time-domain simulation.7 In each case we send a
wide-spectrum TM Gaussian pulse to the input port.
The fractional power transmission is then evaluated
as a function of frequency for the output port and one
of the transverse ports, yielding the throughput and
the cross talk, respectively. The resulting transmis-
sion spectra are shown in Fig. 3. Up to 5% of each
throughput and cross-talk value can be due to ref lec-
tions from the boundary of the simulation, which is
why the peak throughput in cases (c) and (d) shown
in Fig. 2 appears to exceed unity.

Fig. 2. Waveguide intersections in a two-dimensional pho-
tonic crystal consisting of a square lattice of dielectric rods
in air.

Fig. 3. TM transmission spectra for the four intersections
shown in Fig. 2: (a) throughput from the input port to the
output port and (b) cross talk from the input port to one of
the transverse ports.
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Fig. 4. Intersection of two-dimensional, high-index-
contrast waveguides in air, both (a) without holes and
(b) with air holes added to create a resonant cavity by use
of a photonic bandgap.

Fig. 5. TE transmission spectra for the two intersections
shown in Fig. 4.

As predicted, the throughput for cases (b) and (c) is a
Lorentzian centered on the resonance frequency (which
varies owing to the finite size of the cavity). At their
resonance frequencies, (b) and (c) achieve cross talk of
5 3 10210 and 4 3 1024, respectively. In case (d) there
are no photonic crystal layers separating the central
rod from the waveguide, and confinement is due only
to index contrast. The cavity confinement is so weak
that coupled-mode theory is no longer accurate. Even
so, case (d) reaches nearly 100% throughput with a
cross talk at the same frequency of 1.8%. In contrast,
both the throughput and the cross talk for the empty
intersection lie in the 20–40% range.

Both the cross talk and the resonance Q derive
from the exponential decay of light through the
bulk photonic crystal. Because the cross talk must
tunnel through twice as many crystal layers as the
resonance decay, the cross talk should be approxi-
mately Q22. Looking at Fig. 3(b), we see that this
estimate for the cross talk can be seen to be valid
to within approximately an order of magnitude,
corresponding to Q of roughly 1000, 100, and 10 for
cases (b), (c), and (d), respectively. Here, we do not
consider the additional resonance minima that are
apparent in the cross talk at some frequencies, which
are independent of the throughput resonance and
are due to a destructive-interference phenomenon
that is still under investigation.

The same principles of intersection design can be
applied to other systems, such as conventional dielec-
tric waveguide crossings. In particular, we consider
an intersection of high-index-contrast waveguides in
air, of width a and dielectric constant 11.56, as shown
in Fig. 4(a). As shown in Fig. 4(b), we modified the
crossing to include a resonant cavity by introducing a
periodic sequence of air holes on each branch of the in-
tersection, creating a bandgap in the TE guided modes
of the waveguides.8 The holes have radius 0.2a and
period a. A defect center-to-center separation of 2.2a
produces a pair of doubly degenerate, p-like modes with
the desired symmetry at a frequency of 0.22 cya (i.e., a
wavelength in the dielectric of 1.3a).

As before, we used a two-dimensional simulation
to evaluate the throughput and cross talk of these
two structures, this time with TE-polarized light.
The results are shown in Fig. 5. Not only does the
resonant cavity increase the throughput from 75% to
more than 90%, but also the cross talk is decreased
by 2 orders of magnitude, from 7% to 0.08%. The
resonance Q is close to 40 and, as before, the cross talk
can be estimated by use of Q22. The main difference
between the behavior of this crossing and the one
shown in Fig. 2 is that there are now radiation losses
from scattering off the intersection, resulting in lower
throughput.

The principles described in this Letter also apply
to three-dimensional systems and are not limited to
photonic-crystal cavities. Further refinements could
include tuning the intersection in Fig. 4 to reduce
radiation losses or using a system of resonators to
f latten the resonant peak.9
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