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ABSTRACT

We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having
the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers.
We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding
materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities
of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided
fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-
division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic
waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there
is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow
core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an
effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical (“azimuthally”
polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate
linearly-polarized modes in silica fibers that are vulnerable to birefringence.
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1. INTRODUCTION

Telecommunications has continued to push optical fibers towards ever-more demanding applications—such as
high bit rates, dense wavelength-division multiplexing (DWDM), and long distances—and in response there has
been renewed interest in alternative fiber designs to lift fundamental limitations of silica fibers. A particularly
exciting departure from traditional fibers are fibers based on photonic band gaps, forbidden frequency ranges
in periodic dielectric structures that can confine light even in low-index or hollow regions [1]. Two main classes
of fibers have emerged using photonic band gaps: photonic-crystal “holey” fibers that use a two-dimensional
transverse periodicity [2], and Bragg fibers∗ that use a one-dimensional periodicity of concentric rings [3–16]. In
this paper, we study the propagation of light in a novel class of Bragg fibers: “OmniGuide” fibers with a hollow
core, which use a multilayer cladding that exhibits omnidirectional reflection in the planar limit [7, 10,15–17].

In the following sections, we show how OmniGuide fibers bear strong resemblances to the hollow metallic
waveguides that are used in the microwave regime, confining a set of guided modes almost entirely within the
hollow core with similar field patterns and dispersion characteristics. Because of this strong confinement, we
prove that radiation leakage, material absorption, and nonlinearities from the cladding layers can be suppressed
by many orders of magnitude. (Additional imperfections were considered in [15].) Moreover, like hollow metallic
waveguides, we show that there is substantial loss discrimination between a single lowest-loss mode, TE01,
and other guided modes—this produces modal filtering that allows even a highly-multimode OmniGuide fiber
to operate in an effectively single-mode fashion. Because this TE01 state is cylindrically symmetrical and
non-degenerate, it has the additional benefit of immunity to polarization-mode dispersion (PMD) from fiber
birefringence. In this way, we demonstrate that OmniGuide fibers have the potential to lift three major physical
limitations on silica fibers: losses, nonlinearities, and PMD [18].

Correspondence to M. S.: maksim@omni-guide.com; phone 617-551-8444; fax 617-551-8445; http://www.omni-
guide.com; OmniGuide Communications, One Kendall Square, Building 100 #3, Cambridge MA 02139.

∗Bragg fibers should not be confused with fiber Bragg gratings—the former use a lateral index modulation for
transverse optical confinement, while the latter use axial modulation for longitudinal confinement and other effects.
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Figure 1. (a) Hollow dielectric waveguide of radius R. Light is confined in the hollow core by a multilayer dielectric
mirror made of alternating layers with high and low indices of refraction. (b) Hollow metallic waveguide of radius R.
Light is confined in the hollow core by a metallic cylinder.

One of the hallmarks of photonic crystals is their flexibility, since their optical properties are subject to
deliberate structural and materials choices. OmniGuide fibers also embody this freedom, permitting a wide
variety of layer-thickness designs to enhance or inhibit specific characteristics (e.g. to tailor dispersion param-
eters), which we do not explore here. Moreover, due to the suppression of cladding properties, a much broader
range of materials is available for use than would normally be practical in low-loss optical fibers. In this pa-
per, we describe methods for understanding and designing OmniGuide fiber properties, and especially focus on
general scaling laws, phenomena, and design tradeoffs that apply in such systems. For a particular example
system, we arbitrarily select an index contrast of 4.6 to 1.6 in the cladding, as has been used in several previous
publications [7, 10, 11, 13–15]. Our scaling laws, analytical techniques, and qualititative results, however, hold
true for a wide range of alternative parameters, as was further analyzed in [15].

2. HOLLOW DIELECTRIC VS. METALLIC WAVEGUIDES

In this section, we begin by introducing the basic structure and principles of operation for OmniGuide fibers,
and develop an intuition for their behavior by an analogy with hollow metallic waveguides [19, 20]. One could
also compare with other prior work, including the hybrid system of a metallic waveguide whose inner surface is
coated with a multilayer Bragg mirror [21,22], as well as several other hollow waveguiding systems [23], but the
pure metallic guide provides the simplest foundation for understanding. In the left panel of Fig. 1, we depict
a schematic of an OmniGuide fiber forming a hollow dielectric waveguide. A hollow core (index of refraction
unity) of radius R is surrounded by a multilayer cladding that consists of alternating layers having high and
low indices of refraction. As discussed above, we choose indices of refraction 4.6 and 1.6, with thicknesses here
of 0.33a and 0.67a, where a is the thickness of one high/low bilayer (we select different thicknesses in Sec. 2.2).
Once a mode frequency ν is computed in units of c/a, the physical value of a is determined via a = λν for
some desired operational wavelengh λ [1]. The radius R of the waveguide will vary in the differing examples
presented in this paper, from a minimum of 2a to a maximum of 30a. In the right panel of Fig. 1, we show a
hollow metallic waveguide. The core is the same as that of the hollow dielectric waveguide, but a metal cylinder
now replaces the multilayer cladding.

In the metallic case, light is confined in the core by the impenetrability of a near-perfect metal (nonexistent
at optical frequencies)—such confined modes for R = 2a are depicted in the right panel of Fig. 2. Dispersions
relations like this one depict two conserved quantities: the axial wavenumber β and the frequency ω. In
cylindrical waveguides, modes can also be labeled by their “angular momentum” integer m. For waveguides
that lie along the z axis, the (z, t, ϕ) dependence of the modes is then given by: ei(βz−ωt+mϕ). In a hollow metal
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Figure 2. (Left) Projected band structure associated with the planar dielectric mirror. The dark shaded regions
correspond to (β, ω) pairs for which light can propagate within the mirror. White and light gray regions correspond to
situations where light cannot propagate within the mirror. The thick black line represents the light line (ω = cβ). Shown
in gray are the two omnidirectional frequency ranges of the mirror. (Right) Dispersion relations ω(β) of the lowest 7
modes supported by a hollow metallic waveguide of radius R = 2a are plotted. The modes have angular dependence
eimϕ. Note the degeneracy of the TE01 and the TM11 modes.

tube, the eigenmodes are purely polarized as TM (Hz = 0) or TE (Ez = 0), and the �-th mode of a given m is
labeled TXm�.

In the dielectric case, light is confined by the one-dimensional photonic band gap of the multi-layer cladding,
which is easy to analyze in the limit as the cladding becomes planar. The one-dimensional gaps of the planar
dielectric mirror structure as a function of β (the surface-parallel wavevector component) are depicted in the
left panel of Fig. 2. In these gap regions, we expect the mirrors to behave similarly to a metal, and confine
modes strongly analogous to those of the metallic waveguide; this is verified below. Because every eigenmode
has a finite, conserved m, the effective wavevector kϕ = m/r in the ϕ̂ direction goes to zero for r → ∞. Without
this fact, there would be no band gaps in Fig. 2, since nonzero kϕ ⊥ β would have to be projected onto the
Bragg band diagram. Also shown in this figure, as gray regions, are the ranges of omnidirectional reflection:
the frequencies at which any incident wave from air will be reflected by the planar mirrors (and vice versa).
Omnidirectional reflection per se is not strictly necessary for guidance in these fibers, but its presence is strongly
correlated with the regimes of large, polarization-independent gaps along the light line that are important for
many of the properties studied in this paper.

Bragg mirrors have different band-gaps for “TE” and “TM” polarizations, referring to fields purely parallel
to the interface and fields with a normal component, respectively. (Both polarizations are shown in Fig. 2.)
This corresponds to the waveguide TE and TM labels only for m = 0; all m �= 0 modes have some nonzero Er

component.
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Figure 3. Guided modes supported by a hollow OmniGuide fiber of radius R = 2a: TE/HE modes and TM/EH modes.
In black is the light line (ω = cβ), and the dark shaded regions represent the continuum of modes that propagate within
the multilayer cladding. Only the first three modes in each band gap are labeled.

2.1. The modes in an OmniGuide fiber

The modes supported by any cylindrical waveguide, including metallic waveguides, OmniGuide fibers, and
traditional silica fibers, can be computed by the transfer-matrix method of [3]. Here, the longitudinal fields (Ez

and Hz) of a given (m,ω, β) in an annular region of index nj are expanded in Bessel functions Jm(kjr) and

Ym(kjr), with kj ≡
√

n2
jω

2/c2 − β2. At each interface, the coefficients are related by a 4 × 4 transfer matrix
that matches boundary conditions. The product of all these transfer matrices yields a single matrix relating the
fields in the core to those in the outermost cladding. Then, by application of appropriate boundary conditions,
the βn wavevectors of the various modes can be found; this is discussed in more detail by Sec. 4 below.

Here, we are primarily interested in the modes that lie within the band gap of the one-dimensional Bragg
mirrors. Such modes must decay exponentially with r in the cladding, and therefore are truly guided modes in
the limit of infinitely many cladding layers (the case of finite layers is considered in Sec. 4). Most of these modes
lie above the ω = cβ light line, and thus propagate within the hollow core in much the same way as the modes
of a metallic waveguide. It is also possible, however, for modes to lie beneath the light line and yet inside the
band gap, in which case they are surface states localized around the core/cladding interface—we discuss this
possibility further below.

In Fig. 3, we show the computed guided modes of the OmniGuide fiber with core-radius R = 2a and
the abovementioned planar-mirror parameters. These modes are at nearly the same frequencies as the metallic
waveguide modes of Fig. 2, with the one-dimensional bandgaps simply superimposed. In the dielectric waveguide,
the modes are only purely TE and TM for m = 0, but for m �= 0 they are strongly TE-like or TM-like, and are
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Figure 4. An OmniGuide fiber with core radius R = 30a, the parameters that we employ in the remainder of this paper.
The omnidirectional mirror here comprises 17 layers, starting with a high-index layer, with indices 4.6/1.6 and thicknesses
0.22a/0.78a, respectively. (The omnidirectional mirror is surrounded by some coating for mechanical support; this layer
is not shown to scale.) We choose a = 0.434µm, so that the lowest dissipation losses occur roughly at λ = 1.55µm.

called HE and EH, respectively. (When a mode enters the second gap, we add a prime superscript.) Moreover,
because these modes are so strongly confined within the core, the field patterns must also be nearly identical.
We consider this analogy in greater detail in a later publication [16].

2.2. A Large-core OmniGuide fiber
The above calculations yielded the modes of an OmniGuide fiber for a radius R = 2a. This small radius has the
advantage of supporting only a few modes, which are easy to plot and understand in their entirety, and even has
a single-mode frequency range. The analogy with metallic waveguides, however, tells us that this may not be the
most desirable regime for fiber operation. In this section, we motivate the use of larger, ostensibly multi-mode
cores for OmniGuide fibers, and describe the fiber parameters that we will use for subsequent computations in
this paper.

In metallic waveguides, the lowest-loss mode is TE01, and its ohmic losses decrease as 1/R3 [19,20]. Moreover,
the differential losses between TE01 and other modes create a modal-filtering effect that allows these waveguides
to operate in an effectively single-mode fashion. On the other hand, for large core radii (high frequencies), losses
become dominated by scattering into other closely-spaced modes, especially into the degenerate TM11 mode
via bends, and it was found that the optimal radius was in the range of 4λ− 11λ [20].

Similar results hold for OmniGuide fibers: the lowest-loss mode is TE01, and many of its losses fall off as
1/R3 (for much the same reasons as in metallic waveguides). Like the metallic waveguides, and unlike silica
fibers with their small material contrasts, we demonstrate a strong modal-filtering effect based on the degree
of confinement in the core. Also as before, inter-modal scattering worsens with increasing R. (Bending is
less of a problem than in metallic waveguides, however, since the dielectric cladding breaks the TE01/TM11

degeneracy [15].) Thus, for the example OmniGuide fiber that we use in the remainder of this paper, we choose
a core radius of R = 30a, as depicted in Fig. 4. The point of lowest TE01 dissipation losses that we compute in
Sec. 6.1 then lies at a frequency of ω ∼= 0.28 · 2πc/a, so if we make this correspond to the standard λ = 1.55µm
of telecommunications, we have a = 0.434µm. Equivalently, R = 13.02µm = 8.4λ, in the favorable range for the
metallic-waveguide analogy. Throughout this paper, however, we will emphasize scaling laws with R in order
to highlight the effects of differing core sizes.

In order to choose the layer thickness, we employed an approximate quarter-wave condition. It is well-known
that, for normal incidence, a maximum band gap is obtained for a “quarter-wave” stack in which each layer has
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Figure 5. Transverse electric-field distributions in the OmniGuide fiber of Fig. 4 for the TE01 mode (left) and the EH11

mode (right), which have β = 0.27926 · 2π/a and β = 0.27955 · 2π/a, respectively, at ω = 0.28 · 2πc/a.

equal optical thickness λ/4: dhi/dlo = nlo/nhi [24]. Normal incidence, however, corresponds to β = 0, whereas
the modes of interest in the OmniGuide fiber lie almost on the β = ω/c light line (in the limit of R → ∞,
the lowest-order modes are essentially plane waves propagating along ẑ). Thus, we employ layer thicknesses
determined by the quarter-wave condition along the light line of air (similarly applied in [21]):

dhi
dlo

=

√
n2
lo − 1√

n2
hi − 1

(1)

which yields dhi
∼= 0.2176a and dlo

∼= 0.7824a in this case. (Ref. [3] suggests an alternate method that optimizes
the structure for confinement of a given mode, but this yields essentially the same thicknesses as Eq. (1) for
large R.)

As in the R = 2a case, the guided-modes of this R = 30a OmniGuide fiber can be labeled by analogy to the
modes of an equal-radius metallic waveguide. Two such modes in the OmniGuide fiber, the lowest-loss TE01

and the linearly-polarized EH11 (analogous to the TM11 mode in a metallic guide) are depicted in Fig. 5. The
TE01 mode is circularly symmetric and “azimuthally” polarized ( �E‖ϕ̂)—thus, unlike the doubly-degenerate
EH11 mode (two orthogonal polarizations), TE01 cannot be split into two modes of differing velocities by fiber
imperfections, and is therefore immune to polarization-mode dispersion (PMD). (See also Sec. 8.)

3. SCALING LAWS WITH CORE SIZE

Because of the strong reflectivity of the dielectric mirrors, many of the mode properties are determined largely
by the geometric size R of the core, within which the modes are confined. Throughout this paper, we thereby
derive scaling relations for the different quantities computed, and in this section we lay the groundwork for those
derivations by presenting basic scalings of the fields and modes. These scaling relations are largely independent
of details such as the precise index contrast that is used, so long as it is sufficiently large for the metallic analogy
to hold, and will provide a broad understanding of the advantages and tradeoffs of OmniGuide fiber structures.
Later in the paper, we exhibit data to explicitly verify scaling relations derived from those in this section.

In particular, we will focus on the suppression of cladding phenomena for the TE0� (especially TE01) modes
of the fiber. The critical property of TE0� modes is that, by analogy with a hollow metallic waveguide, they
have a node in their electric field (Eϕ) near r = R [19, 20]. It then follows that the amplitude of the electric
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field in the cladding is proportional to the slope of Eϕ at R. The form of Eϕ in the core, however, is simply the
Bessel function J1(ξr/R), where ξ(ω) is roughly the �-th zero of J1. The slope at R is then (J0(ξ)−J2(ξ)) ·ξ/2R.
Moreover, for our quarter-wave stack, Eϕ peaks near each of the nhi → nlo interfaces [3]. Thus, not including
any normalization of the J1 amplitude (i.e. Eϕ ∼ 1), we find that the unnormalized Eϕ in the cladding scales
as dhi/R.

In addition, for most computations (such as the perturbation theory described in the appendix), one must
normalize the power of the field: this means dividing �E by an additional factor proportional to

√
mode area ∼ R,

and so:
normalized TE0� cladding �E ∼ 1

R2
. (2)

Moreover, the area of the field in the cladding is the perimeter ∼ R times some constant (penetration depth)
that depends on the size of the band gap; combined with Eq. (2), we therefore find:

fraction of
∫

| �E|2 in cladding for TE0� ∼
1
R3

, (3)

and from this we derive many other scaling relations. In contrast, for TM or mixed-polarization modes with
an Er component, the unnormalized field amplitude in the cladding remains roughly constant with changing
R—their fractional | �E|2 in the cladding then scales as only 1/R, so the cladding has a much greater effect on
them.

4. LEAKY MODES AND RADIATION LOSS

In the preceding discussion, we have neglected a point that may seem important: in reality, there will be only
a finite number of cladding layers in the omnidirectional mirror. Because of this, and the fact that the modes
of interest lie above the light line of the outermost region, the field power will slowly leak out in a process akin
to quantum-mechanical “tunneling.” This radiation loss, however, decreases exponentially with the number of
cladding layers, and we quantify its smallness explicitly below. As has been observed elsewhere [11, 13, 15], we
show that only a small number of layers is required to achieve leakage rates well below 0.1 dB/km. Moreover, the
radiation leakage strongly differs between modes, inducing a modal-filtering effect [3,6] that allows a large-core
OmniGuide fiber to operate in an effectively single-mode fashion.

In the limit of infinitely many cladding layers, the modes in the OmniGuide core are true confined modes,
thanks to the band gap, with discrete real eigenvalues βn (c.f. the appendix). For finitely many layers,
modes are no longer truly confined (above the outermost light line), leading to a continuum of β values with
infinitely-extended eigenstates [3]. The former confined modes become leaky resonances: superpositions of real-
β eigenmodes centered on βn with a width ∆β proportional to the radiative decay rate αn. Such resonances
can be studied directly via the physical real-β continuum, but a powerful alternative method is the leaky-mode
technique, which employs a conceptual analytic continuation from β to β̃ in the complex plane to satisfy a
boundary condition of zero incoming flux [25]. The power decay rate αn is then given by 2
[β̃n], where 

denotes the imaginary part; we have also verified the correctness of this decay rate against explicit real-β
superpositions as well as by beam-propagation methods (BPM) [26].

For an OmniGuide fiber, the leaky-mode method is as follows. The transfer-matrix formulation allows one
to compute 2×2 matrices M±

m(ω, β) that connect the TE and TM amplitudes at the origin to the amplitudes of
the outgoing (+) or incoming (−) TE and TM cylindrical waves (Hankel functions) in the outermost region, as
a function of ω and β for a given angular-momentum index m. (For m = 0, the two polarizations decouple [3].)
For a leaky mode, we wish to impose the boundary condition of zero incoming waves, so that there are no sources
at ∞; such a solution exists whenever there is a zero eigenvalue of M−

m. Therefore, we use the determinant:

fm(ω, β̃) ≡ det
[
M−

m(ω, β̃)
]
, (4)

so that the leaky mode is defined by fm(ω, β̃n) = 0. Once such a β̃n is found for a given ω, the corresponding
eigenvector of M−

m(ω, β̃n) yields the required mixed-polarization amplitudes. With finitely many layers, the only
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Figure 6. Radiation leakage through a finite number (17) of cladding layers in the OmniGuide fiber of Fig. 4. The
lowest-loss mode is TE01 (solid) and the next-lowest is TE02 (dots), while the linearly-polarized EH11 mode (circles)
typifies the higher losses for mixed-polarization modes due to the smaller TM band gap.

real roots of fm lie below the light line of the outermost region; above this light line, the incoming and outgoing
flux are equal for real β [3], corresponding to steady-state standing-wave patterns. The small imaginary part of
β̃n above the light line yields the power decay rate αn = 2
[β̃n]. A similar leaky-mode method was previously
used for Bragg fibers, albeit with only a first-order Taylor-expansion approximation for 
[β̃n] [5].

For all modes, the radiative decay α decreases exponentially with increasing numbers of cladding layers,
thanks to the exponential decay of fields in the Bragg band gap, eventually to the point where other losses
(e.g. absorption) dominate. At λ = 1.55µm for this structure, the TE/TM losses decrease by a factor of
∼ 10/5 per cladding bilayer, respectively. Because of the smaller TM band gap, the losses of mixed-polarization
(m �= 0) modes are eventually dominated by their less-confined TM components. In Fig. 6, we display the
computed radiation leakage rates α for the lowest-loss TE01 mode, the next-lowest loss TE02 mode, and the
linearly-polarized EH11 mode to typify mixed-polarization modes. Like the absorption discussed later, these
differential losses create a mode-filtering effect that allows the TE01 mode to operate as effectively single-mode,
even for large-core OmniGuide fibers, a fact that was also noted in [3, 6]. A similar principle was employed in
hollow metallic waveguides [19, 20] to select the TE01 mode. Note that, as in metallic waveguides, TE02 is not
necessarily the mode of greatest concern—it is more important to consider modes that couple strongly to TE01

via perturbations, such as those discussed [15]. From Fig. 6, it is seen that with only 17 cladding layers the
TE01 mode has leakage rates well under 0.01 dB/km, and even EH11 has decay lengths of meters, corresponding
to 
[β̃n]/�[β̃n] of ∼ 10−13 and ∼ 10−9, respectively. Thanks to these low losses, the modes can be treated as
truly bound for most analyses (e.g. dispersion relations and perturbation theory), with the leakage rates at
most included as an independent loss term.

The radiation losses are proportional to the field amplitude | �E|2 in the cladding, which goes like 1/R4 for
TE0� from Eq. (2), multiplied by the surface area (which scales as R). Thus,

TE0� radiation leakage α ∼ 1/R3, (5)
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Figure 7. Group-velocity (chromatic) dispersion of the TE01 mode in both the OmniGuide fiber of Fig. 4 (solid) and a
hollow metallic waveguide with the same core radius (circles).

the same as the scaling of TE0� ohmic losses in a hollow metallic waveguide [19, 20]. In contrast, because of
their lack of a node near the boundary, TM and mixed-polarization radiation losses scale only as 1/R.

5. GROUP-VELOCITY DISPERSION

Given a dispersion relation β(ω), one important quantity is the group-velocity dispersion D (the rate at which
pulses spread), canonically defined as [18]:

D ≡ − ω2

2πc
d2β

dω2
, (6)

in units of ps/(nm · km): the pulse-spreading (ps) per km of propagation per nm of ∆λ. This can be computed
exactly from the function f of Eq. (4), which defines the dispersion relation implicitly by f(ω, β) = 0. The group
velocity is thus given by v ≡ dω/dβ = −fβ/fω, where the subscripts denote partial differentiation, and one
thereby finds that d2β/dω2 = d(1/v)/dω = 2fωfωβ/f

2
β−fωω/fβ−f2

ωfββ/f
3
β . We evaluate all of these derivatives

analytically by differentiating the transfer matrices. We also considered material dispersion (n varying with ω)
by the same methods, but we found that this has a negligible effect (due to the small field penetration into the
cladding). For example, assuming that the cladding has the same dn/dω and d2n/dω2 as silica at 1.55µm, the
contribution of material dispersion is less than 0.1 ps/(nm · km) over most of the bandwidth. What remains is
the waveguide dispersion, which stems from the geometry of the core as well as the variable penetrability of the
cladding, Goos-Hänchen shifts [24], etc., all of which are taken into account by differentiating f . The resulting
dispersion as a function of wavelength is plotted in Fig. 7 for the TE01 mode of the R = 30a OmniGuide fiber.

For comparison, we also plot the dispersion of the TE01 mode in an equal-radius hollow metallic waveguide,
given by: Dmetal = −ω2ξ2/(2πc3β3R2), where β =

√
ω2/c2 + ξ2/R2 and ξ = 3.8317 · · · is the first non-zero

root of the J1 Bessel function. Except near the edges of the band gap, the dispersion is very similar to that
of the metallic waveguide—that is, D is dominated simply by the core shape—and D ∼= 12 ps/nm · km at
λ = 1.55µm. From the metallic dispersion relation, we can also conclude that D ∼ 1/R2.

Proc. SPIE Vol. 4655 9



As we discuss in the next section, the practical implications of dispersion in an OmniGuide fiber are quite
different than in ordinary fibers, due to the absence of nonlinear effects. Because dispersion no longer interacts
with nonlinearities, it can in principle be completely compensated after any distance of propagation, allowing
one to put all dispersion compensation at the end of a fiber link, as well as to tolerate higher dispersions.
Conversely, operating at or near a point of zero dispersion will no longer exacerbate four-wave mixing noise.

Another important consideration is the relative dispersion slope (RDS), as measured by (dD/dλ)/D; this
quantity must ideally be matched in any dispersion-compensation system. For the OmniGuide fiber above,
the RDS is around 0.0007nm−1. This is 15–30 times smaller than the RDS of contemporary TrueWave-RS
(0.010nm−1) and LEAF (0.021nm−1) fibers, and smaller slopes are typically easier to achieve in dispersion-
compensating fibers [27].

6. SUPPRESSION OF ABSORPTION AND NONLINEARITIES

In this section, we compute the effect of absorption losses and nonlinearities in the cladding materials of an
OmniGuide fiber. We show that these effects are strongly suppressed for the TE01 mode, allowing highly lossy
and nonlinear materials to be employed—greatly broadening one’s choices for high-index materials. Moreover,
we will see that there is the potential of greatly surpassing even the properties of silica fibers.

Absorption and nonlinearites correspond to tiny shifts ∆ε in the dielectric constant of the materials, and can
therefore be treated by perturbation theory, as described in detail by the appendix. This common technique
allows one to compute the shift ∆β due to a small perturbation, using only the unperturbed modes (computed
earlier via transfer matrices). We employ erturbation-theory expressions for the absorption loss and nonlineari-
ties that have been previously derived, and which we have also derived in [15] via explicit analogy with quantum
mechanics. In both cases, the relevant quantity that we compute is the lowest-order shift in β due to a small
∆ε in the structure.

6.1. Absorption Loss

For absorption losses (also possibly including Rayleigh scattering), ∆ε is a small imaginary part added to ε,
representing the (material-dependent) dissipation rate. The resulting (purely imaginary) ∆β indicates the decay
rate of the mode, as derived in [15,28–33].

Here, we calculate the losses of the TE01 mode in our example OmniGuide fiber by assuming that the
core is lossless, and that both the high and low-index cladding materials have the same power dissipation rate
α0 (for propagation in bulk). Furthermore, we divide the computed dissipation rate α by α0, yielding the
dimensionless, material-loss independent absorption suppression coefficient of the mode. This is done for each
frequency ω across the band gap, yielding the plot in Fig. 8. Thus, the cladding losses are suppressed by more
than four orders of magnitude over most of the bandwidth, a result that will be better understood from the
scaling-law arguments in Sec. 6.3. For comparison, we also show the next-lowest loss TE02 mode, as well as
the linearly-polarized EH11 (exemplifying the larger cladding penetration for modes with TM components). As
was mentioned earlier, such a loss differential creates a mode-filtering effect that should allow single-mode-like
operation. (Surface states and guided modes outside the band gap, i.e. propagating within the cladding region,
will experience essentially the attenuation of the bulk cladding materials and will be even more strongly filtered
out.) Moreover, even if the cladding has losses a thousand times greater than silica’s ∼ 0.2 dB/km, the TE01

losses can be lower than the losses of silica fibers.

6.2. Nonlinearities

Another important problem in optical fibers is that of Kerr nonlinearities. Here, the index n of the material
varies as a function of electric-field strength: n′ ≡ n+n2| �E|2, where n2 = 3

8nχ
(3) is the (small) “nonlinear index

coefficient” of the material(s).†

†Often, one instead uses n′ = n+n2I, where I ∼ n| �E|2 is the intensity of light; our analysis remains the same except
for the extra factor of n.
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Figure 8. Absorption losses due to the cladding materials the OmniGuide fiber (with core radius 30a), as a fraction of the
bulk cladding losses. The lowest-loss mode is TE01 (solid) and the next-lowest is TE02 (dots), while the linearly-polarized
EH11 mode (circles) typifies the higher losses for mixed-polarization modes due to the smaller TM band gap.

Thus, to first order in n2, one has:

∆ε = 2nn2

∣∣∣ �E∣∣∣2 . (7)

Kerr nonlinearities cause several problems in fiber systems: self/cross-phase modulation (SPM/XPM), where
the energy at one frequency shifts the β at the same/another frequency; and also four-wave mixing (FWM), in
which energy at one frequency leaks into another frequency [18]. SPM and XPM interact with dispersion to
limit dispersion-compensation schemes, and FWM causes noise/crosstalk between channels. Our concern here
is not to compute these effects per se, but rather to define the limits in which they may be neglected.

The strength of nonlinearities in a fiber is given by a nonlinear lengthscale LNL, defined as the inverse of
the SPM phase shift ∆β; this is the lengthscale at which SPM and XPM become significant, and also appears
as a scaling coefficient in the FWM noise [18]. As is seen below, LNL is inversely proportional to the mode
power P (to first order), so it is conventional to instead define the nonlinear strength γ ≡ 1/(PLNL) = ∆β/P ,
which is a power-independent quantity proportional to the strength of nonlinear effects in the fiber.

In order to compute γ, we again find the lowest-order shift ∆β from the perturbation Eq. (7), using (fully
vectorial) perturbation theory [15, 34–36]. This ∆β(1) is proportional to P through the field strength | �E|2 in
Eq. (7).

We now apply the above methods to compute the nonlinear strength γ of the TE01 mode in our OmniGuide
fiber, assuming that the cladding materials all have some fixed n2. Instead of choosing a particular material n2,
we instead calculate a cladding nonlinearity suppression factor—we divide γ by a γ0, with the latter computed
by supposing that both the cladding and the core have the n2 nonlinearity. The results, plotted in Fig. 9,
show that the cladding nonlinearities are suppressed by more than eight orders of magnitude over much of
the bandwidth. Thus, the nonlinearities of this OmniGuide fiber will be dominated by the nonlinearities of
air rather than those of the cladding, even for materials thousands of times more nonlinear than silica. Gases
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Figure 9. The TE01 mode’s suppression factor for cladding nonlinearities in the OmniGuide fiber of Fig. 4, relative to
nonlinearities that include the core.

have Kerr constants almost 1000 times weaker than that of silica—combined with the fact that the core area
here is almost 10 times larger than the effective area of a typical silica fiber, this implies nonlinearities in the
OmniGuide fiber that are almost 10,000 times weaker than those of silica fibers. Such low nonlinearities would
open dramatically new areas for fiber operation: for example, high powers, closely-spaced channels and/or
low/zero dispersion without regard for FWM,‡ use of non return-to-zero (NRZ) formats at high bit rates, and
dispersion compensation at larger intervals without regard for SPM. A better understanding of this nonlinearity
suppression can be found in the scaling laws derived in the following section.

6.3. Scaling Laws

The scaling laws for absorption loss and nonlinearities, as a function of core radius R, can be derived straightfor-
wardly from the results in Sec. 3. In particular, the perturbation-theory integral that determines the absorption
loss has an integrand proportional to the fraction of | �E|2 in the cladding [15], which scales as 1/R3 from Eq. (3),
so:

TE0� cladding absorption ∼ 1
R3

. (8)

This is a familiar result, since it is the same as the scaling of the TE01 ohmic dissipation losses in a hollow
metallic waveguide. The scaling for the nonlinear strength γ is found by similar arguments. Here, however,
there is an additional factor of | �E|2 from Eq. (7), and thus 1/R4 from Eq. (2). The nonlinear strength γ of the
cladding therefore scales like 1/R7! The nonlinear strength γ0, when one adds nonlinearities to the core, scales
inversely with the area R2 as in an ordinary fiber, so:

TE0� cladding nonlinearity
γ

γ0
∼ 1

R5
. (9)

‡FWM noise is proportional to γ2/(∆β2+α2), where the α2 term is usually negligible [18]. However, with nonlinearities
10,000 times weaker than in silica, α = 0.01 dB/km is sufficient to suppress FWM even in the limit of ∆β = 0 (zero
dispersion and/or channel spacing).
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Figure 10. Scaling of the cladding absorption and nonlinearity suppression factors for a core radius R varying from 7a
to 30a (taking the minimum over the TE01 band at each radius). Hollow squares/circles show the computed values, and
the solid lines display the values predicted by starting from the 30a value and applying the scaling laws.

It is because of these rapid 1/R3 and 1/R5 scalings that the cladding absorption and nonlinearities can be
suppressed so strongly for TE01 in a large-core OmniGuide fiber. To demonstrate these scaling laws explicitly,
we plot the absorption and nonlinear suppression coefficients as a function of R in Fig. 10, superimposing the
predicted scaling laws.

7. CONCLUDING REMARKS

We have presented the propagation characteristics of the lowest-loss TE01 mode in an example OmniGuide fiber
with a large core radius R = 30a. We have demonstrated that the material absorption and nonlinearities of the
cladding are suppressed by four or more orders of magnitude, holding forth the promise of optical fibers with
substantially lower losses and negligible nonlinearities compared to conventional silica fibers—even when highly
lossy and nonlinear materials are used for the multilayer cladding. (The same properties open the possibility
of fibers for currently inaccessible wavelengths.) The fiber properties are dominated by the geometry of the
core, and for a wide range of R follow generalized scaling relations that we have derived. Even though such
a large-core OmniGuide fiber is ostensibly highly multi-mode, the higher losses of the other modes creates a
modal-filtering effect that allows the fiber to operate in a single-mode fashion as long as the differential losses
are greater than the rate of coupling from imperfections. In this respect, and in many others, such a fiber
is analogous to the hollow metallic waveguides that have been extensively studied in the microwave regime.
Finally, since the lowest-loss TE01 mode is non-degenerate, it is immune to the polarization-mode dispersion
(PMD) effects that can limit bit rates in silica fibers. In future publications, we will consider many of these
issues in greater detail, as well as other topics such as input/output coupling and dispersion tailoring.
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