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Guided modes in photonic crystal slabs
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We analyze the properties of two-dimensionally periodic dielectric structures that have a band gap for
propagation in a plane and that use index guiding to confine light in the third dimension. Such structures are
more amenable to fabrication than photonic crystals with full three-dimensional band gaps, but retain or
approximate many of the latter’s desirable properties. We show how traditional band-structure analysis can be
adapted to slab systems in the context of several representative structures, and describe the unique features that
arise in this framework compared to ordinary photonic crystals.@S0163-1829~99!00832-2#
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I. INTRODUCTION

The discovery of photonic crystals, periodic dielectric m
terials with a photonic band gap, has opened up new meth
for controlling light, leading to proposals for many nov
devices.1 Straightforward application of these results to thr
dimensions requires a structure with a three-dimensio
band gap. Fabricating such structures, however, has be
challenge because they tend to have complex th
dimensional connectivity and strict alignme
requirements.2–5 Such designs have been the subject of ma
recent developments.6–10 An alternative system, the photon
crystal slab, has been proposed11–18that promises easier fab
rication using existing techniques. This is a dielectric str
ture that has only two-dimensional periodicity and uses
dex guiding to confine light in the third dimension. Photon
crystal slabs retain or approximate many of the desira
properties of true photonic crystals, but at the same time
much more easily realized at submicron lengthscales.
present in this paper a novel band-structure analysis of p
tonic crystal slabs, providing a systematic understanding
many important features of these systems.

In many ways, photonic crystal slabs are analogous
two-dimensional photonic crystals, such as those depicte
Fig. 1, and this analogy aids greatly in the visualization a
analysis of slab systems. Two-dimensional calculatio
however, cannot be applied directly to three-dimensio
slab structures. In particular, the band structure computed
a two-dimensional structure, as shown in Fig. 2, applies
three dimensions only to a structure that is infinitely ‘‘e
truded’’ in the third dimension. Moreover, these tw
dimensional bands correspond only to states that have
wave-vector component in the vertical direction~perpendicu-
lar to the plane of periodicity!. The inclusion of vertical
wave vectors produces a continuum of states depicted by
shaded region in Fig. 2, destroying the band gap of the t
dimensional structure. The restriction of a slab to fin
height recreates the band gap in the guided modes of a
but also forces a new analysis of the system that is fun
mentally three-dimensional and distinct from the tw
PRB 600163-1829/99/60~8!/5751~8!/$15.00
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dimensional calculations. New issues such as slab thickn
index contrast with the substrate, and mirror symmetry
sume a prominent role in determining the properties of p
tonic crystal slabs.

The paper is structured as follows. We first outline t
numerical methods that were used in our calculations.
then introduce slab band structures for two characteristic
tems, the slab analogues of Fig. 1, suspended in air.
selection of an appropriate slab thickness is discussed,
an estimate for the optimal slab thickness is derived usin
variational approach. Finally, the effects of different bac
grounds, the regions above and below the slab, are exam
in the context of the two example structures. Band structu
are given for solid, periodic, and symmetry-breaking ba
grounds.

II. COMPUTATIONAL METHOD

The computation of a slab band structure is performed
two stages. First, the states of a slab are computed in a
odic cell. Then, the light cone is calculated and overlaid
an opaque region on the band diagram. The resulting non
scured bands are the guided modes of the system, as
scribed in the following section.

The eigenstates of the slab are computed using preco
tioned conjugate-gradient minimization of the Rayleigh qu

FIG. 1. Two-dimensional photonic crystals.~a! Square lattice of
dielectric rods in air, with lattice constanta and radius 0.2a. ~b!
Triangular lattice of air holes in dielectric, with lattice constanta
and radius 0.45a. In both cases, the dielectric constant of the hig
index material is 12.
5751 ©1999 The American Physical Society
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tient in a plane-wave basis.19 Such a computation requires
periodic cell. The slab is already two-dimensionally period
and we impose a three-dimensional periodicity by assum
a periodic sequence of slabs separated by a sufficient am
of background region. Because the guided modes are lo
ized within the slab, the addition of periodic slabs at lar
intervals does not affect their frequencies noticably. T
nonguided modes are affected, but since they fall inside
light cone their exact frequencies are inconsequential.

The light cone is a continuous region indicating all po
sible frequencies of the bulk background. It is sufficient
compute only the lower boundary of the light cone, since
higher frequencies are automatically included. In the cas
a uniform background region, the boundary is simply t
wave vector divided by the index. For a periodic bac
ground, the boundary is the lowest band of the correspond
two-dimensional system, as is discussed in a later sec
and is computed using the two-dimensional version of

FIG. 2. Band diagrams for the photonic crystals from~a! Fig.
1~a! and ~b! Fig. 1~b!. The shaded region indicates the frequenc
of states introduced when vertical propagation~i.e., perpendicular
to the plane of periodicity! is permitted.
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method in Ref. 19. In all cases, the light cone is depic
with a uniform shading that does not reflect the varying d
sity of states in this region.

III. PHOTONIC CRYSTAL SLAB BAND STRUCTURES

Shown in Fig. 3 are the photonic crystal slab analogues
the two-dimensional structures from Fig. 1. These two s
tems, a square lattice of dielectric rods in air and a triangu
lattice of air holes in a solid dielectric slab, embody the tw
basic topologies of two-dimensional crystals, and are cha
teristic of many possible slab structures.@An air-bridge struc-
ture similar to Fig. 3~b! was fabricated in Ref. 18.# As seen
from Fig. 2, in two dimensions the rod structure has a ba
gap in the TM modes~magnetic field in plane! and the hole
structure has a band gap in the TE modes~electric field in
plane!. ~The hole structure also has a small band gap in
TM modes, but we focus here on the more robust TE g
which is larger and separates the lowest two TE bands.!

The corresponding projected band structures for the th
dimensional slab structures are shown in Fig. 4. Th
graphs, whose computation was discussed in the prev
section, illustrate many features that are common to all p
tonic crystal-band diagrams.

Perhaps the most important feature of the projected b
diagram, the element that distinguishes slabs from ordin
photonic crystals, is the light cone, a continuum of sta
indicated by a shaded region in the plot. The light cone c
sists of states, or radiation modes, that are extended infin
in the region outside the slab; we refer to this region as
‘‘background.’’ Guided modes, which are states localized
the plane of the slab, can only exist in the regions of the b
diagram that are outside the light cone. The primary inter
in the radiation modes lies in how they interact with a
constrain these guided modes.

Any state that lies below the light cone in the band d
gram cannot couple with modes in the bulk backgrou
Thus, the discrete bands below the light cone are guide

s

FIG. 3. Photonic crystal slabs analogous to the two-dimensio
structures from Fig. 1.~a! Square lattice of rods in air with heigh
2.0a. ~b! Triangular lattice of holes in a dielectric slab with thick
ness 0.6a. ~Other parameters are as in Fig. 1.! Both slabs are sus
pended in air.
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PRB 60 5753GUIDED MODES IN PHOTONIC CRYSTAL SLABS
the states are infinitely extended within the plane of the s
but decay exponentially into the background region. T
confinement is analogous to total internal reflection, and
due to the guided modes seeing a higher effective inde
the slab than in the background regions~air, in this case!.
When a guided band reaches the edge of the light con
becomes a resonant state: it extends, albeit with low am
tude, infinitely far into the background, and cannot be u
to permanently confine light within the slab. We restrict o
discussion, and our use of the term ‘‘guided modes,’’ to tr
localized states, which grow arbitrarily small as the distan
from the slab becomes large.

The reason we refer to these systems as ‘‘photonic c
tal’’ slabs is that, like their two-dimensional brethren, th
have a band gap—but not of the traditional sort. A ‘‘ba
gap’’ in this case is a range of frequencies in which
guidedmodes exist. It is not a true band gap because th
are still radiation modes at those frequencies. Still, the l
of guided modes in the band gap gives rise to many of

FIG. 4. Projected band diagrams corresponding to the two s
in Fig. 3. Whether states are even or odd with respect to the h
zontal mirror plane of the slab is indicated by open or filled circl
respectively.
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same phenomena that occur in two-dimensional cryst
such as the ability to confine light in the plane to waveguid
or resonators.15 ~The presence of the radiation modes in t
gap has the consequence that resonant cavity modes
eventually decay into the background.! The fact that light in
the band gap of the slab is forbidden from propagating in
plane of the slab, and can only radiate into the backgrou
was used in Ref. 13 to design an efficient light emitti
diode ~LED!.

As in two dimensions, one is able to decompose
guided modes into two noninteracting classes. The lack
translational symmetry in the vertical direction, howev
means that the states are not purely TM or TE polariz
Instead, due to the presence of a horizontal symmetry p
bisecting the slab, the guided bands can be classified acc
ing to whether they are even or odd with respect to refl
tions through this plane, and are indicated on the band
gram by hollow or filled circles, respectively. As shall b
seen below, these even and odd states have strong sim
ties with TE and TM states, respectively, in two dimensio
~In fact, in the mirror plane itself, the even and odd states
purely TE, and TM, respectively.! It is not surprising, then,
that the slab of rods has a gap in its odd modes@Fig. 4~a!#,
and the slab of holes has a gap in its even modes@Fig. 4~b!#.

In Fig. 5,z-components of the electric and magnetic fiel
are shown for the lowest-order odd and even guided mo
from the rod and hole slabs at theM andK symmetry points,
respectively. It is apparent from these figures that these st
are strongly guided within the thickness of the slab. Mo
over, within the slab they are TM- and TE-like, and close

bs
ri-
,

FIG. 5. Lowest-frequency states of the rod and hole structu
from Fig. 3 atM andK, respectively, depicted in the unit cell. Th
shading indicates thez components of the electric and magne
fields, respectively, which happen to be positive through the u
cell for these states. Outlines of the rods/holes are shown in w
~a! Vertical cross section.~b! Horizontal cross section. In both case
the cross-sections bisect the holes or rods.
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5754 PRB 60STEVEN G. JOHNSONet al.
resemble the corresponding states in the two-dimensi
system.

Higher-order states in the slabs are formed in two wa
First, they can gain additional nodes or other structure in
horizontal plane, corresponding to higher-order states in
two-dimensional system. Second, they can be formed
adding vertical structure such as horizontal nodal planes
the case of the rods, the lowest higher-order odd state i
the first type, and is depicted in Fig. 6~a!. The second odd
mode at theM point in the holes slab, as shown in Fig. 6~b!,
is of the second type—it corresponds to the lowest-or
even mode modified by the addition of a single horizon
nodal plane. Note that adding a nodal plane bisecting the
transforms a state from odd to even and vice versa, so e
and odd higher-order modes are not necessarily TE-like
TM-like, respectively.

Higher-order modes of the second type do not corresp
to excitations in the two-dimensional system, and are resp
sible for destroying the gap if the slab becomes too thick
is discussed in the following section.

IV. EFFECTS OF SLAB THICKNESS

The slab thickness plays an important role in determin
whether a photonic crystal slab has a band gap in its gu
modes. Shown in Fig. 7 is a graph of the band gap size
function of slab thickness for the rod and hole slabs fr
Fig. 3. The existence of an optimal thickness for each sla
easily understood. If the slab is too thick, then higher-or
modes can be created with little energy cost by adding h
zontal nodal planes. Such modes will lie only slightly abo
the lowest-order mode, preventing any gap. If the slab is
thin, then the slab will provide only a weak perturbation
the background dielectric constant. Guided modes will s
exist, but they will hug the edge of the light cone and be o
weakly guided; any gap will be miniscule. Below, we pr
pose a method for estimating slab thicknesses that prod
large gaps, and explain the sharp distinction seen in Fi
between the optimal thicknesses for the rod and hole sla

We postulate that the optimal thickness will be on t

FIG. 6. ~Color! ~a! Vertical cross section ofEz for the first odd
~TM-like! excited state atM in the rod structure from Fig. 4~a!. ~b!
Vertical cross section ofHz for the first TE-like~but odd! excited
state atK in the hole structure shown in Fig. 4~b!.
al

s.
e
e
y

In
of

r
l
ab
en
d

d
n-
s

g
d
a

is
r
i-

o

ll
y

es
7

s.

order of half the two-dimensional gap-bottom waveleng
The justification for this is based on the fact that the wa
length is the lengthscale for variations in field amplitude a
given frequency.~We use the gap-bottom frequency inste
of, say, midgap, because the state at the bottom of the ga
the basis for both the state at the lower edge of the slab
and the excited states at upper edge.! If the slab thickness is
a wavelength or more, then there will be little energy barr
to creating a higher-order state via a nodal plane. If the s
thickness is less than half a wavelength, on the other ha
then the mode cannot be strongly confined within the sla

Only the frequency, rather than the wavelength, of the g
bottom is known, however. An effective dielectric consta
must be determined in order to compute the correspond
wavelength. We accomplish this by constructing an estim
for the slab gap-bottom state using the two-dimensio
wave function, and evaluating the dependence of its
quency expectation value on the vertical wavelength. T
wave function can be approximated by:

uH̃&5E H
⇀

0~x,y!eikza~k!dk. ~1!

Here,H
⇀

0 is the eigenfunction of the two-dimensional syste
at the lower edge of the gap. Thea(k) amplitudes are as
sumed to be chosen so that they produce a state stro
localized within the slab. A Fourier basis is used for thez
dependence so that the vertical wave vector may be an
plicit parameter. We have chosen this wave function ba
on our experience~e.g., in Fig. 5! that the lowest-order
guided band in the slab system is similar in appearance to
corresponding two-dimensional state with the addition
vertical confinement.@We note that the field in Eq.~1! is not
divergenceless, however.#

We now evaluate the energy~i.e., frequency! of this state.
Since the state is assumed to be localized within the slab
frequency should not be much affected if we evaluate it in
infinitely thick slab, which can be done exactly.~In the case
shown in Fig. 5, more than 90% of the computed wave fu
tion’s energy was found to lie within the height of the slab!
In this approximation, the frequency is found to be one o

FIG. 7. Gap size~as a percentage of midgap frequency! versus
slab thickness for the two slabs from Fig. 3.
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vTM
2 5

^H̃u ¹
⇀

3
1

«~x,y!
¹
⇀

3uH̃&

^H̃uH̃&
5v0

21
c2^k2&

«̄TM

~2!

vTE
2 5

^Ẽu ¹
⇀

3 ¹
⇀

3uẼ&

^Ẽu«~x,y!uẼ&
5v0

21
c2^k2&

«̄TE

, ~3!

where E represents the electric field, andv0 is the two-
dimensional frequency. Equations~2! and ~3! are equivalent
only for divergenceless~transverse! fields. In the case of Eq
~1!, which is not transverse, we use Eq.~2! for TM fields and
Eq. ~3! for TE fields, for simplicity of the resulting expres
sion. In both cases, the vertical wavelength is related to
quency simply by an effective dielectric constant that d
pends upon the polarization of the corresponding tw
dimensional state, and is given by

«̄TE5
^E0u«uE0&

^E0uE0&
[^«&E;«high ~4!

«̄TM
215

^H0u«21uH0&

^H0uH0&
[^«21&H;« low

21. ~5!

In the TE case, the dielectric constant is weighted by
electric field, which is concentrated in high dielectric for t
lower bands,1 and thus one should get an«̄ near to the high
dielectric constant. For the example of air holes in dielec
@Fig. 1~b!#, the topmost state of the bottom TE band in t
two-dimensional system gives an«̄ of 5.06 from Eq.~4!.
This value, while greater than the uniform-weight mean« of
3.92, is still far from 12~the high dielectric!, as a result of
the structure’s dielectric veins being so thin.~This structure
has both a TE and a TM gap, but we focus on the TE g
corresponding to the even modes.! In Eq. ~5!, the TM case,
we average the inverse dielectric constant, a mean that fa
lower values. Moreover, the mean is weighted by the m
netic field, which tends to be less in the high dielectric th
the electric field.~The magnetic field must loop around th
electric field in the high dielectric, since the relationship
the magnetic and electric fields is the same as that of a
rent loop and its magnetic field.! Therefore, the TM average
dielectric should be closer to the low dielectric constant.
the case of the dielectric rods in air@Fig. 1~a!#, Eq.~5! for the
highest-frequency mode of the bottom TM band in tw
dimensions produces an«̄ of 1.25 ~versus the uniform-
weight inverse mean of 1.13!.

From the above calculations, then, an estimate for
optimal slab thickness is given by

slab thicknessh;
1

2vgap-bottomA«̄
. ~6!

Here, the frequency is given in units ofc/a and the thickness
is in units of a. The effective dielectric constant«̄ can be
estimated from the averages in Eqs.~4! or ~5!, according to
whether a TE or a TM gap is of interest, and can use a
weighting factor either the state from a two-dimensional c
culation or simply a uniform value.
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When applied to the rod and hole systems with the eff
tive dielectric constants computed above, Eq.~6! predicts
optimal thicknesses of 1.6a and 0.7a, respectively, com-
pared to the computed gap maxima at 2.3a and 0.6a from
Fig. 7. The estimates come close enough to the optimal
ues that large gaps are produced~whereas there would be n
gap at all if the two estimates were applied to each othe
systems!. Moreover, this approximation explains how th
sharp difference in optimal thickness between the rod and
hole systems derives from the polarizations of the mo
exhibiting the gap.

It should be noted that the size of the gap is not neces
ily the only consideration in selecting the slab thickness. F
example, when localizing states in a resonant cavity, lon
decay times can sometimes be achieved by using slig
thicker slabs—this causes the states to be more local
within the slab, and also pulls the frequencies down to wh
the density of radiation modes is lower~since the density of
states in vacuum goes asv2!. It is often better to tune pa
rameters, such as the slab thickness, based upon the a
phenomenon that is being optimized, rather than indirec
via the size of the band gap. Nevertheless, the approxima
in Eq. ~6! gives a reasonable starting point for subsequ
fine-tuning.

V. SLABS WITH SOLID BACKGROUNDS „SANDWICHES…

So far, we have focused on the idealized system of sl
suspended in air. We now turn to the case where the ba
ground regions above and below the slab are occupied
uniform dielectric material forming a substrate or ‘‘san
wich’’ as shown in Fig. 8.~We focus first on having the
same dielectric above and below the slab in order to main
mirror symmetry; the effects of symmetry breaking are co
sidered in a later section.! The dielectric constant of the sub
strate is 2, but the holes and the space between the
continue to be occupied by air. The resulting band structu
are given in Fig. 9. The background index remains low
than the effective index in the slab, and hence index guid
is still able to produce the guided bands~and band gap!
evident in Fig. 9.

While such a substrate will have a finite thickness in
ality, the localization of the guided modes within the sl
means that the substrate can be considered infinite as lon
it is sufficiently thick.~In this case, a substrate thickness
several wavelengths is sufficient for the guided mode am
tude to be negligible beyond the substrate.! Thus, the light
cone states are those of an infinite uniform dielectric, wh
frequencies are reduced from those in vacuum by a facto

FIG. 8. Side view of the slabs from Fig. 3 with a uniform
low-index background above and below the slabs.~a! is the rod slab
and~b! is the hole slab. The background has a dielectric constan
2.0 and all other parameters are as in Fig. 3.
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5756 PRB 60STEVEN G. JOHNSONet al.
the index. The increased index above and below the slab
has the effect of pulling down the frequencies of the guid
modes, allowing them to remain under the now-lowered li
cone. In addition, the guided modes are somewhat
localized—for example, 89% of the energy of the lowe
band for the hole structure atK is within the height of the
slab for the solid background, versus 96% for an air ba
ground.

FIG. 9. Projected band diagrams for the structures shown in Fig

FIG. 10. Side view of the slabs shown in Fig. 3 with a period
background formed by ‘‘extruding’’ the structures with a low-inde
material ~dielectric constant 2.0!. All other parameters are as i
Fig. 3.
lso
d
t
ss
t

-

VI. SLABS WITH PERIODIC BACKGROUNDS

The effective index above and below the slab can be
duced from that of a solid background by using an ‘‘e
truded,’’ low-index version of the slab, as shown in Fig. 1
For example, in the case of the hole slab, the holes ext
through the low-dielectric substrate as well as through
slab. The resulting band structures are shown in Fig. 11,
again demonstrate guided modes and a band gap. Su
structure has advantages both in ease of fabrication~both
slab and substrate can be etched at the same time! and in

8.
FIG. 11. Projected band diagrams for the structures shown

Fig. 10.

FIG. 12. Side view of the slabs shown in Fig. 10~extruded
backgrounds! with the upper background replaced by air. All oth
parameters are as in Fig. 10. This background breaks the m
symmetry of the two photonic crystal slabs.
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confinement of resonant cavity states~since localized state
couple less strongly with a lower-index background!. The
periodicity of the background does not, however, produ
useful photonic crystal slab effects by itself. Even if the
were some sort of band gap in the background state
would lie at higher frequencies than the band gap of
guided modes and would therefore not provide any ad
tional confinement capabilities.

The light cone in this system consists of all the sta
existing in the bulk background, an infinitely extruded tw
dimensional photonic crystal. This is similar to the shad
regions from Fig. 2, except that the material has a sma
index. That is, the lower edge of the light cone is simply t
lowest band of the two-dimensional system. The fact that
lowest band of the two-dimensional structure forms a low
bound for the frequencies of the extruded structure in th
dimensions may not be immediately apparent, and so
consider it below.

Because the dielectric function of the bulk backgroun
«(x,y), has translational symmetry in thez direction, any

FIG. 13. Projected band diagrams for the structures show
Fig. 12. The bands can no longer be segregated into even and
modes, and there is no longer a band gap in the guided mode
e

it
e
i-

s

d
r

e
r
e
e

,

background state’s magnetic field can be written in the fo

uH&5 H
⇀

~x,y!ei ~kz2vt !. ~7!

Such a field is manifestly propagating in the positive-z direc-
tion ~upwards! for positivek and downwards for negativek.
Therefore, the group velocitydv/dk, which can be ex-
pressed as the upwards flux divided by the energy den
~using the derivative of the eigenvalue equation!, must have
the same sign ask. It then follows that the minimum fre-
quency occurs at zerok, at which point the solutionuH& is
simply the two-dimensional eigenstate. This argument ho
at each point in the Brillouin zone, and so the light cone
bounded by the lowest two-dimensional band.

VII. SLABS WITH SYMMETRY-BREAKING
BACKGROUNDS

It is also possible to have a background that is not sy
metric, for example a substrate below the slab and air ab
the slab.~Rod and hole slabs with solid substrates have b
studied experimentally, e.g., in Refs. 20–22.! The light cone
in this case is the union of the light cones for the bac
grounds above and below the slab. Such a structure is
picted in Fig. 12, in which the periodic backgrounds from t
previous section here lie only below the slabs. The result
band diagram is given in Fig. 13.

The most important consequence of a symmetry-break
background is that the guided modes can no longer be c
sified as even or odd. Thus, there is no longer any band
in the guided modes, and the photonic crystal properties
the slab are ostensibly lost. If the guided modes are su
ciently localized within the slab, however, so that the ba
ground is only a small perturbation, the wave functions m
still be approximated as even or odd and some effects of
band gap will persist.

In order to maintain the distinction between even and o
guided modes, it is only necessary to preserve mirror sy
metry where the guided modes have non-negligible am
tude. Thus, a solid substrate can be used below the slab~and
not above! with no effects on the band gap as long as t

in
dd

FIG. 14. A solid substrate may lie below a slab without affe
ing the band structure by being sufficiently far from the slab.~a!,
~b!, ~c!, and ~d! depict such solid substrates below the symme
and antisymmetric rod and hole structures from Figs. 10~a!, 12~a!,
10~b!, and 12~b!, respectively.
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substrate is separated from the slab by a buffer region th
sufficiently thick. Shown in Fig. 14 are examples of how
solid substrate might be used below the structures from
previous two sections without affecting the band structu
significantly.

VIII. CONCLUSION

Photonic crystal slabs are an important system in the p
tical application of photonic crystals, and the band-struct
formalism provides a powerful tool in their analysis. Unlik
two- and three-dimensional photonic crystals, the band st
tures for slabs are projected and have the unique feature
light cone enveloping the states. The presence of the l
cone means that a complete band gap is impossible—
waveguides and resonant cavities are possible.15 Further-
tt

li

lo

rt

.

.
T.

.
J.

D

B

is

e
s

c-
e

c-
f a
ht
ill,

more, the presence of a band gap in the guided mode
useful in its own right. For example, Fanet al. have pro-
posed using slab band gaps to prevent in-plane losses
LED emission.13 Perhaps the greatest promise of photo
crystal slabs, however, is that they will allow exciting resu
from two-dimensional crystals such as waveguide bend23

and channel-drop filters24 to be implemented easily on opt
cal and infrared lengthscales.
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