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Floquet Chern insulators of light
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Achieving topologically-protected robust transport in optical systems has recently been of

great interest. Most studied topological photonic structures can be understood by solving the

eigenvalue problem of Maxwell’s equations for static linear systems. Here, we extend

topological phases into dynamically driven systems and achieve a Floquet Chern insulator of

light in nonlinear photonic crystals (PhCs). Specifically, we start by presenting the Floquet

eigenvalue problem in driven two-dimensional PhCs. We then define topological invariant

associated with Floquet bands, and show that topological band gaps with non-zero Chern

number can be opened by breaking time-reversal symmetry through the driving field. Finally,

we numerically demonstrate the existence of chiral edge states at the interfaces between a

Floquet Chern insulator and normal insulators, where the transport is non-reciprocal and uni-

directional. Our work paves the way to further exploring topological phases in driven optical

systems and their optoelectronic applications.
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The field of topological photonics seeks to classify and
demonstrate various topological phases in Maxwell’s
equations, and to apply their associated robust states in

optical systems1–3. Though initially inspired by progress in
electronic systems, topological photonics has recently developed
in multiple directions using its unique ingredients, such as the
easy incorporation of non-Hermiticity via material gain4–6 or
radiative loss7. Many important applications of topological pho-
tonics, such as optical isolators and circulators, are non-reciprocal
in nature, which means they are exclusive for topological phases
in systems with broken time-reversal symmetry. In static struc-
tures, such topological phases are often achieved by starting with
engineered degeneracies between two bands of a PhC—in an
either linear (Dirac) or quadratic fashion—followed by a static
perturbation that breaks reciprocity, such as gyromagnetic
effects8–11. The resulting systems are often referred to as Chern
insulators, as their topological gaps can support uni-directional
modes, whose transport is protected by the topological invariant
of Chern numbers. Another important method to break reci-
procity is through temporal modulation12, yet the understanding
of topological phases in dynamically driven optical systems is
often limited to tight-binding models of coupled resonators13–15
or waveguides16–18.

Here, we study Floquet topological phases in general nonlinear
PhCs under external drive and show how non-reciprocal transport
can be achieved in a Floquet Chern insulator. We start by for-
mulating the Floquet eigenvalue problem of Maxwell’s equations,
and show it is necessarily non-Hermitian but with real eigenvalues
in many cases. After elucidating what time-reversal symmetry (T)
entails in driven systems, we engineer the external drive to break T
and to close and re-open Floquet gaps to change bands Chern
numbers. Finally, through numerical simulations of realistic
designs, we present an explicit example of a Floquet Chern insu-
lator, along with the dispersions and locations of uni-directional
chiral edge states at its interfaces with normal insulators.

Results
Floquet gaps and Floquet eigenvalue problem. We start by
showing that new bandgaps—Floquet gaps—can be created in
driven nonlinear PhCs, which do not exist in the static band
structure. We consider a two-dimensional PhC that involves
second-order optical nonlinear materials such as LiNbO3.
The static band structure is schematically shown in Fig. 1b, and
we focus on two isolated bands: |1〉 in blue and |2〉 in red, which
are separated by a gap in the spectrum. When an external driving

field at frequency Ω is applied along the normal direction, the
discrete spatial translation symmetry of the system is preserved,
but the continuous temporal translation symmetry is broken,
leaving only a discrete temporal translation symmetry. Accord-
ingly, each band creates copies of itself—Floquet bands—shifted
up or down in the spectrum by mΩ, where m is an integer. When
Ω is slightly larger than the static gap, two of the Floquet bands,
|1, m= 0〉 and |2, m=−1〉, cross, and the coupling between them
V21 opens a new gap—Floquet gap—that is controlled by the
driving field. When the driving field is weak, the size of the
Floquet gap is linearly proportional to the coupling strength |V21|,
meaning this gap can only be closed at momentum (k) points
where the complex coupling term vanishes: V21(k)= 0. We later
show these singular points represent the topological phase tran-
sitions between Floquet Chern insulators and normal insulators.

Next, we present the Floquet eigenvalue problem of Maxwell’s
equations in this system. The result (Eqs. (1a) and (1b)) is
achieved by adding time-dependent nonlinear permittivity tensor
ϵnlðtÞ—determined by both the nonlinear material and the
driving field—into the static eigenvalue problem1.

AΨ ¼ i∂t ½ðB0 þ BnlÞΨ& ð1aÞ

A ¼
0 i∇ ´

'i∇ ´ 0

! "
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0 0

! "

ð1bÞ
where ϵl is the linear permittivity tensor, and Ψ(t)= (E, H)T are
the complex electromagnetic fields. Here, we focus on instanta-
neous nonlinear processes and assume all materials involved are
dispersion-less and loss-less for simplicity, although dispersive
medium can potentially also be included19. Compared to the
Floquet eigenvalue problem of Schrödinger equation20–22, our
problem is different in a few unique ways. First, it is necessarily
non-Hermitian, as the i∂t term cannot commute with the Bnl(t)
term on the right hand side of Eq. (1a), though each individual
term is Hermitian. Second, interestingly, the Floquet eigenvalues
can be guaranteed as real under some conditions discussed later.
We solve the Floquet states Ψ(t), which are the eigenstates of this
linear eigenvalue problem, by expanding them in the Floquet
basis j;mj i ¼ jj ieimΩt as ΨðtÞ ¼ eik(r'iεtP

jm
cjm j;mj i. Here, ε is the

quasi-energy; |j〉 satisfies the static eigenvalue problem of
e−ik⋅rAeik⋅r|j〉= ωjB0|j〉 and therefore forms a complete basis of
spatial modes. Similar approach has also been used in solving the
Floquet eigenstates of periodic paraxial equations23,24. The
detailed solution is presented in Supplementary Note 1 with
discussions in Note 2.

Topological defects in momentum space. To better illustrate
some of the key concepts, we focus on an example when two
bands become close to each other under driving ω2− ω1 ≈Ω,
while both are far away from other bands. Hence, we restrict the
trial solutions to the subspace spanned by the two bands for
simplicity; however, the presented formalism is general and not
limited to the two-band model. Under a further rotating-wave
approximation, the Floquet eigenvalue problem can be simplified
into:

ω2 'Ω 'ΩV21

0 ω1
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As shown, this generalized eigenvalue problem is indeed non-
Hermitian, but its eigenvalues can be guaranteed as real under
some conditions. For example, when the driving field is exactly
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Fig. 1 Floquet bands and gaps in a periodically driven nonlinear photonic
crystal. a Schematic of a nonlinear photonic crystal (PhC) placed in a
monochromatic driving field Ed at frequency Ω. b Due to the periodic drive,
static bands of the PhC (solid lines) create copies of themselves—Floquet
bands (dashed lines)—by shifting up or down in the spectrum. c Two of the
Floquet bands |1, m= 0〉 and |2, m=−1〉 cross at ±k1. Their coupling term
V21 opens a new gap Eg—Floquet gap—and its size is linearly proportional
to the magnitude of their coupling strength |V21| under weak drive
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on-resonance, namely ω2= ω1+Ω, the two Floquet eigenvalues
can be further simplified as: ε± * ω1 ± 2jV21j

ffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
. The nor-

malized gap size is linearly proportional to |V21|, whose magni-
tude is determined by both the modal overlap and the driving
field strength. Furthermore, we note that both eigenvalues are
necessarily real as long as we are coupling bands both at positive
(or negative) frequencies (ω1ω2 > 0). Physically, these scenarios
are analogous to the depletable sum-frequency generation: power
oscillates between a depletable pump ω1 and the sum-frequency
beam ω2, but their total photon number remains fixed in
time25,26. On the other hand, complex eigenvalues may appear
when a positive-frequency mode is coupled to a negative-
frequency mode (ω1ω2 < 0) and the resulting Floquet modes
may grow exponentially in time. These scenarios are analogous to
optical parametric amplification where a non-depletable pump
beam (|ω1|+ |ω2|) amplifies the signal and idler beams26. In this
Letter, we focus on the first situation where Floquet eigenvalues
are real. Topological phase transitions can only happen at k
points where the gap is closed, requiring the coupling term V21=
0. This is equivalent to requiring the complex phase argV21 to be
undefined, or to be a topological defect27, in k space. The topo-
logical phase transitions, being topological defects, are thus robust
against any perturbations that modify the complex coupling
terms V21, as such perturbations cannot get rid of the topological
phase transitions but shift their positions in the 3D parameter
space of (kx, ky, Ω).

Next, we show how such topological defects can be synthesized
by engineering the polarization of the driving field. Our
considered PhC sample is shown in Fig. 2a, which is consisted
of a hexagonal lattice, with lattice constant a, of regions made of
silicon (ϵ ¼ 12:25) and regions made of z-cut LiNbO3
(ϵxx ¼ ϵyy ¼ 4:97, ϵzz ¼ 4:67). Both inversion and rotation
symmetries are broken to lift all degeneracies at high-symmetry
k points. The static band structure is calculated using Finite
Element Methods (see Methods section for details) and shown in
Fig. 2b. In the static structure, TE bands (Hz, Ex, Ey; red) are
decoupled from the TM bands (Ez, Hx, Hy; blue), due to the
mirror symmetry in the z direction. However, under a driving
field polarized in the xy plane, TE and TM bands are coupled:
specifically, the external field Ed

x;y drives the second-order optical
nonlinearity of LiNbO3, χð2Þzxx and χð2Þzyy , and creates ϵxz;zx and ϵyz;zy
terms in the effective permittivity tensor of LiNbO3. These four
terms break the mirror symmetry in z and couple the Ez
component of a TM mode to the Ex,y components of a TE mode.
By analyzing the nonlinear optical property of LiNbO3, one can
show only TE-TM bands are coupled via modulation in this
setup, while the Floquet TE-TE or TM-TM bands will not couple
to each other (see Methods for details).

We found that time-reversal symmetry (T) in the Floquet
eigenvalue problem is defined as V21ðkÞ ¼ V?

21ð'kÞ. Further-
more, we found T is preserved when the driving field is linearly
polarized and no topological Floquet gap can be opened. On the
other hand, elliptically polarized driving fields break T. The
condition on T in these two scenarios can be intuitively
understood by analyzing the temporal evolution of the instanta-
neous optical principle axes of LiNbO3: under a linearly polarized
monochromatic drive, one optical axis remains static, while the
other two oscillate in a time-reversal symmetric manner. In
comparison, under an elliptically polarized drive, all three optical
axes rotate around the z axis at the driving frequency and this
spinning behavior breaks T. Detailed derivation is presented in
Supplementary Notes 4 and 5.

The properties associated with time-reversal symmetry are
confirmed in our simulation results of the modal coupling terms
V21 as shown in Fig. 2c, d. Specifically, under a linearly polarized

drive (T-symmetric), V21 reduces to 0 at pairs of opposite k points
that are related by T-symmetry, shown as bright spots in Fig. 2c.
Furthermore, each pair of topological defects carry opposite
topological charges q, which are defined through the winding
numbers of the complex phase:

q ¼ 1
2π

I

C
dk ( ∇k argV21: ð3Þ

Here C is a closed path in k space that encircles the defect in the
counter-clockwise direction. Consequently, the Floquet gap can
be closed and re-opened by tuning the driving frequency through
a critical value ΩL

Ca=2πc ¼ 0:375 (dashed circle); however, the
transitions always happen at a pair of opposite k points and the
Floquet bands are always topologically trivial. See Supplementary
Note 6 for the definition of Berry curvature and Chern number of
Floquet bands. On the other hand, under an elliptically polarized
drive (T-broken), topological defects appear without any
symmetry (Fig. 2d). As a result, the Floquet gap can close and
re-open at a single k point, as V21(k) is no longer related to
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Fig. 2 Topological charges in modal coupling terms and the influence of
time-reversal symmetry. a Nonlinear PhC unit cell involving Si and z-cut
LiNbO3. The centers of the Si and LiNbO3 rods are at (0:55abx þ a=2
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p
by)

and (abx þ a=
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p
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b Static modes are separated into TE (red) and TM (blue) bands. Under a
driving field polarized in the xy plane, a TE band is coupled to a TM band
through χ(2) of LiNbO3. Their coupling term V21 is controlled by the
polarization of the drive. c Under a linearly polarized drive ('0:13bx þ by),
pairs of vortices with opposite topological charges (±1) are found in the
complex phase argV21, located at opposite k points. At these k points, the
modal coupling term vanishes and 1/|V21|→∞. d Under an elliptically
polarized drive, bx ' ð0:5' iÞby, vortices in argV21 appear without any
symmetry. Topological phase transition is achieved between a Floquet
normal insulator and a Floquet Chern insulator through a single topological
charge at ΩE

C (dashed circle)
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V21(−k). In our system, this topological phase transition happens
at another critical value ΩE

Ca=2πc ¼ 0:381 (dashed circle).

Topological phase transition through unpaired topological
defects. Next, we study topological phase transitions between
Floquet Chern insulators and normal insulators and show these
transition points are singular points in the parameter space of (kx,
ky, Ω) as shown in Fig. 3a. First, the Floquet band gap closes at the
transition point, but grows linearly as Ω deviates from Ω2
(Fig. 3b). Furthermore, we compare the Floquet spectra near the
transition point: the bands are gapped when either Ω >Ω2 (left
panel of Fig. 3d) or Ω <Ω2 (right); however, the two Floquet
bands touch at a singular point in k space in a linear fashion
when Ω=Ω2 (middle). We note the small difference between Ω2

and ΩE
C arises from the difference between full Floquet for-

mulation we adopt here and results under rotating-wave
approximation. The gap size grows linearly as the system para-
meter deviates from a single point in the three-dimensional
parameter space of (kx, ky, Ω), therefore, the transition points can
also be interpreted as synthetic Weyl points28–31. We further
track the Chern numbers of the Floquet bands as Ω is varied: the
Chern number of the top (bottom) band changes by −1 (1) as the
modulation frequency reduced from Ω1a/2πc= 0.395 (Floquet
normal insulator) to Ω3a/2πc= 0.37 (Floquet Chern insulator),
through Ω2a/2πc= 0.383 (Fig. 3c). In addition, the Chern num-
bers of the two bands jump in opposite directions with their sum
fixed at 0, which confirms our system is a Chern insulator.
Similarly, the Floquet gap can also be closed and re-opened under
linearly polarized driving fields. For example, by tuning Ω

through a critical value of ~Ω2a=2πc ¼ 0:375, the Floquet gap is
closed and re-opened, but at a pair of opposite k points. Through
this process, all bands remain topologically trivial with zero
Chern numbers due to the presence of T-symmetry.

Chiral edge states induced by driving field. Finally, we show the
existence of chiral edge states at the interfaces between a Floquet
Chern insulator (gray region in Fig. 4a) and normal insulators
(white region). In this super-cell geometry, we apply periodic
boundary conditions in both x and y directions, and these two
insulators have two interfaces, top and bottom. The topological
region shares the same setup as the right panel of Fig. 3d; the
trivial region is driven at the same frequency Ω3a/2πc= 0.37, but
with a linearly polarized light (bx þ 0:3by) that preserves T.
Through a super-cell calculation (Supplementary Note 7), all
bands in the system are computed. Aside from the bulk bands in
the trivial and nontrivial regions, we see chiral edge states (red
and blue lines) emerge at the two interfaces with frequencies
going across the topological band gap. Their mode profiles fur-
ther confirm these are indeed edge states localized at the top (red)
and bottom (blue) interfaces (Fig. 4c); in comparison, a bulk
mode (black) is delocalized along the y-direction. As a control
experiment, when the driving frequency is changed to Ω1 such
that all regions are topologically trivial, no gapless chiral edge
state is observed in such scenario (Fig. 4d). This confirms the
number of chiral edge states and their traveling directions are
consistent with the Floquet topological band theory results for
electronic systems32. We note that the photon number is con-
served in edge state transport. This is to be distinguished from a
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previous study using nonlinear parametric driving by Peano
et al.33, where the photon number is not conserved, and the edge
state transport becomes inelastic. Although helical spatial mod-
ulation of waveguide arrays achieves Floquet Chern insulators in
the transverse plane16, our approach breaks reciprocity for the
system as a whole and thus enables optical isolation through the
chiral edge states.

Discussion
To sum up, we present a general framework to achieve Floquet
topological phases in nonlinear photonic crystals, defined by the
Floquet eigenvalue problems in Maxwell’s equations. We show
that Floquet band gaps can be closed and re-opened in a virtually
arbitrary fashion by engineering the driving field (polarization and
frequency). Using this framework, we propose and numerically

demonstrate a Floquet Chern insulator of light by breaking time-
reversal symmetry using elliptically polarized driving fields. We
show the Floquet topological phase transitions are through sin-
gular points of modal coupling terms in 3D parameter space.
Finally, we numerically demonstrate the existence of chiral edge
states at the interfaces between topologically trivial and non-trivial
regions. Our work paves the way to further classifying and rea-
lizing topological phases in dynamically driven optical systems
and their optoelectronic applications in communication and signal
routing. Our method of inducing Floquet topological phases is
also applicable to other wave systems, such as phonons, excitons,
and polaritons.

Note added: During the completion of this work, we became
aware of a related study by Fang and Wang34.

Methods
Numerical simulation of Maxwell equation using Finite Element Methods. The
band structures and mode profiles are calculated using Finite Element Methods in
COMSOL Multiphysics 5.3a. Specifically, we first compute the static band struc-
tures and mode profiles using the linear permittivity in a 2D geometry with per-
iodic boundary conditions. The modal overlaps V21(k) are calculated by taking the
inner product between the two modes mediated by external drive and nonlinear
susceptibility of the LiNbO3. Finally, we input these coupling terms into the master
equation (Supplementary Eq. (4)) to calculate the eigenvalues, mode profiles, Berry
curvature, and Chern numbers of the Floquet bands.

Band coupling via the second-order optical nonlinearity of LiNbO3. Under an
driving field polarized in the xy plane, TE-TM bands are coupled to each other
through χð2Þzxx (d31) and χð2Þzyy (d32) terms of LiNbO3, both of which are 5 pm⋅V−135.
On the other hand, the Ez components of TM modes cannot couple to each other
via modulation, because the relevant terms, χð2Þzxz and χð2Þzyz , are both 0 in LiNbO3.
Similarly, the Ex,y components of TE modes cannot couple via modulation either.
The resulted Floquet gap size due to band coupling is linearly proportional to both
the χ(2) coefficients and the driving field strength. We present the estimation on the
Floquet gap size that can be possibly achieved in realistic nonlinear materials in
Supplementary Note 8.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Fig. 4 Characterizations of chiral edge states at the interfaces between a
Floquet Chern insulator and normal insulators. a Schematic of the super-
cell geometry with a Floquet Chern insulator placed in between two Floquet
normal insulators. The Floquet Chern insulator is the same setup as the
right panel of Fig. 3d. All regions are driven at the same frequency Ω3, and
the associated gap Chern number for the Floquet insulator is Cg= 1. Further
details of the super-cell setup can be found in Supplementary Note 7. b The
dispersion along kx axis shows two types of modes: bulk bands in the
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frequency Ω1 before the topological phase transition. d Comparison among
the mode profiles of a bulk state (black), the chiral edge states localized at
the top interface traveling to the left (red) and at the bottom interface
traveling to the right (blue)
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Supplementary Note 1: Solving the Floquet eigenvalue problem by modal decomposition

In this section, we present our general formalism to solve the Floquet eigenvalue problem of

a nonlinear photonic crystal driven by an external monochromatic field. According to the Floquet

theorem, the trial solution for electromagnetic fields propagating in the photonic crystal can be

written in the form Ψk(t) = eik·r−iεtφ(t), where φ(t) is a periodic function in both space and time

φ(t) = φ(t + T ) and T is periodicity. Substitution into Maxwell equations yields the eigenvalue

problem:

[Ak − i∂tB(t)]φ(t) = εB(t)φ(t) (1)

where Ak = e−ik·rAeik·r, B(t) = B0 + Bnl(t) = B0 + V e−iΩt + V †eiΩt. Our method is based by

decomposing the time periodic function φ(t) using the eigenstates of the static eigenvalue problem

without external drive (|j⟩) as φ(t) =
∑

jm cjm |j⟩ eimΩ =
∑

jm cjm |jm⟩ and computing the

coefficients cjm. To this end, we substitute the expression of φ(t) back into (1) and multiply ⟨ln|

from the left

∑

jm

cjm ⟨ln| [Ak − i∂tB(t)] |jm⟩ = ε
∑

jm

cjm ⟨ln|B(t) |jm⟩ (2)

Using the orthonomal condition ⟨l|B0 |j⟩ = δlj and ⟨n|m⟩ = δnm, we obtain

∑

jm

cjm[(ωj + nΩ)δljδnm + nΩVljδn,m−1 + nΩV †
ljδn,m+1]

= ε
∑

jm

cjm(δljδnm + Vljδn,m−1 + V †
ljδn,m+1)

(3)

where Vlj = ⟨l|V |j⟩ and ωj = ⟨j|Ak |j⟩. Furthermore, the above equation can be casted into a

matrix form

M̂Ψ = εN̂Ψ (4a)
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Ψ = (. . . , cj,−1, cj,0, cj,1, . . . )
T (4b)

M̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
. . .

−ΩV̂ † Ĥ0 − Ω −ΩV̂
0 Ĥ0 0

ΩV̂ † Ĥ0 + Ω ΩV̂
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, N̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
. . .

V̂ † Î V̂
V̂ † Î V̂

V̂ † Î V̂
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4c)

with (Ĥ0)lj = ωjδlj . An equivalent way of writing (4a) is N̂−1M̂Ψ = εΨ. As we expected,

the matrix M̂ on the left side of (4a) is non-Hermitian. In practice, to diagonalize the Floquet

Hamiltonian, one can truncate the Fourier harmonics to a finite order (|m| < mc), as the eigenstates

{cjm}T are localized in m1. We set mc = 5 in the calculations of both bulk and edge states

dispersions. To prove the convergence, we first show cjm is highly localized in m for a specific

Floquet state (the bottom band at the Γ point in Fig.3d of the main text). As shown in Fig.1a,

the two dominant components of cjm indicate that the Floquet mode arises from the hybridization

between Floquet basis |1,m = −1⟩ and |2,m = 0⟩, while the contributions from other Fourier

orders are negligible. To further quantify the convergence of cjm throughout all Floquet bands, we

evaluate the worst-case scenario, defined as:

d(n) = min(
∑

|m|≤n

∑

j=1,2

|cjm(k)|2) for k ∈ B.Z. (5)

for the two Floquet bands in Fig.3d of the main text, respectively. The calculated d(n) approaches

1 for n ≤ 2 (Fig.1b), suggests our truncation of the Floquet basis at mc = 5 is good enough for the

calculation.
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Supplementary Note 2: Proof of periodic spectrum

In this section, we prove the Floquet spectrum defined through (1) is necessarily periodic

at the spacing of Ω. Specifically, if Ψk(t) = eik·r−iεtφ(t) is a solution of (1) with eigenvalue ε

and eigenstate φ(t), it is evident that Ψk(t) = eik·r−i(ε+Ω)teiΩtφ(t) is also a solution with new

eigenvalue ε̃ = ε + Ω and eigenstate φ̃(t) = eiΩtφ(t) =
∑

jm cjm |j,m+ 1⟩ =
∑

jm c̃jm |j,m⟩,

where c̃jm = cj,m−1. Compared to (4a), it implies shifting the column vector {cjm}T down (up)

by one row also yields an eigenstate with eigenvalue increased (decreased) by Ω, though they

represent the same physical state. Therefore, the resulting Floquet spectrum is periodic with a

spacing of Ω.

Supplementary Note 3: Two-band simplification

In this section, we focus on a situation where only two of the bands are close to each other

under the driving field ,while both bands are far away from the rest. Under rotating wave approx-

imation, (4a) can be simplified into a series of 2-by-2 matrices by considering pairs of nearly-

degenerate Floquet modes (e.g. ω1 and ω2 − Ω) and their coupling terms. As shown above, all

these 2-by-2 matrices share the same Floquet eigenvalues, modulus Ω. Specifically, we can focus

on one of them that reads:
⎛

⎜

⎜

⎝

ω2 − Ω −ΩV21

0 ω1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

c2,−1

c1,0

⎞

⎟

⎟

⎠

= ε

⎛

⎜

⎜

⎝

1 V21

V ⋆
21 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

c2,−1

c1,0

⎞

⎟

⎟

⎠

(6)
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An equivalent way of writing the eigenvalue problem (6) is:

1

1− |V21|2

⎛

⎜

⎜

⎝

ω2 − Ω −(Ω+ ω1)V21

(Ω− ω2)V ⋆
21 ω1 + Ω|V21|2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

c2,−1

c1,0

⎞

⎟

⎟

⎠

= ε

⎛

⎜

⎜

⎝

c2,−1

c1,0

⎞

⎟

⎟

⎠

(7)

It is evident that the two bands are decoupled as long as V21 = 0 and the corresponding eigenvalues

are ε1,2 = ω2 − Ω,ω1, respectively. In contrast, when V21 ≠ 0, the new eigenvalues are

ε1,2 =
|V21|2Ω+ ω1 + ω2 − Ω±

√

(|V21|2Ω+ ω1 + ω2 − Ω)2 − 4(1− |V21|2)ω1(ω2 − Ω)

2(1− |V21|2)
(8)

For on-resonance driving (Ω = ω2 − ω1), the splitting of the two states is

δε ≈ 2|V21|
√
ω1ω2 (9)

This is how we derived Eq. 2 in the main text. As shown, this eigenvalue problem is necessarily

non-Hermitian but has real eigenvalues when ω1ω2 > 0.

Supplementary Note 4: Floquet photonic systems with and without time-reversal symmetry

In this section, we illustrate the conditions on preserving or breaking time-reversal (T ) sym-

metry in a monochromatically driven nonlinear photonic crystal. Mathematically, T -symmetric

means the matrix operator in the Floquet eigenvalue problem (4a) have the property of:

T (N̂−1M̂)kT
−1 = (N̂−1M̂)⋆−k (10)

When we look at individual terms of the matrices, it is easy to show that T−symmetry is equivalent

to requiring:

Vij(k) = V ⋆
ij(−k), (11)
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where the coupling terms are defined as:

Vij(k) = ⟨i,k|V |j,k⟩ . (12)

Here i, j label the bands and ¯̄ϵnl(t) = V e−iΩt + V †eiΩt represents the effective permittivity tensor

induced by the second-order optical nonlinearity of a material driven by an external electric field.

As we started from a T−symmetric system in the static case, we have |i,k⟩ = |i,−k⟩⋆. As a

result, T can be broken in a second-order nonlinear optical material, when the coupling operator

V is a complex tensor (V ≠ V ⋆). This can be achieved by driving the material with an elliptically

polarized field. On the other hand, a linearly polarized field always lead to a real coupling operator,

and the system is thus always T -symmetric.

Supplementary Note 5: Temporal analysis of the principle optical axes

Aside from the mathematical description of T -symmetry above, in this section, we provide an

intuitive understanding on why some driving fields break T while others preserve T by analyzing

the temporal evolution of the principle optical axes under a monochromatic driving field in an

example material of LiNbO3. Without driving field, LiNbO3 is an uni-axial medium2, where the

principle optical axes - along which the permittivity tensor is diagonalzed - can be chosen as

(x̂, ŷ, ẑ). In this coordinate, the permittivity tensor reads:

¯̄ϵ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵxx 0 0

0 ϵxx 0

0 0 ϵzz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

Next we apply two specific examples of linearly and elliptically polarized drive, (1) x-polarized
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and (2) circularly polarized, and analyze the evolution of instantaneous optical axes. Under an

x-polarized driving field, Ed
x = E cosΩt, the only active second-order optical nonlinearity of

LiNbO3 is χ(2)
zxx (d31), which gives rise to two terms in the effective permittivity, ϵxz and ϵzx:

¯̄ϵeff =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵxx 0 α cosΩt

0 ϵxx 0

α cosΩt 0 ϵzz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (14)

where α = d31E. Limited by the material damage threshold3, the induced nonlinear permittivity

change is always small: β = α/(ϵxx−ϵzz) ≪ 1. As a result, diagonalizing the effective permittivity

tensor in (14) yields the new optical principle axes in the driven medium:

ê1 = (0, 1, 0)T (15)

with ϵ1 = ϵxx;

ê2 = (1, 0, β cosΩt)T (16)

with ϵ2 = ϵxx + αβ cos2 Ωt; and

ê3 = (−β cosΩt, 0, 1)T (17)

with ϵ3 = ϵzz−αβ cos2 Ωt. In such cases, one optical axis of LiNbO3 remains static ê1 = ŷ; while

the other two axes (ê2,3) are oscillating about z and x axes, respectively. Note these oscillations

are T -preserving, which is easy to see as the substitution from t to −t leaves all results unchanged.

On the other hand, under a circularly polarized driving field: Ed
x = E cosΩt and Ed

y =

E sinΩt, both χ(2)
zxx = d31 and χ(2)

zyy = d32 terms of LiNbO3 are active, and the new effective
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permittivity tensor reads:

¯̄ϵeff =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵxx 0 α cosΩt

0 ϵxx α sinΩt

α cosΩt α sinΩt ϵzz,

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(18)

where α = d31E = d32E. Again limited by the material damage, β = α/(ϵxx − ϵzz) ≪ 1, and the

new optical principle axes become:

ê1 = (− sinΩt, cosΩt, 0)T (19)

with ϵ1 = ϵxx;

ê2 = (cosΩt, sinΩt, β)T ≈ (cosΩt, sinΩt, 0)T (20)

with ϵ2 = ϵxx + αβ; and

ê3 ≈ (−β cosΩt,−β sinΩt, 1)T (21)

with ϵ3 = ϵzz − αβ. As shown, all three optical axes rotate around the z-axis at the driving

frequency Ω, and it is exactly this spinning behavior that breaks T -symmetry.

Supplementary Note 6: Berry curvature and Chern number calculations for Floquet bands

In this section, we define the Berry curvature for the Floquet bands, and explain how Chern

number is defined. First, we reduce the Floquet eigenvalue problem at each k point into a non-

Hermitian matrix eigenvalue problem as shown in Supplementary Note 1. We define the Berry

curvature solely based on the right eigenstates of this eigenvalue problem as the Chern number

defined in this ”Hermitian” way is the same as if we were to define it using both the left and right
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eigenstates4. Specifically, we define Berry connection as:

Ak = −i ⟨Ψ|∇k |Ψ⟩ (22)

where Ψ are the column vectors that solve the matrix eigenvalue problem of (4a). Though this

definition only uses the coefficients cjm, the Chern number remains the same if we use the ac-

tual Floquet mode profiles of cjm |j,m⟩ as one can show the contributions from the cross terms

⟨j′m′|∇k |B0jm⟩ always add up to 0. Finally, we define Berry curvature as:

Bk = ∇k ×Ak, (23)

and define Chern number as the integral of Bk over the entire Brilluion zone.

Next, we show two examples of the calculated Berry curvature of the Floquet bands. First we

calculate for the T -symmetric example shown the previous section; specifically, we set Ωa/2πc =

0.37, which is close to the transition point of ΩL
C = 0.3753. As shown in Fig.2a, the calculated

Berry curvature for the bottom band is indeed localized in k space next to the transition points.

Furthermore, the Berry curvature is an odd function under C2 rotation, which is the consequence

of T -symmetry. Accordingly, the Chern number of the band is always zero.

In comparison, our second calculation is for the Floquet Chern insulator example show in

the right panel of Fig.3d in the main text, with a modulation frequency Ωa/2πc = 0.38. As

shown in Fig.2b, the Berry curvature is no longer an odd function in k space due to the absence of

T -symmetry, while it is still localized near the transition point.
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Supplementary Note 7: Super-cell setup for chiral edge state calculations

In this section, we present the super-cell setup in Fig. 4a in the main text, and explain how

the edge and bulk states dispersion are calculated. First, we note that the external modulation

applied in the domain-wall problem preserves translation symmetry in x direction, thus kx is still a

preserved quantity. Furthermore, by imposing periodic boundary condition along 1/2x̂ +
√
3/2ŷ

direction, the trial solution of the Maxwell equation can be written in the form:

Ψkx(t) = eikxx−iεt
∑

j,m,ky

cj,m,ky |j(kx, ky)⟩
eikyy√
N

eimΩt

= eikxx−iεt
∑

j,m,ky

cj,m,ky |j,m, ky⟩
(24)

where ky = ( n
N

4π
a − kx)/

√
3, N is the number of unit cells contained in the super-cell and n is

an integer runs from 0 to N − 1. It is easy to show that the basis states satisfy the orthonomal

condition ⟨j′,m′, k′
y|B0 |j,m, ky⟩ = δj′,jδm′,mδk′y ,ky . Substitution of the trial solution back into

(1) and multiply ⟨j′,m′, k′
y| from the left, we obtain similar result as (3) with increased basis

dimension:

∑

j,m,ky

cj,m,ky [(ωj,ky +mΩ)δj′,jδm′,mδk′y ,ky +m′ΩVj′k′y ,jkyδm′,m−1 +m′ΩV †
j′k′y ,jky

δm′,m+1]

= ε
∑

j,m,ky

cj,m,ky(δj′,jδk′y ,kyδm′,m + Vj′k′y ,jkyδm′,m−1 + V †
j′k′y ,jky

δm′,m+1)

(25)

where Vj′k′y ,jky = ⟨j′, k′
y|V |j, ky⟩ is the interacting matrix element that couples the orthogonal

basis states:

Vj′k′y ,jky =
1

N

N−1
∑

n=0

∫

unit cell

d2ru⋆
j′,k′y

V uj,kye
i(ky−k′y)(y+na

√
3/2) (26)

where uj,ky is the periodic function of the electric fields. If the super-cell is subject to uniform

external modulation, namely V is the same for each unit cell, there is no interface along y direction
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and the interacting matrix element reads:

Vj′k′y ,jky =
1

N

∫

unit cell

d2ru⋆
j′,k′y

V uj,kye
i(ky−k′y)y

N−1
∑

n=0

ei(ky−k′y)na
√
3/2

=

∫

unit cell

d2ru⋆
j′,kyV uj,kyδk′y ,ky

(27)

On the other hand, when the super-cell consists of two regions (range from 0 to s and s + 1 to

N − 1, respectively) being modulated with distinct polarization (V1 and V2), as the domain-wall

problem considered in the max text, contributions from the two regions must be taken into account

accordingly,

Vj′k′y ,jky =
1

N

∫

unit cell

d2ru⋆
j′,k′y

V1uj,kye
i(ky−k′y)y

s
∑

n=0

ei(ky−k′y)na
√
3/2

+
1

N

∫

unit cell

d2ru⋆
j′,k′y

V2uj,kye
i(ky−k′y)y

N−1
∑

n=s+1

ei(ky−k′y)na
√
3/2

(28)

Therefore, the corresponding eigenvalue ε and eigenstate {cj,m,ky}T for each kx can be obtained

by diagonalizing the Floquet Hamiltonian (25) in a similar way as we solve for the Floquet bulk

spectrum in Supplementary Note 1.

Supplementary Note 8: Estimation of Floquet band gap size

In this section, we analyze the Floquet band gap size that can possibly be achieved with

realistic nonlinear materials like LiNbO3. From (9), it is found the induced Floquet gap size

(normalized to
√
ω1ω2) by an external monochromatic drive is ∼ |V21|, which characterizes the

coupling strength of the two modes mediated by the second order nonlinear process. For example,

11



when we consider the coupling between a TM (|1⟩) and a TE mode (|2⟩), it reads

|V21| =
∫

d2rE⋆
TE
¯̄ϵnlETM

=
ϵxz
ϵl

∫

d2rϵlE
⋆
x,TEEz,TM +

ϵyz
ϵl

∫

d2rϵlE
⋆
y,TEEz,TM

(29)

where the integral is performed over the area filled with nonlinear materials and ϵxz, ϵyz terms are

the effective permittivity induced by external drive. Limited by the material damage threshold, the

maximal value of ϵxz,yz/ϵl for LiNbO3 is estimated to be ∼ 5×10−3. On the other hand, the modal

overlap integral depends on the choice of bands and may varies from 10−2 to 1. As a result, the

normalized Floquet gap size is typically on the order of 5× 10−5 ∼ 5× 10−3.

To clearly show the Floquet gap in Fig. 3 in the main text, we assume large effective per-

mittivity for both elliptically and linearly polarized drive: (ϵxz, ϵyz) = (2,−1.08 + 1.9i) and (ϵxz,

ϵyz) = (−0.26, 2), respectively. The resulted gap size is ∼ 10−2. Therefore, we expect to obtain a

gap size of ∼ 10−4 when the driving field strength is reduced by 100 times (4 GV·m−1), which is

below the material damage threshold. Similarly, for the chiral state dispersion calculation, we also

assume large effective permittivity for the normal insulators: (ϵxz, ϵyz) = (3, 1), which support a

frequency gap aligned with the gap of the Chern insulator.
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Supplementary Figure 1: | The convergence of Floquet eigenstates calculation with truncated

Floquet basis. a, The localization of cjm in m for a specific Floquet state (the bottom band at the

Γ point in Fig.3d of the main text). b, The convergence of d(n) for the two Floquet bands in Fig.3d

of the main text.
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Supplementary Figure 2: | Berry curvature distributions of Floquet bands with and without

time-reversal symmetry. a, Under linearly polarized drive, the calculated Berry curvature is an

odd function of k and is localized near the two Weyl points (cross) due to the presence of time-

reversal symmetry. b, In contrast, when the photonic crystal is driven by elliptically polarized

light, as the case shown in Fig.3d of the main text, Bk is no longer an odd function of k, while it is

still localized near the phase transition point (cross).
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