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Diameter-bandwidth product limitation of isolated-object cloaking
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We show that cloaking of isolated objects using transformation-based cloaks is subject to a diameter-bandwidth
product limitation: as the size of the object increases, the bandwidth of good (small-cross-section) cloaking
decreases inversely with the diameter, as a consequence of causality constraints even for perfect fabrication and
materials with negligible absorption. This generalizes a previous result that perfect cloaking of isolated objects
over a nonzero bandwidth violates causality. Furthermore, we demonstrate broader causality-based scaling
limitations on any bandwidth-averaged cloaking cross section, using complex analysis and the optical theorem
to transform the frequency-averaged problem into a single-scattering problem with transformed materials.
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I. INTRODUCTION

In this work, we extend the result that perfect isolated-object
cloaking is impossible over a nonzero bandwidth [1,2] to
show that even imperfect transformation-based cloaking of
isolated objects necessarily has a bandwidth that decreases
with the size of the object. More generally, we show that
the cloaking efficiency (the ratio of total cross section to
geometric cross section) must worsen proportionally to the
diameter when averaged over any finite bandwidth for cloaking
of isolated objects in air (or any medium of negligible loss
and dispersion). Unlike our previous proof that sensitivity to
imperfections worsens with diameter at individual frequencies
[3], the result in this paper holds even for perfect fabrication
and for materials with negligible absorption over the desired
bandwidth. Our proof involves some unusual mathematical
techniques. First, we equate the frequency-averaged problem
to a single-scattering problem at a complex frequency with the
help of a version of the optical theorem. Second, we map the
complex-frequency problem to an equivalent real-frequency
problem with transformed materials. We can then use the fact
that Im ε and Im μ are greater than 0 for any physical causal
material at Re ω and Im ω > 0 [4] to analyze an “effective”
absorption loss in a manner similar to our previous work [3].
Finally, in Sec. III we numerically verify this scaling in an
example of a spherical cloak that is a perfect Pendry cloak at
one frequency but has causal dispersion.

The idea of transformation-based invisibility cloaks was
proposed in 2006 [1], a fascinating idea that was followed
by many theoretical works [5–28] and several experimental
demonstrations of cloaking of isolated objects at one frequency
[29–32]. However, as pointed out by Pendry et al. using a
speed-of-light argument [1] and by Miller with a more formal
approach [2], perfect cloaking of an isolated object in vacuum
over a nonzero bandwidth is impossible due to causality.
This severe limitation helped inspire the idea of ground-plane
cloaking [33–37] and its experimental demonstration [38–47],
which circumvents such causality limitations (although it
is still subject to other practical scaling difficulties [3,48]).
However, the Pendry et al. and Miller proofs say little about im-
perfect cloaking (a nonzero but small scattering cross section).

By continuity, if near-perfect cloaking is attained at a single
frequency, “good” cloaking (the total cross section bounded by
some given fraction of the geometric cross section) must persist
over some finite bandwidth. We show that causality imposes
an even stronger constraint than forbidding perfect cloaking
over a finite bandwidth: for a bandwidth-limited cloak, we
show that causality constraints imply that the bandwidth
of good cloaking scales inversely with the object diameter.
(The impossibility of perfect cloaking over a finite bandwidth
follows from our results as a special case.) Moreover, our
proof holds for isolated objects in any transparent medium
(negligible loss and dispersion), not just in vacuum.

The key to our proof in Sec. II is the transformation
of a frequency-averaged scattering problem (weighted by a
Lorentzian window for convenience), which is hard to analyze,
to a single complex-frequency scattering problem that is easy
to analyze by relating the complex frequency to equivalent
complex materials. In order to make this transformation, we
rely on the optical theorem [49], which relates the total cross
section to the imaginary part of a forward-scattering amplitude,
since the latter is a causal linear response and hence an analytic
function in the upper half of the complex-frequency plane [4].
A review of the optical theorem and its history and applications
can be found in [50]. The use of the optical theorem, and
similar relationships based on conservation of energy, to apply
complex analysis to scattering problems is most common in
quantum field theory [51]. Similar in spirit to this paper, the
optical theorem is also used in the “Institute for Theoretical
and Experimental Physics in Moscow (ITEP) sum rules” of
quantum chromodynamics to relate integrals of scattering
cross sections multiplied by Lorentzian windows (or powers
thereof) to scattering amplitudes at single points in momentum
space via contour integration [51]. On another related note,
contour integration of the imaginary part of Green’s functions
(and other scattering amplitudes) is also a key technique
for computing Casimir interactions in quantum field theory
[52], where the relationship between the imaginary part of
the Green’s function and the field fluctuation statistics (the
fluctuation-dissipation theorem) is, like the optical theorem,
derived from energy-conservation considerations [53].
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FIG. 1. (Color online) Schematic of transformation-based
isolated-object cloak, which works by mapping the object and cloak
in physical space X to a virtual space X′ in which the object is a
single point. The transformation laws of Maxwell’s equations [1,54]
then dictate the required ε and μ materials in the cloak volume to
produce equivalent solutions in X and X′.

II. DERIVATION

A transformation-based cloak, as depicted in Fig. 1, works
by mapping an object (in “physical” space X) to a single point
(in “virtual” space X′) and the cloak region (volume Vc) to
empty space (volume V ′

c ), via a coordinate transformation that
is the identity outside the cloak. If the ambient materials are
εa and μa , then an ideal cloak is obtained by constructing the
materials ε = J εaJ ′/ detJ and μ = JμaJ ′/ detJ in the
cloak, whereJ is the Jacobian matrix of the transformation. In
our previous work [3] we showed that the cloaking problem at
one frequency becomes increasingly difficult as the size of the
object being cloaked increases. In particular, we proved that the
imperfections due to absorption losses and random fabrication
disorder must decrease asymptotically with the object diameter
in order to maintain good cloaking performance: for the total
(scattering + absorption) cross section to be less than a given
fraction f of a geometric cross section sg . To prove these
results, we assumed bounds on the attainable refractive index
contrast in the cloak, b < n/na < B (n = √

εμ), which we
showed to be equivalent to bounds on the singular values of
J . Using these bounds, we were then able to bound the field
amplitudes in the cloak in terms of the field amplitudes in the
virtual space (which are a constant for incident plane waves);
such bounds, in turn, impose bounds on the allowed absorption
losses and random disorder. In particular, we showed in the
case of absorption losses that � Im ε scales proportionally to
sg

V ′
c
, a measure of the inverse diameter.
We now wish to analyze the effect of other imperfections,

especially inevitable material dispersion, on the cloaking
performance, even in the idealized case of perfect fabrication
and negligible absorption. In particular, we suppose that one
is interested in the average total cross section σtot over a
bandwidth �ω around an operating frequency ωop, which
(for reasons described below) it is convenient to define via
a Lorentzian averaging weight as

〈σtot〉�ω =
∫ ∞

−∞
σtot

�ω/π

(ω − ωop)2 + �ω2
dω. (1)

As we increase the diameter d of the object and cloak,
keeping the materials and transformation mapping fixed and
simply rescaling the whole system, we show that the cloaking
problem becomes increasingly difficult, in the sense that
〈σtot〉�ω/sg ∼ d (where ∼ means proportional to), with sg

being a geometric cross-sectional area of the object. (This
scaling breaks down when σtot/sg is no longer small, i.e., when
it is no longer an approximate cloak.) The only assumptions are
that the ambient medium εa and μa is approximately lossless
and dispersionless over the bandwidth of interest (e.g., for
cloaking in air) and that the attainable refractive index contrast
(eigenvalues of

√
εμ/εaμa) is �B for some finite bound B (as

in our previous work [3]).
Our analysis in the following sections constitutes the

following steps. First, in Sec. II A, using complex analysis
combined with the optical theorem, we relate the frequency
average of Eq. (1) to a single scattering problem at a complex
frequency so that we no longer need to consider the cross
section at many frequencies at once. Second, in order to
understand the precise meaning of this complex-frequency
scattering problem, in Sec. II B we derive a variant of the
optical theorem that is particularly easy to analyze. Third, in
Sec. II C we relate this complex-frequency scattering problem
to an equivalent scattering problem at a real frequency with
transformed complex materials. Fourth, in Sec. II D we use
analysis similar to our proof in [3] to show that the “losses”
introduced by these effective complex materials must scale
with diameter, and hence mean σtot must scale with diameter.
Finally, for the special case of a bandwidth-limited cloak
(a cloak that is very good at one frequency but spoiled at
other frequencies by material dispersion), we show that the
bandwidth must narrow inversely with diameter in Sec. II E.

A. Frequency average of the scattering cross section

By the optical theorem [49], σtot(ω) = Im f (ω), where f

is a forward-scattering amplitude (at least for the case of an
incident plane wave, but a generalization is given in the next
section for any incident field), and so

〈σtot〉�ω = Im
∫ ∞

−∞
f (ω)

�ω/π

(ω − ωop)2 + �ω2
dω. (2)

Because f is a causal linear response, it is analytic for
Im ω > 0, and therefore we can perform a contour integration
to obtain 〈σtot〉�ω in terms of the residue of the single pole of
the Lorentzian in the upper half of the complex plane:

〈σtot〉�ω = Im f (ωop + i�ω). (3)

This corresponds to a single scattering problem at a complex
frequency, analyzed in more detail below.

B. The optical theorem and analytic continuation to complex ω

Consider any finite-volume scatterer (in a linear time-
invariant system), described by some change �ε and �μ

in the permittivity and the permeability compared to the
ambient medium. Let the incident field (in the absence of
the scatterer) be described by a six-component vector field
ψinc = ( Einc

Hinc
). In the presence of the scatterer, this is modified

to a new total field ψ = ψinc + ψscat, the sum of the incident
and scattered fields. The charge perturbations in the scatterer
are described by bound electric and magnetic polarization
currents �J = −iω�εE and �K = −iω�μH, respectively,
which can be combined into a six-component current field
ξ = ( �J

�K ). Abstractly, we can write ξ = Aψinc for some linear
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operator A relating the incident fields to the induced currents,
and causality (currents come after fields) implies that A is an
analytic function in the upper half of the complex-ω plane [4].

Physically, the scattered field is the field produced by
these oscillating induced currents ξ in the scatterer, and
the interactions of the currents and fields provide a simple
way to characterize the absorbed and scattered powers. The
total absorbed power Pabs, assuming an ambient medium
with negligible dissipation, equals the total time-averaged (ψ)
incoming Poynting flux:

Pabs = 1

2
Re

∫
(E∗ · �J + H∗ · �K)

= 1

2
Re〈ψ,ξ 〉

= 1

2
Re〈ψinc,ξ 〉 + 1

2
Re〈ψscat,ξ 〉, (4)

where we have defined the inner product 〈· · · , · · · 〉. Simi-
larly, the scattered power is the work done by the currents
on the scattered field: − 1

2 Re〈ψscat,ξ 〉. Therefore, the total
(absorbed + scattered) power is

Ptot = Pabs + Pscat

= (
1
2 Re〈ψinc,ξ 〉 + 1

2 Re〈ψscat,ξ 〉) − 1
2 Re〈ψscat,ξ 〉

= 1
2 Re〈ψinc,ξ 〉

= 1
2 Re〈ψinc,Aψinc〉

= Im f (ω), (5)

where we have defined f (ω) = i
2 〈ψinc,Aψinc〉. The interpreta-

tion of f as a forward-scattering amplitude when ψinc is a plane
wave is actually irrelevant to our proof, but it follows from
the fact that f in that case is simply the forward-plane-wave
Fourier component of the field ∼iξ/ω corresponding to the
currents ξ .

The key question, for our purposes, is to understand what
f looks like at a complex frequency. Suppose we have a
homogeneous, lossless ambient medium with an incident plane
wave ψinc = ψ0e

iωx/c propagating in the +x direction for a
constant amplitude ψ0. Then

f (ω) = i

2
〈ψ0,e

−iωx/cA(ω)e+iωx/cψ0〉, (6)

moving all the x dependence to the right-hand side of the inner
product. At a complex frequency ω → ω + iγ in the upper
half plane (γ > 0), A(ω + iγ ) is analytic by causality, while
the plane-wave terms are analytic everywhere (and become
exponentially decaying or growing waves in space at complex
ω). So, f at a complex frequency represents an overlap with an
exponentially growing field of the currents produced (via A)
by an exponentially decaying source. In the next section, we
clarify this picture further by relating the scattering operator A

at a complex frequency to scattering at a real frequency with
complex materials.

In order to perform contour integrations of f (ω) multiplied
by a Lorentzian, it is not enough for f to be analytic, however:
it must also be bounded as |ω| → ∞ so that we can close
the contour above. This fact is used extensively in quantum
field theory [51]. Intuitively, this occurs because the the
exponential growth of e+γ x/c cancels the exponential decay

of e−γ x/c. Mathematically, as |ω| → ∞ the �ε and �μ must
vanish (since all susceptibilities vanish in the limit of infinite
frequency [4,49]), and so A simplifies: to lowest order for
weak scatterers (i.e., in the first Born approximation), ξ ≈
Aψinc ≈ ( −iω�εEinc

−iω�μHinc
), in which case the exponential factors

exactly cancel. We will use a similar procedure, below, to
analyze the effects of small imperfections in the cloak due to
material dispersion.

C. From complex frequencies to complex materials

Combining the previous two sections, we can now relate the
frequency-averaged scattering cross section, for an incident
plane wave (say, in the x direction) to the solution of a single
scattering problem at a single complex frequency:

〈σtot〉�ω = 1
2 Re〈ψ0,e

−iωx/cA(ω)e+iωx/cψ0〉, (7)

evaluated at ω = ωop + i�ω. A(ω)e+iωx/cψ0 represents the in-
duced currents ξ , for the materials evaluated at the complex ω,
in response to an exponentially decaying incident plane wave
(multiplied by a constant amplitude ψ0). The interpretation of
this problem is simplified by the fact that a complex frequency
is mathematically equivalent to using modified materials at a
real frequency ωop. In particular, consider Maxwell’s equations
in the frequency domain:

∇ × E = −iωμH − K, (8)

∇ × H = +iωεE + J, (9)

where J and K are (free) electric and magnetic current
densities, respectively. For our complex ω, the iωεE term be-
comes i(ωop + i�ω)ε(ωop + i�ω)E = i[ε(ωop + i�ω)(1 +
i �ω

ωop
)]ωopE, which looks exactly like the term for a real

frequency ωop at a modified permittivity ε̃,

ε̃(ωop) = ε(ωop + i�ω)

(
1 + i

�ω

ωop

)
. (10)

Similarly for μ → μ̃.
Thus, operating at a complex frequency is equivalent to

two changes in the materials. First, the multiplication by
1 + i�ω/ωop corresponds to an effective absorption added
throughout all space (including the ambient medium). Second,
we evaluate ε and μ at ωop + i�ω rather than at the real
frequency ωop, which will change their values in the presence
of material dispersion.

D. Consequences of dispersion on frequency-averaged
scattering

So far, we have shown that the problem of finding the
frequency-averaged scattering cross section is equivalent to
solving a certain scattering problem at a single complex
frequency, which in turn is equivalent to a scattering problem
at a single real frequency ωop with modified complex materials
ε̃ and μ̃. In this section, we analyze the consequences
of those effective material modifications, divided into two
separate material changes as discussed above, for cloaking
performance.
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1. Irrelevance of artificial absorption

The first change in the materials is the multiplication of
ε and μ by 1 + i �ω

ωop
. But this change does not hurt the

cloaking performance because it is done uniformly every-
where in space. More explicitly, if ε = J εaJ T / detJ is a
valid transformation-based cloak, so is ε(1 + �ω

ωop
) = J εa (̇1 +

�ω
ωop

)J T / detJ , except that this is now a transformation-based

cloak for a lossy ambient medium εa(1 + i �ω
ωop

), and similarly
for μ. Therefore this change in the materials leaves the
scattering cross section invariant.

2. Impact of material dispersion

The second change in the materials is that we need
to evaluate ε and μ at the complex frequency ωop + i�ω

instead of ωop, and here the presence of material dispersion
(unavoidable for any material other than vacuum) acts to
spoil the cloak. In particular, as reviewed in the Appendix,
causality and other fundamental principles imply that Im ε and
Im μ are both strictly positive at ωop + i�ω for �ω > 0 [4],
corresponding to an unavoidable additional absorption in the
complex-frequency scattering problem. Unlike the artificial
absorption in the previous section, this is an absorption defect
introduced only in the cloak: ε (both Im and Re) differs from
the cloaking transformation of the ambient medium by

�ε = [ε(ωop + i�ω) − ε(ωop)]

(
1 + i

�ω

ωop

)
,

and similarly for μ. The key assumptions here are that the
ambient medium has no dispersion over the given bandwidth,
so that the ideal cloaking transformation at the complex ω is
given by the second term in �ε, and that the ambient medium is
lossless, so that ε(ωop) is real and Im �ε > 0. More generally,
it is sufficient for the dispersion and loss of the ambient
medium to be small enough, compared to the dispersion of
the cloak materials, such that Im �ε is > 0.

We can analyze the consequences of this effective ab-
sorption imperfection similarly to our previous work [3] It
is convenient to first transform the imperfections to virtual
space (as shown in Fig. 1) where the scattering problem is
easier, because in the absence of �ε and �μ we have a
plane wave in a homogeneous medium. In particular, given
an upper bound B on the index contrast as discussed above,
one obtains �ε′ � �ε/B in virtual space, and similarly for
μ [3]. Furthermore we are interested only in the regime in
which we have a good cloak—once the imperfections become
so large as to make the cloak useless, all of the scaling relations
break down and the problem is no longer interesting. This is
the regime in which �ε and �μ are small, and therefore
virtual space at complex ω is equivalent to a homogeneous
medium with small imperfections, and perturbative methods
are applicable. In particular, the lowest-order scattering current
(in virtual space) is simply J′ = −iωop�ε′Einc, and similarly

for K′. In the notation of Sec. II B, ξ ′ = A′ψinc ≈ ( −iω�ε′Einc
−iω�μ′Hinc

).
Substituting this into Eq. (7), we find that the exponential
factors e±�ωx/c exactly cancel, leaving

〈σtot〉�ω ≈ 1

2

∫
V ′

c

[|E0|2 Im �ε′ + |H0|2 Im �μ′]. (11)

This has two main consequences. First, mean σtot > 0 for
�ω > 0 since Im �ε and Im �μ are strictly positive as noted
above: even if the cloak is a perfect cloak at ωop, it is imperfect
when averaged over any nonzero bandwidth. This is, therefore,
an alternative proof of the results of Pendry et al. [1] and Miller
[2] that cloaking of isolated objects over a nonzero bandwidth
is impossible for physical, causal materials. Second, exactly
as we showed for other imperfections in previous work [3], it
immediately follows that 〈σtot〉�ω grows ∼V ′

c ∼ Vc ∼ Vo and
hence the frequency-averaged cloaking efficiency 〈σtot〉�ω/sg

scales proportionally to a mean diameter Vo/sg . This is
the central result of our proof, but to better understand its
consequences we consider some special cases in the next
section.

E. Scaling of cloaking bandwidth with diameter

As shown in the previous section, the fractional cross
section mean σtot/sg , averaged over a bandwidth �ω around
ωop, must scale proportionally to the diameter d, at least as
long as 〈σtot〉�ω/sg � 1 (i.e., until cloaking breaks down
completely). There are two possible sources of this linear
scaling, depending on whether 〈σtot〉�ω is limited by the
cross section at ωop (due to imperfections in the cloak at
the design frequency) or by the bandwidth of a dip in the
cross section around ωop (due to material dispersion degrading
a near-perfect single-frequency cloak). In the former case,
the physical mechanism is simply that the losses due to
imperfections at ωop scale with diameter, as we already proved
in Ref. [3]. In this case, however, it leads to a new prediction: in
a bandwidth-limited cloak, the bandwidth must narrow as the
object diameter increases. In fact, we show in this section that
the bandwidth generically varies inversely with the diameter
in this case.

First, let us consider the bandwidth scaling from generic
dimensional considerations. Because of material dispersion,
one expects good cloaking to be possible only in some limited
bandwidth ∼
 around some design frequency ωop, in which
case a small mean σtot/sg requires �ω � 
. If we Taylor-
expand 〈σtot〉�ω/sg in �ω/
 � 1, we generically expect an
expansion of the form

〈σtot〉�ω/sg = σtot(ωop)/sg + C�ω/
 + O[(�ω/
)2]

for some coefficient C, where C is generically greater than
0 if ωop is chosen to be a minimum of σtot. For sufficiently
small bandwidths �ω � 
σtot(ωop)/sg , this is dominated by
the scattering at ωop, which scales linearly with diameter in
the presence of imperfections as shown in Ref. [3]. On the
other hand, for a good single-frequency cloak at ωop, there
is a regime 
σtot(ωop)/sg � �ω � 
 where the second term
dominates, i.e., where material dispersion is the limiting factor.
The C�ω/
 term must therefore also scale linearly with the
diameter in order for 〈σtot〉�ω/sg to scale linearly for such �ω,
and hence we can conclude that the bandwidth 
 of the cloak
generally scales inversely with diameter.

This is best illustrated by a simple example. Consider the
case where σtot/sg achieves a minimum f � 1 at ωop with an
approximately Lorentzian line shape of width 
, going to 1 at
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frequencies far from ωop:

σtot(ω)

sg

= 1 − 
2

(ω − ωop)2 + 
2
(1 − f ). (12)

The integral of Eq. (1) for this σtot(ω) can be evaluated
analytically to obtain

〈σtot〉�ω = 1 − 1 − f

1 + �ω/

≈ f + (1 − f )�ω/


+O[(�ω/
)2].

Since this must scale linearly with diameter for any f � 1 and
any �ω � 
, it follows that both f and 1/
 scale linearly
with diameter until cloaking breaks down.

It is important to note that the linear scaling of mean σtot

with diameter, proved in the previous sections, is independent
of whether the cloak was designed to have minimal σtot(ωop)
(i.e., optimizing a single ω) or minimal mean σtot (equivalently,
optimizing at a complex ω), as long as mean σtot � sg . The
only difference can lie in whether mean σtot is limited primarily
by the bandwidth or by σtot(ωop). However, one can always
choose the bandwidth �ω large enough to be in the regime
where bandwidth becomes the limiting factor, so it follows that
the bandwidth of any σtot(ωop) � sg dip in σtot must narrow
with object diameter.

III. NUMERICAL EXAMPLE

To illustrate and validate our predictions of this scaling
of cloaking bandwidth, we performed explicit numerical
calculations of the scaling for an example bandwidth-limited
spherical-cloaking problem (near perfect at one frequency, but
degraded by causal dispersion at other frequencies) in vacuum
(with nondimensionalized units εa = ε0 = 1 and μa = μ0 =
1).

At an operating frequency ωop, we use an exact “Pendry”
cloak [1]: a sphere of radius R1 is surrounded by a cloak of
radius R2 > R1 that is linearly mapped to an empty sphere
(R′

1 = 0), resulting in materials:

εr (ωop) = μr (ωop) = R2 − R1

R2

(
r − R1

r

)2

,

εθ (ωop) = εφ(ωop) = μθ (ωop) = μφ(ωop) = R2

R2 − R1
.

We fixed R2 = 1.5R1, so that the cloaking material parameters
are the same for all R1, merely rescaled in space as the object
becomes larger or smaller.

By construction, at ωop we have a perfect cloak, and
the only limiting factor is the bandwidth: we use idealized
lossless materials but with causal dispersion relations that
satisfy the Kramers-Kronig constraints. In particular, we use
a combination of two limiting cases: a plasma model (a limit
of a Drude model as losses go to zero) and a limit of lossless
Lorentzian resonance (corresponding to a polarization field
described by a lossless harmonic oscillator) at a frequency ω0.

Combined with the prescribed Pendry et al. values at ωop from
above, this results in dispersion relations

εr (r,ω) = μr (r,ω) = 1 −
[

1 − R2

R2 − R1

(
r − R1

r

)2
]

ω2
op

ω2
,

εθ = εφ = μθ = μφ = 1 + R1

R2 − R1

ω2
0 − ω2

op

ω2
0 − ω2

.

The Lorentzian resonance frequency ω0 can be chosen arbi-
trarily; we used ω0 = 2ωop.

This geometry was then simulated using a spectral
(spherical-harmonic expansion) scattering-matrix method as
described in Ref. [55]. The continuously varying anisotropic
material parameters are approximated by a large number of
piecewise-homogeneous isotropic layers [55]. The total scat-
tering cross section was computed over a range of frequencies
for R1 = λop,2λop,4λop (where λop = 2πc/ωop), and is plotted
in Fig. 2. The results in Fig. 2 are converged with resolution (the
number of spherical layers) to within a few percent accuracy.
At ωop, the cloak should theoretically be perfect, but we obtain
a small nonzero σ/sg (<10−3) due to the discretization errors,
which vanishes with increasing resolution.

As expected, the material dispersion prevents this from
being a good cloak except at frequencies in a narrow bandwidth
around ωop, and this bandwidth becomes narrower as the
diameter increases. Quantitatively, if we look at the bandwidth
at a fixed σ/sg of about 1/4 its maximum, we find that the
bandwidths for R1 = 2λop and R1 = 4λop are ≈1/2.1 and
1/4.1 times the bandwidth for R1 = λop, respectively, almost
exactly the predicted linear scaling.

Far from ωop, one expects σtot to approach twice the total
geometric cross section, in the limit of a large scatterer, because
in this limit all of the incident light is scattered. The factor of
2 comes from the definition of the scattering cross section
[49], in which the scattered power appears twice: once as the
scattered waves propagating in other directions, and once as
the “shadow” canceling the forward-propagating wave. Here,
the total geometric cross section is that of the cloak, πR2

2, so
we expect σtot/sg ≈ 10 log10[2(πR2

2)/(πR2
1)] ≈ 6.5 dB away

from ωop for R1 → ∞, and this is roughly what is seen in
Fig. 2.
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FIG. 2. (Color online) Relative cross section versus frequency
for a spherical cloak designed to be a perfect Pendry cloak at ωop

and showing the effects of material dispersion at other frequencies,
computed by a spectral scattering-matrix method. As predicted, the
cloaking bandwidth decreases linearly with the object radius, for three
object radii relative to λop = 2πc/ωop.
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IV. CONCLUDING REMARKS

In this work, we extended our previous paper [3] to study
the bandwidth limitation of isolated-object cloaking which is
a key limiting factor for this type of cloaking [1,2]. Although
it was known that perfect cloaking was impossible over a
nonzero bandwidth, this result did not seem to exclude the
possibility of imperfect cloaking over a finite bandwidth.
Indeed, imperfect finite-bandwidth cloaking is possible, but
we have now shown that it is subject to a severe practical
constraint: the bandwidth inevitably narrows proportionally
to the object diameter, given fixed materials. Although we
cannot infer any hard upper bounds on the size or bandwidth
of such cloaking without further information about the attain-
able materials, this result indicates a fundamental challenge
in scaling up small experimental demonstrations to larger
cloaks.

The use of gain has been proposed to compensate for loss
problems in cloaking [28,56]. Although gain is necessarily
nonlinear and can be detected by a sufficiently strong incident
field, in the idealization of linear gain then many of the
techniques in this paper are complicated by the fact that a
linear-gain resonance (the complex conjugate of an absorption
resonance) would be nonanalytic (and have negative imaginary
parts) in the upper half of the complex-frequency plane. (The
average σtot must also be replace by the average |σtot| or
similar, since gain can produce a σtot < 0.) However, the
bandwidth limitations described in this paper arise even for
idealized materials with negligible dissipation loss, due to
dispersion in the real parts of ε and μ alone, in which case
even idealized linear gain is inapplicable. (Furthermore, as
pointed out in our previous work [3], gain compensation of
absorption must become increasingly perfect as the object
diameter increases, nor does it compensate for scattering from
fabrication disorder.)

Ground-plane cloaking does not suffer from any intrinsic
limitation on its bandwidth from causality, nor does our proof
apply in that case. The reason our proof does not apply
(at least, in the present form) to ground-plane cloaking is
that the figure of merit is no longer σtot: a ground plane is
actually designed to reflect waves, albeit to reflect them in
a way that mimics the ground plane. On the other hand, our
previous work [3,48] showed that even ground-plane cloaks are
increasingly sensitive to imperfections as the size of the object
increases. This suggests that ground-plane cloaks should also
be increasingly sensitive to material dispersion, for cloaking
over a finite bandwidth, as the object size increases, and a
challenge for future work is to quantify (or disprove) this
relationship.

Although the results of this paper are specific to
transformation-based cloaking, we conjecture that other types
of isolated-object cloaks should suffer from similar limitations.
In particular, any cloak types that direct the light around
the object, such as some of the waveguide cloaks [57]
and resonance-based [58] or multipole-cancellation [59,60]
cloaks, are subject to the same causality constraints on perfect
cloaking [1,2], so it seems reasonable that there should be
similar bandwidth constraints on their imperfect cloaking.
(These are also not “true” cloaks in the sense that they are
designed only for plane-wave, i.e., far-field, sources.) Cloaking

by cancellation of individual scattering channels, such as
individual multipole terms [59,60], should also become more
difficult as the object size increases because the number of
relevant multipole terms increases (quadratically) with the
diameter. On the other hand, waveguide cloaks where the
waveguides go through the object [61] may not have causality
constraints, but should suffer from other limitations given that
the volume of such a cloak is proportional to the volume
of the object—this implies that an analog of our previous
results [3] on the scaling limitations of imperfections and
losses should apply. (In addition, the necessity of waveg-
uide dispersion to confine light for all polarizations within
narrow waveguides should imply some bandwidth limitation
as the object size, and hence the differential group delay,
increases.)

An alternative direction for cloaking theory (and exper-
iment) is to consider relaxations of the cloaking problem
that might prove more practical. In particular, it would be
valuable to make precise the intuition that the cloaking
problem becomes easier if the incident waves are restricted
(e.g., to plane waves from a certain range of angles) and/or
the observer is limited (e.g., only scattered waves at certain
angles are visible, or only amplitude but not phase can be
detected, or sufficiently small time delays are undetectable),
since this is arguably the situation in most experiments.
For example, current “stealth” aircraft are designed in the
radar regime mainly to reduce backscattering only [62]. So
it is clear that a sufficiently relaxed cloaking problem is
practical even for large objects, and one interesting goal is to
find the “weakest” relaxation that remains practical at useful
scales.
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APPENDIX

Here, we review a known consequence of causality that
is the key to our analysis above: for a passive medium,
Im ε(ω) > 0 in the upper half plane Im ω > 0 as proved in
Ref. [4]. A condensed proof of this fact is as follows: Im ε

is analytic in ω in the upper half plane by causality, and
is therefore a harmonic function in the upper half plane,
and so can obtain its minimum only on the boundary of its
domain, except in the trivial case of vacuum where it is a
constant function (Im ε = 0). In particular, consider the upper
right quadrant of the complex-ω plane. Along the positive
real axis, Im ε � 0 for a passive material (in the absence
of gain), even for idealized lossless materials. Along the
positive imaginary axis, Im ε = 0 since ε(−ω) = ε(ω)∗ for
real-valued physical fields [49]. As |ω| → ∞ one must have
Im ω → 0. Hence the minimum of Im ε along the boundary of
the upper right quadrant is zero and it is strictly positive in the
interior.
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For physical materials, Im ω > 0 along the positive real-
ω axis except at ω = 0 in order to satisfy the second law
of thermodynamics, and this is the usual case in which the
above statement is proved [4]. However, it is also interesting
to consider the idealized limit of lossless materials (such as
a plasma model or a lossless resonance), in order to study
bandwidth-averaged cloaking with idealized materials. Our
proof, above, works even in this case as long as one is a little

cautious about the case of poles in ε lying exactly on the real-ω
axis, in order to exclude the case where Im ε diverges to −∞
as the real axis is approached from above. In particular, we
must restrict ourselves to idealized materials that are the limit
of physical lossy materials as the losses go zero, so that we
are taking the limit as poles approach the real axis from below.
In this case, Im ε in the upper right quadrant is the limit of a
strictly positive quantity and hence cannot go to −∞.
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