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General scaling limitations of ground-plane and isolated-object cloaks
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We prove that, for arbitrary three-dimensional transformation-based invisibility cloaking of an object above a
ground plane or of isolated objects, there are practical constraints that increase with the object size. In particular,
we show that the cloak thickness must scale proportionally to the thickness of the object being cloaked, assuming
bounded refractive indices, and that absorption discrepancies and other imperfections must scale inversely with
the object thickness. For isolated objects, we also show that bounded refractive indices imply a lower bound on

the effective cross section.
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I. INTRODUCTION

Invisibility cloaking refers to the idea of making an object
appear invisible, or at least greatly reducing its scattering
cross section, by surrounding it with appropriate materials,
and has attracted extensive popular and research interest
following a theoretical proposal by Pendry [1]. Unfortunately,
cloaking of isolated objects turns out to be severely restricted,
in that speed-of-light or causality constraints intrinsically
limit perfect cloaking to an infinitesimal bandwidth [1,2].
An alternative with no intrinsic bandwidth limitations is
ground-plane cloaking [3], in which the goal is to make an
object sitting on a reflective surface indistinguishable from
the bare surface. In this paper, however, we show that both
forms of cloaking are subject to practical difficulties that
increase as the size of the cloaked object grows, generalizing a
simple one-dimensional argument that we previously applied
to ground-plane cloaking [4]. We focus most of our attention
on the case of ground-plane cloaking, which seems to be the
most practical possibility, but we then show that a very similar
analysis applies to cloaking of isolated objects. In both cases,
our key starting point is the assumption that the attainable
refractive indices are bounded, in which case we show that
the cloak thickness must scale with the object size and hence
any losses per unit volume (including both absorption and
scattering from imperfections) must scale inversely with the
object size. It has been suggested that gain could be used to
compensate for absorption loss (but not other imperfections)
in the cloak [5], but a corollary of our results is that such
compensation must become increasingly exact as the object
diameter increases.

Although there have been several experimental demonstra-
tions of ground-plane cloaking [6—15], as well as theoretical
investigation of several variations on the underlying idea
[16—-19], we previously argued using a simple one-dimensional
model system that the difficulty of ground-plane cloaking must
increase proportionally to the thickness of the object being
cloaked [4]. In this paper, we generalize that simple argument
to a rigorous proof for arbitrary cloaking transformations in
three dimensions. We demonstrate that the thickness of the
cloak must scale proportionally to the size of the object, given
bounded material properties. (Previously, we arrived at a sim-
ilar conclusion in one dimension from the delay—bandwidth
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product [4], but here our result is derived independent of
the bandwidth, although the bounds on the indices ultimately
depend on the bandwidth.) From this, if one requires a bounded
reduction in the scattering cross section, it follows that the
loss (due to absorption or other imperfections) per unit volume
must scale inversely with the object thickness, and we quantify
this scaling more precisely in the case of absorption loss and
scattering from disorder. For a lossy ambient medium such as
a fluid (with an observer close enough to see the object), the
losses of the cloak must asymptotically approach those of the
ambient medium, and defects or roughness that scatter light
must still vanish, so there is still a sensitivity to imperfections.
(On the other hand, ambient fluids have the advantage that it is
easier to index match them with a solid cloak without resorting
to complicated metamaterial microstructures susceptible to
manufacturing imperfections. This helped recent authors,
using natural birefringent materials, to demonstrate cloaking
effects at visible wavelengths for cm-scale structures [13,14].)
In addition to scattering and loss, systematic imperfections
(such as an overall shift in the indices or an overall neglect
of anisotropy in favor of approximate isotropic materials
[3]) must also vanish inversely with object thickness, since
such systematic errors produce a worst-case phase shift in
the reflected field proportional to the imperfection and the
thickness of the cloak (the path length, which scales with the
object). (For oblique angles of incidence, such phase shifts can
cause a lateral shift in the reflected beam [18], analogous to a
Goos-Hinchen shift.)

Cloaking of isolated objects, on the other hand, is already
subject to severe bandwidth restrictions: Perfect cloaking in
vacuum over a nonzero bandwidth would imply rays traveling
at greater than the speed of light around the object [1], which
can be interpreted as a causality violation [2]. Nevertheless,
the isolated cloaking problem is of considerable fundamen-
tal theoretical interest [5,20—42], and several groups have
demonstrated single-frequency cloaking of small objects in
experiments [43—46]. Although several theoretical simulations
included absorption loss [5,20,23,24,37,42,47,48], a tradeoff
between absorption tolerance and object size was suggested in
Ref. [31]. Based on these numerical experiments [31] and on
comparison with ground-plane cloaking, we suggested [4] that
even single-frequency isolated-object cloaking must become
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increasingly difficult as the cloaked object becomes bigger,
and in this paper we are able to prove that result analytically.
In particular, assuming that the attainable refractive indices
are bounded above, we show that the cloak thickness must
scale proportionally to the object diameter and any cloak
losses (absorption or imperfections) must scale inversely with
diameter. (Experimentally, the group to claim isolated cloaking
of an object more than wavelength scale in diameter [49] did
not do so in vacuum, but rather within a parallel-plate wave
guide system free of complex microstructures and hence with
very low intrinsic losses.) Another limitation on isolated-object
cloaking is that the singularity of the cloaking transformation
(which maps an object to a single point) corresponds to very
extreme material responses (e.g., vanishing effective indices)
at the inner surface of a perfect cloak [50]. Here, independent
of our results on losses, we show that if the attainable refractive
indices are bounded below, then the cloak is necessarily imper-
fect: It reduces the object cross section by a bounded fraction,
even for otherwise lossless and perfect materials. (Previous
authors showed that the bounded reduction in the cross section
obtained from a nonsingular cloaking transformation could be
partially defeated by resonant inclusions in the object [51],
but this problem seems avoidable by a cloak with a reflective
inner surface that masks the nature of the cloaked object.)
Both of these diameter-scaling limitations are apparent if one
looks at explicit examples of cloaking transformations, such
as Pendry’s original linear scaling [1], but our results differ
from such observations in that they hold in general for any
arbitrary transformation, including transformations that are
not spherically symmetrical.

II. GROUND-PLANE CLOAKING

Consider an object in a volume V,, on a reflective ground
plane, surrounded by a homogeneous isotropic ambient
medium with permittivity ¢, and permeability u,. This object
is cloaked by choosing the materials ¢ and u in a surrounding
volume V,. to mimic a coordinate transformation, with Jacobian
J , mapping the physical space X to a virtual space X’ in which
the object is absent (J;; = Bxi/Bx}), as shown in Fig. 1. This
is achieved by ¢ = ,JJ7/detJ and p = u, JJ7/det T
(for isotropic &4, [44) [1]. (The surface of the object in X is
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FIG. 1. (Color online) Schematic of a general cloaking problem:
An object in a volume V,, sitting on a reflective ground is cloaked by
choosing the materials ¢ and u in a surrounding volume V, to mimic
a coordinate transformation, with Jacobian .7, mapping the physical
space X to a virtual space X' in which the object is mapped into the
ground and V. is mapped into the entire V! = V. U V, volume with
the homogeneous ambient-space properties ¢, and p,. S. denotes the
outer surface of the cloak (identical in X and X').
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mapped to the ground plane in X’, and so the inner surface of
the cloak must be reflective like the ground plane.) We derive
the limitations of cloaking under the following two practical
requirements:

(i) The attainable refractive index contrast ,/eit/\/€qfta
(the eigenvalues of J.J T / det J) is bounded above by B and
below by b.

(ii) The scattering cross section (nonzero due to imperfec-
tions in the cloak) for any incident wave is bounded above by
some fraction f of the geometric cross section s,.

Given these two constraints, we derive the following
relations between the difficulty of cloaking and the size of
the object to be cloaked:

(1) The thickness of the cloak must scale with the object
thickness (divided by B).

(i) The allowed imperfections (e.g., disorder or absorption)
must scale at most inversely with the object thickness.

A. Cloak thickness

The volume V. is given by [, v, | det Jldx'dy'dz’, and
therefore constraints on V. /V/ immediately follow from two
facts. First, | det | can be bounded due to the bound B on the
index change above. Second, an even tighter bound follows
from the fact that the outer surface S, of the cloak is invariant
under the coordinate transformation. In particular, defining J
and 7, as the first two columns of J and denoting singular
values of J by o; (052 are eigenvalues of 7.J T 52D, referring
to the cross sections A’(z") defined in Fig. 2, we show the
following sequence of bounds:

— I / /
V. = jvf | det 7| dx'dy'dz (1a)

> mino) | dz ([ 17, x Zldx'dy  (Ib
(mma)/0 ¢ [ 170 x Fylax'ay (b

Al(Z)
20
= (min U,-)/ A(Z)d7 (1c)
0

> (mino;) / U A@)dL = mine)V (1d)
0
> V//B. (le)

Step (2) follows from |detJ| = ||J7(J: x J)I, and
| 7Tl > (mino;)|lul| for any vector u [52]. The x’y’ integral
in line in Eq. (1b) is simply the area A(z’) that A’(z") maps to,
and A(z") > A’(Z) because the outer boundary (solid dots in

A(z) A'z)

0 X-y pla?le x -y 'plane

FIG. 2. (Color online) The cloaked volume V/ in virtual space can
be divided into flat cross sections A’(z’) for each z' € [0,z¢]. These
are mapped to curved surfaces A(z) in X. The invariance of the outer
surface S, means that the boundaries (solid dots) of A(z’) and A’(z")
coincide, and hence A(z') > A'(Z).
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Fig. 2) is identical in A and A’ and the flat surface A’ is the
minimal area for this boundary. Finally, step Eq. (le) stems
from elementary properties of singular values: The eigenvalues
of 7JT/|det | are simply b < 0 /010205 < B [52], and
algebraic manipulation of this inequality yields B~' < 0; <
b~!. Thus, we have shown that V. > V!/B, but since the outer
surface S, is invariant it follows that the thickness of the cloak
must scale proportionally to the object thickness divided by B.

B. Cloak losses

We will analyze losses due to imperfections via perturbation
theory: We first obtain the fields in a perfect cloak (¢ and u
given exactly by the transformation law), and then consider the
lowest-order absorption or scattering in the presence of small
imperfections. Suppose the object is illuminated by an incident
plane wave with electric-field amplitude E(, which means that
the total field (incident plus reflected) in the ambient medium
and in V/ has amplitude <2E). For a perfect cloak, the fields
in the cloak V, are simply given by (J7)~! multiplied by the
reflected plane wave in virtual space X’ [1], and hence the field
amplitude E in the cloak is <2Ej/(mino;) < 2EyB (using
the bounds on the singular values o; from above). We must
consider the worst-case losses for arbitrary incident waves;
since this is bounded below by the loss from any particular
incident wave, it is convenient to consider glancing-angle
p-polarized plane waves where the field is a constant Ej
everywhere in V! and E > Eyb in the cloak (from the bound
on max o;).

1. Absorption

An absorption imperfection is a small deviation Alme
in the imaginary part of ¢ compared with &, 777 /detJ.
(Similarly for u, but it suffices to consider electric absorption
here.) This gives a change $ Re f% E*AIm¢E in the time-
average absorbed power at a frequency w [53]. To lowest order
in Ae, we can take E to be the field in the perfect cloak, and
suppose for simplicity that the absorption is isotropic (A Im e
is ascalar), and therefore the worst-case change in the absorbed
power is > %’E%b2| fo AIme|. Combined with our initial
requirement on the scattering cross section, the change in the
absorbed power must be < fs, /o where Iy = %ES«/&;/H«“ is
the incident intensity, and we obtain the following bound:

fvga/Mas_g<fV€a/MaBs_g
wb> V., wb® V’

c

mean Alme <

2)

(using the V. inequality above). The ratio s,/ V. scales as
1/thickness, so this means that the mean AlIme scales
inversely with the thickness of the object to be cloaked. (The
1/w dependence means that this can be interpreted as a bound
on the conductivity.)

Equation (2) is a necessary condition on the loss, but is too
optimistic to be a sufficient condition. For example, suppose
that the ambient medium is lossy, so that A Im € can have either
sign depending on whether the cloak is more or less lossy than
the ambient medium (or alternatively, A Ime < 0 could come
from gain). Equation (2) is satisfied if the more lossy and less
lossy regions of the cloak average to zero, but in fact this
will not result in a zero scattering cross section for arbitrary
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incident waves. For example, a narrow incident beam (rather
than a plane wave) will interrogate the loss in some regions of
the cloak more than others, and even a plane wave at a different
angle will create a standing-wave pattern that has higher
field intensity in some regions—in these cases, any delicate
cancellation in the absorption will be destroyed. Instead, we
can derive a sufficient condition on the loss by bounding the
change in absorption above rather than below. In particular,
|5 Re [, E*AImeE| < 2V.(2EgB)* max |AIme|, and thus
it is sufficient for

f\/‘ga/ﬂas_g<f\/8a/ﬂas_g
4wB2 V. ©  4oB V!

This is, perhaps, stronger than strictly necessary; we con-
jecture that a weaker sufficient condition exists that replaces
max |AIme| by an average of AIme in the smallest region
that can be interrogated by an incident wave (i.e., some
wavelength-scale region). Regardless, both the sufficient and
necessary conditions on the absorption imperfections scale
inversely with the object thickness. This is true regardless
of whether the ambient medium is lossy, and also means
that any gain-based compensation of absorption must become
increasingly exact for larger objects.

max |[Alme| <

3)

2. Random imperfections

Small random imperfections can be thought of as scatterers
distributed randomly throughout V. with some polarizability
o (dipole moment p = «E) [54]. For example, a small
change Ae¢ in a small region 8V corresponds to « = AedV.
Computing « for surface roughness is more involved, but is
conceptually similar [54]. If these imperfections are uncor-
related, then on average the scattered power is simply the
mean dipole radiation from each scatterer multiplied by the
density d, of scatterers (the radiation from different scatterers
is incoherent, so interference terms average to zero) [53].
This radiation is most easily computed by transforming each
scatterer back to virtual space X', where the polarizability is
o =TI ' det J, so that |o'| > |a|/B from above.
The radiated power of a point source in virtual space
(homogeneous above a ground plane) varies with distance and
orientation above the ground plane due to the image dipole
source below the ground plane, but the worst-case (over all
incident waves) average (over all scatterer positions) scattered
power is proportional (with a constant factor of order unity)
to the radiated power of a point source in the homogeneous
medium, (a/E0)2w4uam/12n [53]. Multiplying this by
the number d,, V, of scatterers and comparing to the require-
ment on the worst-case loss, one finds that «2d, is bounded
above by a quantity proportional to B> fs,/V/, which again
scales inversely with the thickness of the cloaked object. Note
that, while gain could conceivably be used to compensate for
absorption loss, it does not seem applicable to scattering from
imperfections.

III. Cloaking of isolated objects

Consider the problem of cloaking an isolated object of
volume V, in a homogeneous isotropic ambient medium
using a transformation-based cloak of volume V, surrounding
the object. As above, the cloak material is determined from
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FIG. 3. (Color online) Isolated-object cloak.

a coordinate mapping with Jacobian 7, via the equations
e =¢g,JJ7/detJ and pu = o J I/ det J. Now, however,
there is no ground plane, and so the coordinate mapping
instead attempts to shrink the object: It maps the physical
space X to a virtual space X’ in which the object volume
V, is mapped to a smaller volume V,, as shown in Fig. 3.
(As for ground-plane cloaking, the outer cloak surface S, is
invariant, since the transformation is the identity outside of the
cloak.) Perfect cloaking corresponds to the case in which V
is a single point, but we will show that this is not possible if
the index contrast (eigenvalues of 777 /det ) is bounded
below by b > 0 as above. We will also show results analogous
to our results for ground-plane cloaking: If the index contrast is
bounded above by B, then the thickness of the cloak must scale
with the object diameter, and correspondingly the losses (from
absorption or imperfection) in the cloak must decrease with
the object diameter. Before developing our general results,
however, we will begin with a specific illustrative example
which demonstrates these scalings: an adaptation of Pendry’s
linear-scaling cloak design [1] to a nonzero V.

A. Example: A spherical linear-scaling cloak

Suppose that the cloaked object is a sphere of radius R,
and the cloak has outer radius R,. We shrink the object
to a sphere of radius R| with the transformation ' = R| +
(r — Ri)(R> — R})/(R, — Ry) in spherical coordinates. This
leads to the following transformed materials in the cloak
region (applying the general spherical coordinate version of
the transformation [1]:

60/6a = = ep/ta = _RoR oy
G/Sa—MG/Ma—5¢/8a—M¢/Ma—Rz_Rla 4

_ 2

R, — R, [R} + 2 (R, — R})
oo/ = pofia = R R LRI B2 g

R2 — R/l 7‘2

At the inner cloak surface » = Ry, the radial components
of ¢ and p simplify to %%Q(R/l/ R1)?, which vanishes for
Ry =0. If we impose a lower bound b on the singular
values of eu/e,uq, however, then R| cannot vanish. In
particular, if Ry > R] then (R}/ R)* ~ b, and hence the area
reduction S /S, ~ b. Below, we show in general (for arbitrary
nonspherical transformations) that a b > 0 condition imposes
a lower bound on the area reduction.

Evenif b = 0, there is still a relationship between the index-
contrast upper bound B and the cloak thickness. Suppose
R < Ry (ie., it is an effective cloak). Then the tangential
components of ¢ and p are & R, /(R; — Ry) < B, from which
it immediately follows that the cloak thickness R, — R; is
bounded by R,/B ~ R;/B. This is identical to what we found
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for ground-plane cloaking, above: Cloak thickness scales with
object thickness divided by B. Below, we will generalize this
thickness scaling to arbitrary nonspherical cloaks.

B. General limits on cloaking cross section

In this section, we show in general that the S, the effective
surface area of the cloaked object, must be > S,b2. That is,
if b > 0, then the area S/ as seen by an observer must scale
proportional to the object area, so that the cross section is
reduced by a bounded factor. (For objects much larger than
the wavelength, the scattering cross section is proportional to
the geometric cross section S).) From the spherical example
above, it might be possible to derive an even tighter ~b bound
on S/, but the S,b? bound here is sufficient to demonstrate the
scaling with S,.

Our basic approach is to write down S, in terms of an
integral over S/, and then to bound the integral

So = [ 190 x BldA G 0, (6)

where (u,v) <> (u',v') is some coordinate system of the
surfaces, dA’(u’,v’) is the area element in S/, and 7, and
J, are columns of the Jacobian matrix as in Sec. I A. We
must then bound |7, x J,| similar to our previous analysis,
but this is conceptually complicated somewhat by the fact that
the coordinate system here is non-Cartesian, meaning that [/
no longer has the same bounds. To circumvent this difficulty,
we apply a standard trick from differential geometry [55]: We
cover the surface S, with small overlapping neighborhoods
N/ (alocally finite open covering [55]) where the surface is
locally approximately flat, in which case we can define a local
Cartesian coordinate system and use the Cartesian bounds on
J (ultimately taking the limit of infinitesimal neighborhoods
so that the local flatness becomes exact). To combine these
local results, one uses a partition of unity [55]: a set of bump
functions p(u’,v") (nonzero only on N;) such that )", p, =1
on S/. Thus, we obtain

So =Y [[ 170 x Tl pia A, )

kN

Now, in the limit of infinitesimal neighborhoods N, we
can freely treat each integral as being over a local Carte-
sian coordinate system, in which case J is the ordinary
Cartesian Jacobian matrix. Now, we use two facts. First, we
know | det J| = o,0,03 < (max o;)*(min ;). Second, similar
to Sec. ITA, [det J| = [|T" (T x Tl = (mino)| T, x T,
from general properties of singular values [52]. Combining
these two inequalities, we find | 7, x J,| < (maxo;)* = 1/b°.
Substituting this bound into the integral above, we finally
obtain

S < Y [ piaap? (82)

kN
— / 2 /1.2

- @S% (; pk> dA' /b = @S%(l)dA /6> (8b)
=S,/b*, (8¢)
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the desired inequality. (Note that if the object contains
corners where S, is not locally flat, that does not affect this
analysis since those corner regions have zero measure in the
integral. The bounds on 7 mean that corners in S, must be
mapped to corners in S, and vice versa, and the integrand is
finite.)

We suspect that a tighter bound, proportional to b instead
of b?, can be proven by taking into account the fact that
the coordinate transformation must leave S. invariant. In
the spherically symmetrical example above, the purely radial
nature of the coordinate transformation caused it to have at
most one factor of 1/b in | det J | (only one eigenvalue of & and
w vanishes for R| = 0) and not two, leading to an S, ~ S, /b
dependence. A similar single factor of b in the general case
would give a 1/b scaling in the inequalities above by replacing
(max o;)* with max o;.

C. General scaling of cloak thickness and loss

A simple linear scaling of the cloak volume, as mentioned
at the beginning of Sec. IT A, follows immediately from the
bounds on |det 7|

V.= ﬂ f |det J|dx'dy'dZ’ > (mino;)’V! > V//B*  (9)
V!

As for ground-plane cloaking, we can define a mean thickness
V./S. of the cloak. For a useful cloak, V, « V, and hence
V!~ V. +V,. Thus, V!/S. = V//S. is a mean total (cloak
plus object) diameter. Therefore, we have just demonstrated
the inequality V. /S, > (V//S))/ B3 (to lowest order in VI Vo),
which means that the mean cloak thickness V,/S. must scale
proportionally to the object diameter.

The spherical Pendry example above leads us to suspect
that a tighter bound ~1/B can be derived. Similar to
the ground-plane example in Sec. Il A, we expect that the
key point is that we have not yet taken into account the
constraint S, = S, on the cloaking transformation. However,
our main goal here is to demonstrate the scaling of cloak
thickness with object thickness, not to fine-tune the constant
factor.

Now that we know that cloak thickness must scale with
object thickness, an analysis of losses similar to that in the
ground-plane case above must apply. As the object becomes
thicker, incident rays travel for a longer distance through the
cloak, and hence for a fixed tolerance on the cross section the
losses per unit distance must shrink proportionally to the object
diameter. Hence absorption losses (or rather, the difference
between the cloak absorption in X’ and the absorption of the
ambient medium) and imperfections must scale inversely with
the diameter. As we pointed out in our previous paper [4],
precisely such an inverse scaling of absorption tolerance with
diameter has been demonstrated numerically [50] for spherical
cloaks, and our work now shows that this relationship is
general. As suggested by some authors [5], gain could be
used to compensate for absorption (but not disorder), but as
discussed above our results imply that this compensation must
become more and more exact as the object diameter increases.

For example, let us explicitly consider absorption imper-
fections for the idealized case of b = 0, that is, suppose we
are able to map V, to a single point V, = 0, but have a finite
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B and are still concerned with imperfect materials. In this
case, an incident plane wave of amplitude E, corresponds
to a plane wave of constant amplitude in the cloak for
perfect materials, or to lowest order in the imperfections
for imperfect materials. Then, similar to our analysis in
Sec. II B 1, the change in absorbed power is bounded below
by %Eglfw Alme/(max 0;)?|. Since we require that this
change also be bounded above by the incident intensity
(~E?2) multiplied by some fraction f of the geometric cross
section s,, we obtain a necessary condition on the absorption
imperfection as in Sec. II B 1. In particular it follows that an
averaged absorption imperfection | fVc AlIme/(max 0;)?|/ V.
must scale proportionally to s,/ V. ~ s,B3/V/, where V//s,
is proportional to the diameter. In Sec. IIB 1, we further
used maxo; < 1/b and pulled out a b? factor, but that is
not appropriate when b =0, so instead we must leave a
1/(max 0;)*> weight factor (which is only zero at the inner
surface of the cloak) in the average of A Ime. Asin Sec.IIB 1,
this is not a sufficient condition because the observer need not
use plane waves—for interrogating the cloak with a focused
beam, a stronger condition must apply, in which A Im ¢ within
a small (wavelength-scale) volume must go to zero as diameter
increases. If b > 0, this analysis is only slightly modified in
principle (although the precise expression becomes much more
complicated): The small scattered field (assuming V, < V,)
from the nonzero V, > 0 modifies the field in X’ by a small
amount over most of V (except immediately adjacent to V),
which should only change the proportionality of the Im Ae
scaling by a small factor.

IV. CONCLUSIONS

Generalizing our previous work [4], these scaling laws point
to an inherent practical difficulty (though not a mathematical
impossibility) in scaling experimental cloaking of small ob-
jects to larger ones. Furthermore, we showed that very similar
analysis can be applied to cloaking of isolated objects—
bounded index contrasts will imply a bounded reduction in
the scattering cross section, a cloak thickness proportional to
the object diameter, and imperfection tolerances that shrink
with the object diameter (a scaling we already observed
numerically [4]). It might be possible to further generalize
the results in this paper to cloaks that are not derived
from coordinate transformations (similar to the generality
of our one-dimensional analysis [4]). However, the most
serious constraint on isolated-object cloaking seems to be the
bandwidth, which must be zero for perfect cloaking [1,2].
Clearly, if perfect cloaking is possible (theoretically) at a
single frequency, then imperfect cloaking (reduction of the
cross section by a given factor) must persist over a nonzero
bandwidth, and an interesting open problem is to prove how
the bandwidth of such imperfect isolated-object cloaking must
scale with the object diameter from causality constraints.

An alternative direction is to consider relaxations of
the cloaking problem that might prove more practical. In
particular, it would be valuable to make precise the intuition
that the cloaking problem becomes easier if the incident
waves are restricted (e.g., to plane waves from a certain
range of angles) and/or the observer is limited (e.g., only
scattered waves at certain angles are visible, or only amplitude
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but not phase can be detected), since this is arguably the
situation in most experiments. (For example, current stealth
aircraft are designed in the radar regime mainly to reduce
back-scattering only [56].) Another interesting possibility is to
consider cloaking that attempts to make one object look like a
different object of a similar size rather than making it invisible
(although this approach is similar in spirit to ground-plane
cloaking and may have similar limitations).
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