
Improving accuracy by sub-pixel smoothing in FDTD

A. Farjadpour,∗ David Roundy, Alejandro Rodriguez, M. Ibanescu,

Peter Bermel, J. D. Joannopoulos, and Steven G. Johnson

Center for Materials Science and Engineering and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, MA 02139

G. W. Burr

IBM Almaden Research Center, San Jose, CA 95120

Abstract

Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling

discontinuous dielectric materials, due to the inhererent discretization (“pixellization”). We show

that accuracy can be significantly improved by using a sub-pixel smoothing of the dielectric func-

tion, but only if the smoothing scheme is properly designed. We develop such a scheme based on a

simple criterion taken from perturbation theory, and compare it to other published FDTD smooth-

ing methods. In addition to consistently achieving the smallest errors, our scheme is the only one

that attains quadratic convergence with resolution for arbitrarily sloped interfaces. Finally, we

discuss additional difficulties that arise for sharp dielectric corners.
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A popular numerical tool for photonics is the finite-difference time-domain (FDTD)

method, which discretizes Maxwell’s equations on a grid in space and time.[1] Here, we ad-

dress difficulties in representing a discontinuous permittivity (ε) on such a grid, by proposing

an anisotropic sub-pixel ε smoothing scheme adapted from spectral methods.[2, 3] We show

that our method consistently achieves the smallest errors compared to previous smoothing

schemes for FDTD.[4–6] Unlike methods that require modified field-update equations,[7] our

method uses the standard center-difference expressions and is easy to implement (free code

is available [8]).

When ε is represented by “pixels” on a grid (or “voxels” in 3d), two difficulties arise.

First, a uniform grid makes it more difficult to model small features or to optimize device

performance by continuous variation of geometric parameters. Second, the pixellized ε may

be a poor representation of the dielectric function: diagonal interfaces produce “staircasing,”

and even interfaces aligned with the grid may be shifted by as much as a pixel. This

increases the computational errors, and can even degrade the rate of convergence with the

grid resolution—as was pointed out in Ref. 7, ε interfaces actually reduce the order of

convergence from the nominal quadratic (error ∼ ∆x2) of standard FDTD to only linear

(error ∼ ∆x). We address both of these difficulties.

The first difficulty is addressed by any smoothing scheme: assign to each pixel some

effective ε based on the materials and interfaces in/around the pixel. The effective ε can

then vary continuously with geometry.[1] However, such a smoothing perturbs the problem

being solved, changing the original discontinuous geometry to a smoothed geometry. Thus,

smoothing may actually increase the error. To ensure that the error is reduced, and in

fact to restore quadratic convergence, we propose a smoothing with zero first-order effect in

Maxwell’s equations.

Consider an interface between two isotropic ε materials crossing a pixel, with a unit-

normal vector n perpendicular to the interface (assumed locally flat for small pixels, deferring

the question of corners until later). We assign to that pixel an inverse dielectric tensor
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(justified below):

ε̃−1 = P
〈
ε−1

〉
+ (1 −P) 〈ε〉−1 , (1)

where P is the projection matrix Pij = ninj onto the normal. The 〈· · · 〉 denotes an average

over the voxel s∆x × s∆y × s∆z (in 3d) surrounding the grid point in question, where s

is a “smoothing diameter” in units of the grid spacing (s = 1 except where noted). More

precisely, FDTD employs a Yee grid in which different field components are computed at

different locations,[1] and we find the averages (1) at each E component’s grid points. This

ε̃ is then used to compute E = ε̃−1D. For example, to compute Ex at its Yee-grid point

[i + 0.5, j, k] = ([i + 0.5]∆x, j∆y, k∆z), only the first row of the ε̃−1 tensor for that point is

needed. When ε̃−1 is not diagonal, we obtain Dy and Dz at the Ex point by simply averaging

the Dy and Dz components from their four adjacent Yee points (similar to Ref. 9). Note that

(1) has the nice property of being Hermitian for real scalar ε, and equals ε−1 for homogeneous

pixels.

Equation (1) corresponds to discretizing a smoothed version of Maxwell’s equations, where

ε or its inverse has been anistropically convolved with a box-like smoothing kernel. It was

proposed for use with a planewave method,[2, 3] based on effective-medium considerations,

but we can also evaluate this and other schemes by a simple criterion from perturbation

theory. In particular, even before we discretize the problem, smoothing ε causes the solution

to be perturbed, and this perturbation can be analyzed via methods recently developed for

high-contrast interfaces.[10, 11] To minimize this smoothing error, we simply require that

the error be zero to first order in the smoothing diameter s as s → 0. The remaining

smoothing errors will be quadratic in the resolution (except in singular cases as discussed

below). Near a flat interface, the effect of a perturbation ∆ε on computed quantities such

as eigenfrequencies[10] or scattered powers[11] is proportional to ∆ε|E‖|2 − ∆(ε−1)|D⊥|2,
where E‖ and D⊥ are the continuous surface-parallel and -perpendicular components of E

and D, respectively. For the first-order change to be zero, ∆ε must be a tensor, such that

∆ε‖ and ∆ε−1
⊥ both integrate to zero (e.g. are equal and opposite on the two sides of the

interface). A simple choice satisfying this condition is (1), which uses the mean 〈ε〉 for the
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FIG. 1: TE eigenfrequency error vs. resolution for a bragg mirror of alternating air and ε = 12

(inset).

surface-parallel E components and the harmonic mean 〈ε−1〉−1
for the surface-perpendicular

component.

Previous smoothing schemes do not satisfy this criterion, and are therefore expected to

have only linear convergence in general, and may even have worse errors than unsmoothed

FDTD. In particular, we compare to three other smoothings. The simplest is to use the scalar

mean 〈ε〉 for all components,[5] which is incorrect for the surface-normal fields. Kaneda[4]

proposed an anistropic smoothing that leads to diagonal ε̃−1 tensors. We also consider the
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FIG. 2: TE eigenfrequency error vs. resolution for a square lattice of elliptical air holes in ε = 12

(inset).

“VP-EP” scheme,[6] which is exactly the diagonal part of (1) for s = 1. Both Kaneda and

VP-EP are equivalent to (1) for flat interfaces oriented along the grid (xyz) directions, but

they do not satisfy the perturbation criterion for diagonal interfaces. Yet another method[9]

was found to be numerically unstable for our test cases, which prevented us from evaluat-

ing it; however, it is equivalent to (1) only for flat x/y/z interfaces. Other schemes, not

considered here, were developed for perfect conductors[1, 12] or for non-Yee lattices in 2d.[13]

To evaluate the discretization error, we compute an eigenfrequency ω of a periodic (square
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or cubic, period a) lattice of dielectric shapes with 12:1 ε contrast, a photonic crystal.[14]

In particular, we compute the smallest ω for an arbitrarily chosen Bloch wavevector k (not

aligned with the grid), so that the wavelength is comparable to the feature sizes. We perform

an FDTD simulation with Bloch-periodic boundaries and a Gaussian pulse source, analyzing

the response with a filter-diagonalization method[15] to obtain the eigenfrequency ω. This

is compared to the “exact” ω0 from a planewave calculation[3] at a very high resolution,

plotting the relative error |ω − ω0|/ω0 versus FDTD resolution. ω is a good proxy for other

common computations, because both the change in the frequency and the scattered power

for a small ∆ε go as ∆ε|E|2 to lowest order.[11]

To start with, we look at a 1d case in Fig. 1 where Kaneda, VP-EP, and Nadobny

are equivalent to our method: a distributed bragg reflector (DBR) along the x direction,

with a k vector in the xy plane so that the eigenfield E has components both parallel and

perpendicular to the interfaces. We find that both the no-smoothing and simple mean-ε cases

both have only linear convergence, whereas the new method (and Kaneda and Nadobny)

have quadratic convergence.

Since Kaneda, VP-EP, and our method are equivalent for grid-parallel interfaces (and we

obtain quadratic convergence for all these methods), we focus instead on a more complicated

case: a square lattice of elliptical air holes shown in the inset of Fig. 2, for the TE polarization

(E in the 2d plane). Our new method (hollow squares) has the smallest errors by large

margin, while the Kaneda and VP-EP methods are actually worse than no smoothing. As

mentioned above, all methods except ours converge linearly, whereas we expect our method

to be asymptotically quadratic. As a trick to make the quadratic convergence of our method

more apparent, we double the smoothing diameter to s = 2 (filled squares), at the expense

of increasing the absolute error.

The TM polarization (E out of the plane) is shown in Fig. 4 and is less interesting: all

the smoothing methods are equivalent to the simple mean ε, all decrease the error compared

to no smoothing, and all methods (including no smoothing) exhibit quadratic convergence.

Since E is everywhere continuous, TM is the “easy” case for numerical computation (and
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FIG. 3: Eigenfrequency error vs. resolution for a cubic lattice of ε = 12 ellipsoids in air (inset).

perturbative methods[10, 11]).

In three dimensions, we used a cubic lattice of ε = 12 ellipsoids, with an arbitrary

orientation, in air. The results in Fig. 3 again show that the new method has the smallest

error, and is again quadratic. Notice that the ordering of the other methods has changed,

and in general we observe them to yield erratic accuracy.

Finally, we consider a qualitatively different case, in which none of the methods satisfy our

zero-perturbation criterion: the presence of a sharp corner leads to a new field singularity.

Figure 5 shows the error for a square lattice of tilted air squares in ε = 12 (inset). Because
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FIG. 4: TM eigenfrequency error vs. resolution for a square lattice of elliptical air holes in ε = 12

(inset).

our new method at least handles the flat edges properly, it still has lower error than other

smoothing schemes, although suboptimal handling of the corner limits the differences. Fits

of this data indicate that our method seems to be converging as ∆x1.4, and in fact this

can be predicted analytically. Quite generally, any corner leads to a singularity where E

diverges as rp−1 for a radius r from the corner, with p given by a transcendental equation in

the corner angle and ε’s (here, p ≈ 0.702).[16] This leads to a perturbation in the frequency

∼ ∫
∆
|E|2rdr ∼ ∆r2p ≈ ∆r1.404, where ∆r is the size of the perturbation (the pixel). Other
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FIG. 5: Degraded accuracy due to field singularities at sharp corners: TE eigenfrequency error vs.

resolution for square lattice of tilted-square air holes in ε = 12 (inset).

smoothing schemes, in contrast, are limited by the linear error from the flat interfaces.

In future work, we hope to extend our method to properly handle corners (where previous

work has been limited to right-angle corners[17, 18]), by using the analytical knowledge of

the singularity to design a corner smoothing. Anisotropic ε may be handled similar to Ref. 3.
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