Modified Cooley-Tukey algorithms based on a generalized DFT framework

Steven G. Johnson

Created October 1, 2003; last updated October 16, 2008

1 Introduction

The purpose of this note is to outline “new” FFT algorithms based on a “generalized” discrete Fourier transform (GDFT) framework. These algorithms are in some sense a generalization of Cooley-Tukey but differ in that they can break up a given twiddle factor from Cooley-Tukey into multiple twiddle factors, subsequently recombined in a way that changes the twiddle access pattern. In another sense, they are equivalent to standard Cooley-Tukey, but use DIT-based twiddle factors with a DIF access pattern, or vice versa (proof left as an exercise for the reader). Although we were originally inspired by a polynomial-factorization framework similar to that of Bruun’s algorithm, we present them here in a more traditional algebraic formulation that permits easier implementation and comparison to standard Cooley-Tukey.

The basic transform that we will decompose is not the ordinary DFT, but the GDFT, defined by:

\[y_k = \sum_{j=0}^{n-1} \omega_n^{(j+a)(k+b)} x_j \]

for some arbitrary complex numbers \(a \) and \(b \), where \(\omega_n \equiv e^{-2\pi i/n} \) and \(a = b = 0 \) gives the ordinary DFT. Of course, the GDFT can be trivially computed via the DFT by pre-multiplying the input by the \(b \) factors and post-multiplying the output by the \(a \) factors, but we will not do that here.

2 Modified Cooley-Tukey

To compute the GDFT in the case of composite \(n = n_1 n_2 \), we use the Cooley-Tukey re-indexing \(j = j_1 + j_2 n_1 \) and \(k = k_1 n_2 + k_2 \). This yields the nested sum:

\[y_{k_1 n_2 + k_2} = \omega_n^{(k_1 n_2 + k_2)a} \sum_{j_1=0}^{n_1-1} \omega_n^{j_1 k_1} \omega_n^{j_2 k_2} \left(\sum_{j_2=0}^{n_2-1} \omega_n^{j_2 k_2} \omega_n^{(j_1+j_2 n_1)b} x_{j_1+j_2 n_1} \right). \]

The ordinary Cooley-Tukey algorithm would recurse in more or less the order indicated by the parenthesization: multiply \(x_j \) by the \(b \) factors (if any) first, then do the size-\(n_2 \) DFTs, then multiply by the \(j_1 k_2 \) twiddle factors, then do the size-\(n_1 \) DFTs, then...
multiply by the a factors (if any). For a small radix r, $n_1 = r$ gives a decimation-in-time (DIT) algorithm and $n_2 = r$ gives a decimation-in-frequency (DIF) algorithm.

However, this decomposition can be performed in another way by making the a and b factors a part of the recursion, splitting and recombining them with the ordinary twiddle factors. That is, we write the nested sum above as a nested pair of GDFTs:

$$y_{k_1n_2+k_2} = \sum_{j_1=0}^{n_1-1} \omega_{n_1}^{(j_1+a_1)(k_1+b_1)} \left(\sum_{j_2=0}^{n_2-1} \omega_{n_2}^{(j_2+a_2)(k_2+b_2)} x_{j_1+j_2n_1} \right),$$

where there are two possible choices of $a_1, b_1, a_2, \text{ and } b_2$. One possible choice is:

- $a_1 = a$
- $b_1 = (k_2 + b)/n_2$
- $a_2 = a/n_1$
- $b_2 = b$

Note that b_1 is a function of k_2. Alternatively, one can use the same $a_1 = a$ and $b_2 = b$ as above, but choose:

- $b_1 = b/n_2$
- $a_2 = (j_1 + a)/n_1$

where now a_2 is a function of j_1.

In both cases, a key difference from ordinary Cooley-Tukey algorithm can be achieved from the fact that, in the nested transforms, the original a and b both appear twice. Since the j_1k_2 twiddle factor is absorbed into the new b_1 or a_2, this means that it will be split into two pieces at the next stage of the recursion, instead of being multiplied in one step as in standard Cooley-Tukey. Of course, this assumes that there is a next stage of the recursion. That is, to be different from ordinary Cooley-Tukey, the first alternative requires that the size-n_1 transform (which contains the twiddle via b_1) be subdivided further, corresponding to a DIF algorithm; conversely, the second alternative requires that the size-n_2 transform (which contains the twiddle via a_2) be subdivided further, corresponding to a DIT algorithm. (Employing the first/second alternative with DIT/DIF yields the usual DIT/DIF Cooley-Tukey algorithm.)

2.1 Modified DIT Cooley-Tukey

In the modified DIT formulation from above, applied to compute the ordinary DFT, b is always zero. We get simply

$$y_{k_1n_2+k_2} = \sum_{j_1=0}^{n_1-1} \omega_{n_1}^{(j_1+a_1)k_1} \left(\sum_{j_2=0}^{n_2-1} \omega_{n_2}^{(j_2+a_2(j_1))k_2} x_{j_1+j_2n_1} \right),$$

where $a_1 = a$ and $a_2(j_1) = (j_1 + a)/n_1$. If the recursion is done in a depth-first fashion, this has the same memory access pattern as the usual DIT Cooley-Tukey algorithm, but with a striking difference in the twiddle factors: the twiddle factor multiplied by the
output (instead of the input) of the outer DFT is dependent only on \(k_1 \) and is independent of \(k_2 \). (This may have cache benefits, since one performs \(n_2 \) butterflies with the same set of \(n_1 \) twiddle factors.) Moreover, the twiddle factor for the topmost level of the recursion is trivial (unity), while conversely the leaf nodes of the recursion do have twiddle factors (since they are GDFTs and not DFTs). In terms of FFTW’s codelets, this would use nontwiddle codelets for the topmost level and DIF twiddle codelets for subsequent levels, but with a DIT access pattern.

3 Application to Real-data FFTs

One of the more intriguing possibilities of our modified Cooley-Tukey structure is the development of new real-data FFT algorithms. Currently, real-data FFT algorithms based on pruning the redundant computations from the complex-data algorithm, such as Sorensen’s or FFTW’s, have an important limitation: real-input (hermitian-output) algorithms must be DIT, and real-output (hermitian-input) algorithms must be DIF. Thus, for example, an out-of-place real-output FFTW must unfortunately destroy its input array (without additional buffer space or bit-reversal passes, or in FFTW3 additional passes to re-express via DHTs). Another consequence is that certain efficient possibilities for in-place algorithms are precluded; in particular, for complex data with a size of the form \(pq^2 \), one can combine a pair of size-\(q \) DIT and DIF steps, combined with a \(q \times q \) transpose, to recursively reduce the problem to a smaller in-place transform. The modified Cooley-Tukey algorithm should lift these restrictions. For example, for a real-output transform, one can use the naturally prunable DIF computations but in a DIT computational pattern that need not destroy the input array. Also, for a real-input transform, one can develop a DIT-based-pruning algorithm with DIF structure and DIF-like reordering requirements, combined with the usual DIT algorithm, for in-place computations.