Julia \& IJulia Cheat-sheet (for 18.xxx at MIT)

Basics:

julialang.org - documentation; juliabox.com - run Julia online github.com/stevengj/julia-mit installation \& tutorial using IJulia; IJulia.notebook() start IJulia browser shift-return execute input cell in IJulia

Defining/changing variables:
$\mathrm{x}=3$ define variable x to be 3
$x=[1,2,3] \quad$ array/"column"-vector $(1,2,3)$
$\mathrm{y}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \quad 1 \times 3$ matrix $(1,2,3)$

-set A to 3×4 matrix with rows $1,2,3,4$ etc.
$\mathrm{x}[2]=7 \quad$ change x from $(1,2,3)$ to $(1,7,3)$
$\mathrm{A}[2,1]=0 \quad$ change $A_{2,1}$ from 5 to 0
$\mathrm{u}, \mathrm{v}=(15.03,1.2 \mathrm{e}-27) \quad$ set $u=15.03, v=1.2 \times 10^{-27}$
$f(x)=3 x \quad$ define a function $f(x)$
$x \rightarrow 3 x \quad$ an "anonymous" function

Constructing a few simple matrices:

rand(12), rand(12,4)
random length 12 vector or 12×4 matrix with uniform random numbers in $[0,1$)
randn(12) Gaussian random numbers (mean 0 , std. dev. 1)
eye(5) 5×5 identity matrix I
linspace $(1.2,4.7,100) \quad 100$ equally spaced points from 1.2 to 4.7 $\operatorname{diagm}(\mathrm{x}) \quad$ matrix whose diagonal is the entries of x

Portions of matrices and vectors:
$\begin{array}{ll}\mathrm{x}[2: 12] & \text { the } 2^{\text {nd }} \text { to } 12^{\text {th }} \text { elements of } x \\ \mathrm{x}[2: \mathrm{end}] & \text { the } 2^{\text {nd }} \text { to the last elements of } x \\ \mathrm{~A}[5,1: 3] & \text { row vector of } 1^{\text {st }} 3 \text { elements in } 5^{\text {th }} \text { row of A } \\ \mathrm{A}[5,:] & \text { row vector of } 5^{\text {th }} \text { row of } A \\ \operatorname{diag(A)} & \text { vector of diagonals of } A\end{array}$

Arithmetic and functions of numbers:
$3 * 4,7+4,2-6,8 / 3$ mult., add, sub., divide numbers $3^{\wedge} 7,3^{\wedge}(8+2$ im $) \quad$ compute 3^{7} or $3^{8+2 i}$ power
sqrt(-5+0im) $\sqrt{-5}$ as a complex number
$\exp (12) \quad e^{12}$
$\log (3), \log 10(100) \quad$ natural $\log (\ln)$, base- $10 \log \left(\log _{10}\right)$
abs (-5), abs ($2+3 \mathrm{im}$) absolute value $1-5 \mid$ or $\mid 2+3 i$
$\sin (5 \mathrm{pi} / 3) \quad$ compute $\sin (5 \pi / 3)$
besselj $(2,6)$ compute Bessel function $J_{2}(6)$
Arithmetic and functions of vectors and matrices:
$\mathrm{x} * 3, \mathrm{x}+3$ multiply/add every element of x by 3
$\mathrm{x}+\mathrm{y} \quad$ element-wise addition of two vectors x and y
$\mathrm{A} * \mathrm{y}, \mathrm{A} * \mathrm{~B} \quad$ product of matrix A and vector y or matrix B
x * $\mathrm{y} \quad$ not defined for two vectors!
$\mathrm{x} \cdot * \mathrm{y} \quad$ element-wise product of vectors x and y
$\mathrm{x} \cdot \wedge$ every element of x is cubed
$\cos .(\mathrm{x}), \operatorname{cos.}(\mathrm{A}) \quad$ cosine of every element of x or A $\exp .(\mathrm{A}), \operatorname{expm}(\mathrm{A}) \quad \exp$ of each element of A, matrix $\exp e^{A}$ $\mathrm{x}^{\prime}, \mathrm{A}^{\prime} \quad$ conjugate-transpose of vector or matrix $\mathrm{x}^{\prime} * \mathrm{y}, \operatorname{dot}(\mathrm{x}, \mathrm{y}), \operatorname{sum}(\operatorname{conj}(\mathrm{x}) . * \mathrm{y}) \quad$ three ways to compute $x \cdot y$
$\mathrm{A} \backslash \mathrm{b}, \operatorname{inv}(\mathrm{A}) \quad$ return solution to $\mathrm{Ax}=\mathrm{b}$, or the matrix A^{-1}
$\lambda, \mathrm{v}=\operatorname{eig}(\mathrm{A}) \quad$ eigenvals λ and eigenvectors (columns of V) of A

Plotting (type using PyPlot first)

$\operatorname{plot}(\mathrm{y}), \operatorname{plot}(\mathrm{x}, \mathrm{y}) \quad$ plot y vs. $0,1,2,3, \ldots$ or versus x
$\log \log (x, y)$, semilog $x(x, y)$, semilogy $(x, y) \quad \log$-scale plots title("A title"), xlabel("x-axis"), ylabel("foo") set labels legend(["curve 1", "curve 2"], "northwest") legend at upper-left $\operatorname{grid}()$, axis("equal") add grid lines, use equal x and y scaling title(L"the curve $\mathbf{S e}^{\wedge} \backslash$ sqrt $\{\mathrm{x}\}$ \$") title with LaTeX equation savefig("fig.png"), savefig("fig.pdf") save PNG or PDF image

