Basics:
- julialang.org: documentation
- github.com/stevengj/julia-mit: installation & tutorial
- ipython notebook --profile-julia: start IJulia browser
- shift-return: execute input cell in IJulia

Defining/changing variables:
- x = 3: define variable x to be 3
- x = [1,2,3]: array/"column"-vector (1,2,3)
- y = [1 2 3]: 1x3 row-vector (1,2,3)
- A = [1 2 3 4; 5 6 7 8; 9 10 11 12]: set A to 3×4 matrix with rows 1,2,3,4 etc.
- x[2] = 7: change x from (1,2,3) to (1,7,3)
- A[2,1] = 0: change A_{2,1} from 5 to 0
- u, v = (15.03, 1.2e-27): set u=15.03, v=1.2×10^{-27}
- f(x) = 3x: define a function f(x)
- x .^ 3: every element of x is cubed

Arithmetic and functions of numbers:
- 3*4, 7+4, 2-6, 8/3: mult., add, sub., divide numbers
- 3^7, 3^(8+2i): compute 3^7 or 3^{8+2i} power
- sqrt(-5+0im): \sqrt{-5} as a complex number
- exp(12): e^{12}
- log(3), log10(100): natural log (ln), base-10 log (log_{10})
- abs(-5), abs(2+3im): absolute value |–5| or |2+3i|
- sin(5pi/3): compute sin(5\pi/3)
- besselj(2,6): compute Bessel function J_2(6)

Arithmetic and functions of vectors and matrices:
- x * 3, x + 3: multiply/add every element of x by 3
- x + y: element-wise addition of two vectors x and y
- A*y, A*B: product of matrix A and vector y or matrix B
- x .* y: element-wise product of vectors x and y
- x .^ 3: every element of x is cubed
- cos(x), cos(A): cosine of every element of x or A
- exp(A), expm(A): exp of each element of A, matrix exp e^A
- x', A': conjugate-transpose of vector or matrix
- x'*y, dot(x,y), sum(conj(x).*y): three ways to compute x \cdot y
- A \b, inv(A): return solution to Ax=b, or the matrix A^{-1}
- \lambda, V = eig(A): eigenvals \lambda and eigenvectors (columns of V) of A

Constructing a few simple matrices:
- rand(12), rand(12,4): random length-12 vector or 12×4 matrix with uniform random numbers in [0,1]
- randn(12): Gaussian random numbers (mean 0, std. dev. 1)
- eye(5): 5×5 identity matrix I
- linspace(1.2,4.7,100): 100 equally spaced points from 1.2 to 4.7
- diagm(x): matrix whose diagonal is the entries of x

Plotting (type using PyPlot first)
- plot(y), plot(x,y): plot y vs. 0,1,2,3,... or versus x
- loglog(x,y), semilogx(x,y), semilogy(x,y): log-scale plots
- title(\"A title\"), xlabel(\"x-axis\"), ylabel(\"foo\") set labels
- legend([\"curve 1", \"curve 2\"], \"northwest\") legend at upper-left
- grid(), axis(\"equal\") add grid lines, use equal x and y scaling
- title(L'\"the curve \$e^{\sqrt{x}}\"\") title with LaTeX equation
- savefig(\"fig.png\"), savefig(\"fig.eps\") save as PNG or EPS image