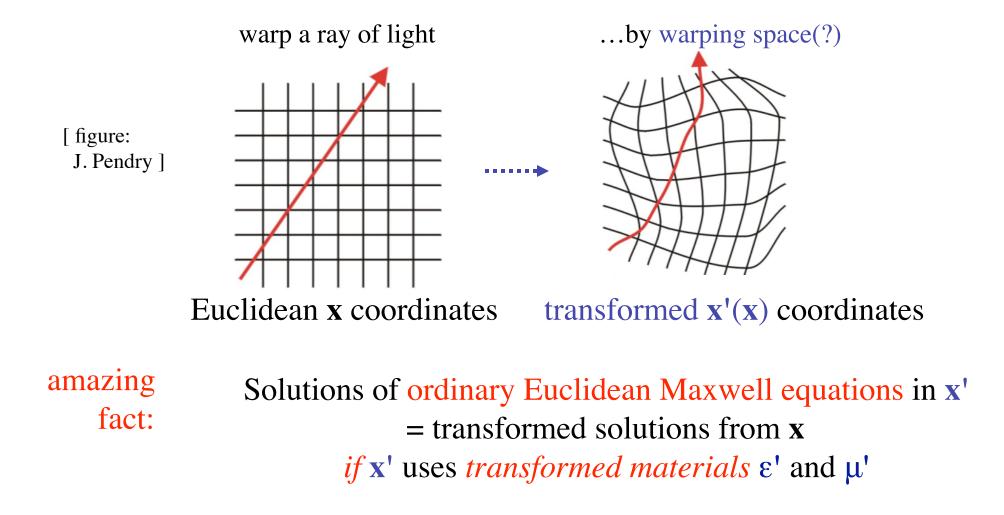
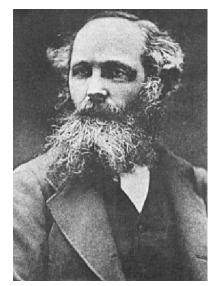
A beautiful approach: "Transformational optics"

[several precursors, but generalized & popularized by Ward & Pendry (1996)]





Maxwell's Equations

constants: ε_0 , μ_0 = vacuum permittivity/permeability = 1 c = vacuum speed of light = ($\varepsilon_0 \ \mu_0 \)^{-1/2} = 1$

 $\nabla \cdot \mathbf{B} = 0$

Gauss:

 $\nabla \cdot \mathbf{D} = \rho$

constitutive relations:

James Clerk Maxwell 1864

Ampere:

Faraday:

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{E} = \mathbf{D} - \mathbf{P}$$
$$\mathbf{H} = \mathbf{B} - \mathbf{M}$$

electromagnetic fields:

E = electric field
D = displacement field
H = magnetic field / induction
B = magnetic field / flux density

sources: \mathbf{J} = current density ρ = charge density

*material response to fields:***P** = polarization density**M** = magnetization density

Constitutive relations for macroscopic linear materials

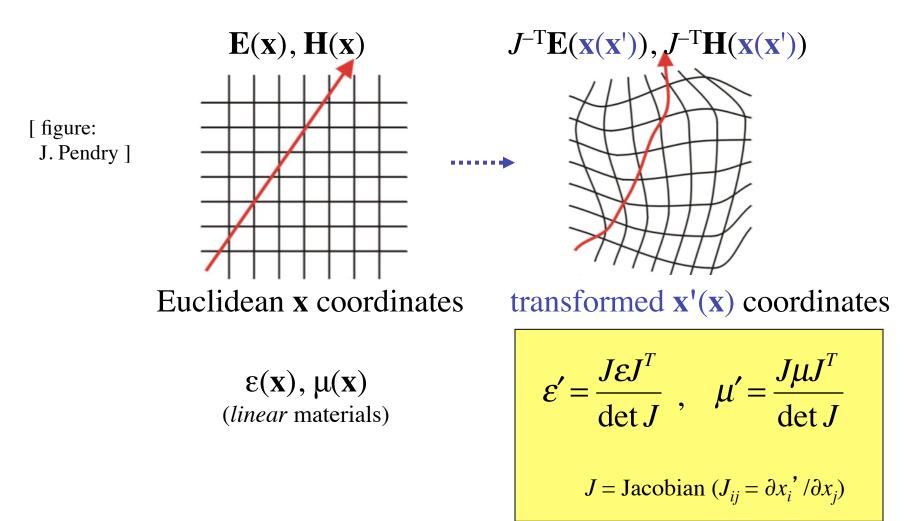
 $P = \chi_e E \qquad \implies \qquad D = (1 + \chi_e) E = \varepsilon E$ $M = \chi_m H \qquad \qquad B = (1 + \chi_m) H = \mu H$

where $\varepsilon = 1 + \chi_e$ = electric permittivity or dielectric constant $\mu = 1 + \chi_m$ = magnetic permeabili

 $\epsilon \mu = (refractive index)^2$

Transformation-mimicking materials

[Ward & Pendry (1996)]



(isotropic, nonmagnetic [μ =1], homogeneous materials \Rightarrow anisotropic, magnetic, inhomogeneous materials)

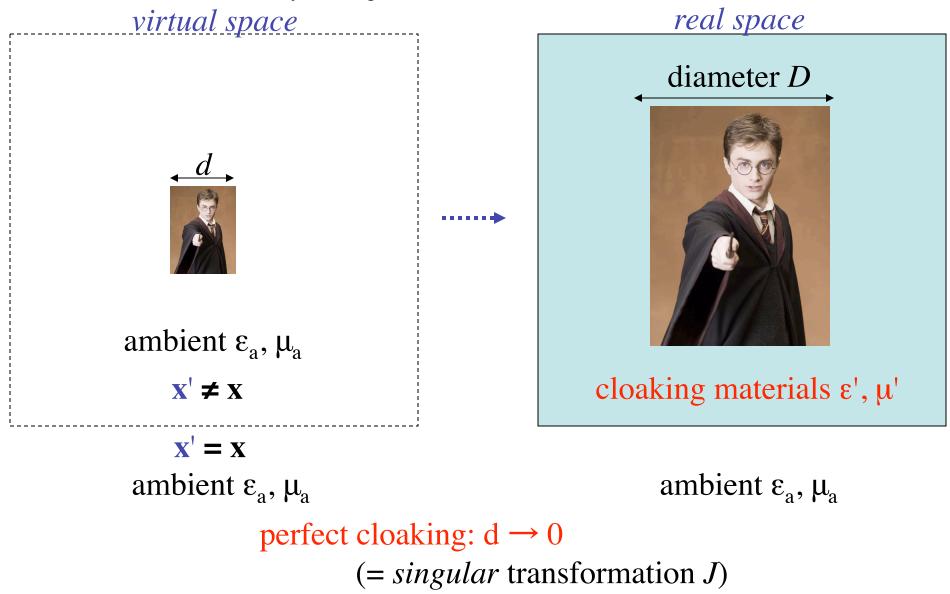
an elementary derivation

[Kottke (2008)]

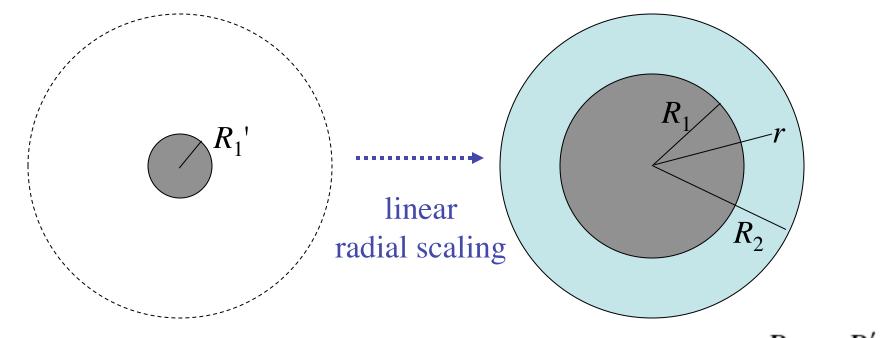
$$\begin{aligned} \partial'_{i}H'_{j}\epsilon_{ijk} &= \frac{1}{\det \mathcal{J}}\mathcal{J}_{kc}\varepsilon_{cd}\mathcal{J}_{ld}\frac{\partial E'_{l}}{\partial t} + \frac{\mathcal{J}_{kc}J_{c}}{\det \mathcal{J}}\\ \nabla' \times \mathbf{H}' &= \frac{\mathcal{J}\varepsilon\mathcal{J}^{T}}{\det \mathcal{J}}\frac{\partial \mathbf{E}'}{\partial t} + \mathbf{J}'\\ \varepsilon'\\ \mathcal{J}_{ij} &= \frac{\partial x'_{i}}{\partial x_{j}} & \partial_{a} = \mathcal{J}_{ba}\partial'_{b} & \begin{array}{c} E_{a} &= \mathcal{J}_{ba}E'_{b},\\ H_{a} &= \mathcal{J}_{ba}H'_{b}.\\ \text{Jacobian} & \text{chain rule} & \begin{array}{c} \text{choice of fields}\\ \mathbf{E}', \mathbf{H}' \text{ in } \mathbf{x}' \end{aligned}$$

Cloaking transformations

[Pendry, Schurig, & Smith, Science 312, 1780 (2006)]



Example: linear, spherical transform



cloak materials: $\varepsilon_{\theta}/\varepsilon_a = \mu_{\theta}/\mu_a = \varepsilon_{\phi}/\varepsilon_a = \mu_{\phi}/\mu_a = \frac{R_2 - R_1'}{R_2 - R_1}$

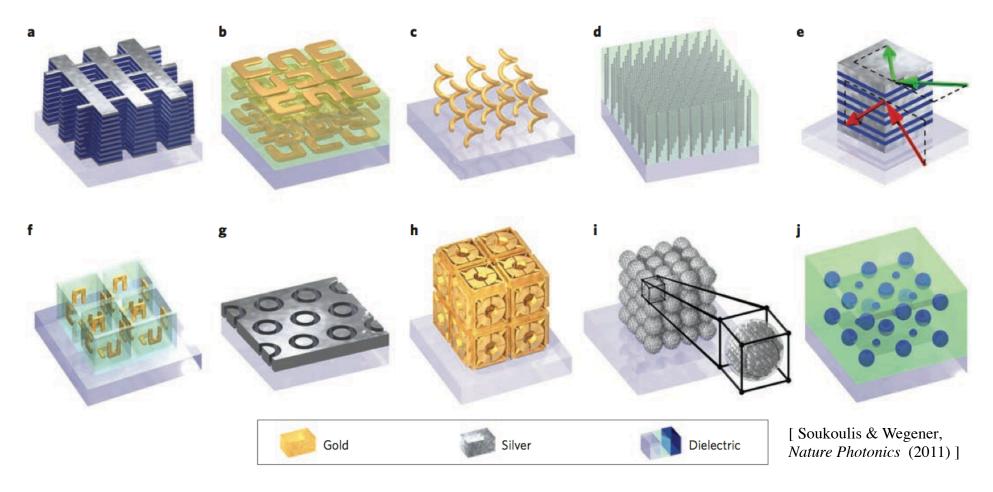
$$\varepsilon_r / \varepsilon_a = \mu_r / \mu_a = \frac{R_2 - R_1}{R_2 - R_1'} \frac{\left[R_1' + \frac{r - R_1}{R_2 - R_1}(R_2 - R_1')\right]^2}{r^2} = 0$$

at $r = R_1$

[note: no "negative index" ε , $\mu < 0$]

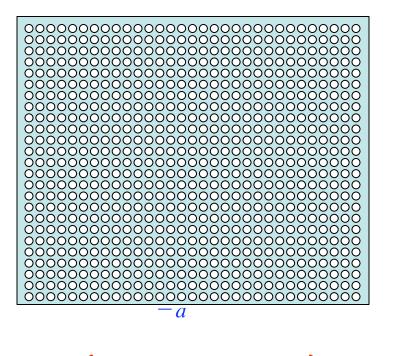
Are these materials attainable?

Highly anisotropic, even (effectively) magnetic materials can be fabricated by a "metamaterials" approach:



 $\lambda >>$ microstructure \Rightarrow "effective" *homogeneous* ε , μ = "metamaterial"

Simplest Metamaterial: "Average" of two dielectrics



 $\lambda >> a$

effective dielectric is just some average, subject to Weiner bounds (Aspnes, 1982) in the large- λ limit:

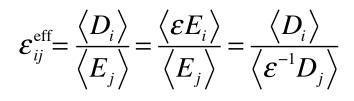
$$\left\langle \varepsilon^{-1} \right\rangle^{-1} \leq \varepsilon_{\text{effective}} \leq \left\langle \varepsilon \right\rangle$$

(isotropic for sufficient symmetry)

Simplest anisotropic metamaterial: multilayer film in large- λ limit

a

 $\lambda >> a$

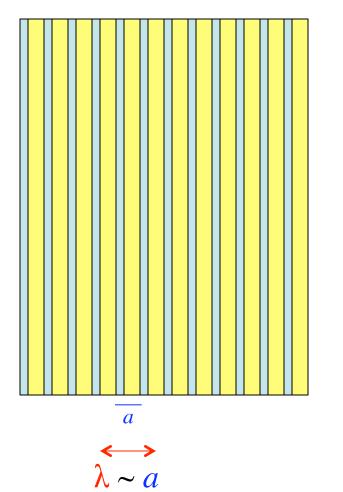


key to anisotropy is differing continuity conditions on **E**:

 E_{\parallel} continuous $\Rightarrow \varepsilon_{\parallel} = \langle \varepsilon \rangle$

 $D_{\perp} = \varepsilon E_{\perp}$ continuous $\Rightarrow \varepsilon_{\perp} = \langle \varepsilon^{-1} \rangle^{-1}$

[Not a metamaterial: multilayer film in $\lambda \sim a$ regime]

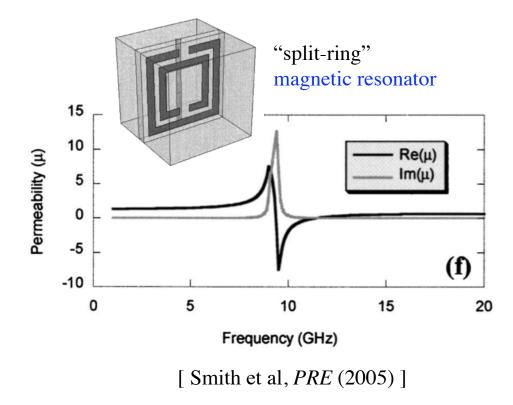


e.g. Bragg reflection regime (photonic bandgaps) for $\lambda \sim 2a$ is not completely reproduced by any effective ε , μ

Metamaterials are a special case of periodic electromagnetic media (photonic crystals)

"Exotic" metamaterials

[= properties *very different* from constituents] from sub- λ metallic resonances



resonance

= pole in polarizability χ

$$\chi \sim \frac{\#}{\omega - (\omega_0 - i\Gamma_0)}$$

($\Gamma_0 > 0$ for causal, passive)