
18.369 Problem Set 2

Due Friday, 28 February 2014.

Problem 1: Projection operators
(5+5+5+5=20 points)

(You the Great Orthogonality Theorem and/or the
various orthogonality results for the rows/columns of
the character table.)

(a) The representation-theory handout gives a for-
mula for the projection operator from a state
onto its component that transforms as a partic-
ular representation. Prove the correctness of this
formula: in particular, for any function ψ, show
that P̂ (α)

i ψ transforms as the i-th partner func-
tion representation α. (You can use the fact,
from class, that we showed that any function can
be decomposed into a sum of partner functions of
irreducible representations. Consider what P̂ (α)

i

does to one of thes partner functions.)

(b) Prove that the sum of the projection operators
P̂ (α) over all the irreducible representations α
gives

∑
α P̂

(α) =
∑
α,i P̂

(α)
i = 1 (the identity op-

erator), by using the column-orthogonality prop-
erty of the character table.

(c) Prove that the projection operators P̂
(α)
i are

Hermitian for any unitary representation D(α),
assuming that Ôg is unitary for all g ∈ G (unitar-
ity of Ôg is trivial to prove for symmetry groups
where g is a rotation and/or translation).

(d) Using the previous parts, prove that
〈φ(α)i , ψ

(β)
j 〉 = 0 if φ(α)i and ψ

(β)
j are partner

functions of different irreducible representations
α 6= β, or if they correspond to different
components i 6= j of the same representation
α = β. (Hint: insert 1 into the inner product.)
(Assume unitary irreps.)

Problem 3: Symmetries of a field in a
square metal box (5+15 points)

In class, we considered a two-dimensional (xy) prob-
lem of light in an L × L square of air (ε = 1)
surrounded by perfectly conducting walls (in which
E = 0). We solved the case of H = Hz(x, y)ẑ and
saw solutions corresponding to five different represen-
tations of the symmetry group (C4v).

(a) Solve for the eigenmodes of the other polariza-
tion: E = Ez(x, y)ẑ (you will need the E eigen-
problem from problem set 1), with the boundary
condition that Ez = 0 at the metal walls.

(b) Sketch (or plot on a computer) and classify these
solutions according to the representations of C4v
enumerated in class. (Like in class, you will get
some reducible accidental degeneracies.) Look
at enough solutions to find all five irreps, and
to illustrate the general pattern (you should find
that the irreps appear in repeating patterns).

Problem 4: Symmetries of a field in a
triangular metal box (5+5+5+5+5pts)

Consider the two-dimensional solutions in a triangu-
lar perfect-metal box with side L. Don’t try to solve
this analytically; instead, you will use symmetry to
sketch out what the possible solutions will look like
for both Ez and Hz polarizations.

(a) List the symmetry operations in the space group
(choose the origin at the center of the triangle so
that the space group is symmorphic), and break
them into conjugacy classes. (This group is tra-
ditionally called C3v). Verify that the group is
closed under composition (i.e. that the composi-
tion of two operations always gives another oper-
ation in the group) by giving the “multiplication
table” of the group (whose rows and columns are
group members and whose entries give their com-
position).

(b) Find the character table of C3v, using the rules
from the representation-theory handout.
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(c) Give unitary representation matrices D for each
irreducible representation of C3v.

(d) Sketch possible ω 6= 0 Ez and Hz solutions that
would transform as these representations. What
representation should the lowest-ω mode (ex-
cluding ω = 0) of each polarization correspond
to?

(e) If there are any (non-accidental) degenerate
modes, show how given one of the modes we can
get the other orthogonal eigenfunction(s) (e.g.
in the square case we could get one from the 90◦
rotation of the other for a degenerate pair, but
the triangular structure is not symmetric under
90◦ rotations). Hint: use your representation
matrices.

Problem 4: Cylindrical symmetry
(5+10+5pts)
Suppose that we have a cylindrical metallic
waveguide—that is, a perfect metallic tube with ra-
dius R, which is uniform in the z direction. The
interior of the tube is simply air (ε = 1).

(a) This structure has continuous rotational symme-
try around the z axis, called the C∞ group.1
Find the irreducible representations of this group
(there are infinitely many because it is an infinite
group).

(b) For simplicity, consider the (Hermitian) scalar
wave equation −∇2ψ = ω2

c2 ψ with ψ|r=R = 0.
Show that, when we look for solutions ψ that
transform like one of the representations of the
C∞ group from above, and have z dependence
eikz (from the translational symmetry), then we
obtain a Bessel equation (Google it if you’ve
forgotten Mr. Bessel). Write the solutions in
terms of Bessel functions, assuming that you are
given their zeros xm,n (i.e. Jm(xm,n) = 0 for
n = 1, 2, . . ., where Jm is the Bessel function of
the first kind...if you Google for “Bessel function

1It also has an infinite set of mirror planes containing the
z axis, but let’s ignore these for now. If they are included, the
group is called C∞v.

zeros” you can find them tabulated). Sketch the
dispersion relation ω(k) for a few bands.

(c) From the general orthogonality of Hermitian-
operator eigenfunctions, derive/prove an orthog-
onality integral for the Bessel functions. (No,
just looking one up on Wikipedia doesn’t count.)

Problem 5: Conservation Laws
(10+10+5pts)
Suppose that we introduce a nonzero current
J(x)e−iωt into Maxwell’s equations at a given fre-
quency ω, and we want to find the resulting time-
harmonic electric field E(x)e−iωt (i.e. we are only
looking for fields that arise from the current, with
E→ 0 as |x| → ∞ if J is localized).

(a) Show that this results in a linear equation of the
form ÂE = b(x), where Â is some linear oper-
ator and b is some known right-hand side pro-
portional to the current density J.

(b) Prove that, if J transforms as some irreducible
representation of the space group then E (which
you can assume is a unique solution) does also.
(This is the analogue of the conservation in time
that we showed in class, except that now we
are proving it in the frequency domain. You
could prove it by Fourier-transforming the the-
orem from class, I suppose, but do not do so—
instead, prove it directly from the linear equation
here.)

(c) Formally, E = Â−1b, where Â−1 is related to the
Green’s function of the system. What happens
if ω is one of the eigenfrequencies? (No rigorous
solution required, just a few words about what
happens physically in such a case.)
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