18.369 Problem Set 1

Due Friday, 14 February 2014.

Problem 1: Adjoints and operators

(a) We defined the adjoint \dagger of operators \hat{O} by: $\langle H_1, \hat{O}H_2 \rangle = \langle \hat{O}^{\dagger}H_1, H_2 \rangle$ for all H_1 and H_2 in the vector space. Show that for a *finite-dimensional* Hilbert space, where H is a column vector h_n $(n = 1, \dots, d)$, \hat{O} is a square $d \times d$ matrix, and $\langle H^{(1)}, H^{(2)} \rangle$ is the ordinary conjugated dot product $\sum_n h_n^{(1)*} h_n^{(2)}$, the above adjoint definition corresponds to the conjugate-transpose for matrices. (Thus, as claimed in class, "swapping rows and columns" is the *consequence* of the "real" definition of transposition/adjoints, not the source.)

In the subsequent parts of this problem, you may *not* assume that \hat{O} is finite-dimensional (nor may you assume any specific formula for the inner product).

(b) Show that if Ô is simply a number o, then Ô[†] = o*. (This is *not* the same as the previous question, since Ô here can act on infinite-dimensional spaces.)

Recall that the key properties of any inner product are $\langle u, v \rangle = \langle v, u \rangle^*$, $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$ (for arbitrary complex scalars α, β), and $||u||^2 = \langle u, u \rangle \ge 0$ (= 0 if and only if¹ u = 0).

- (c) If a linear operator \hat{O} satisfies $\hat{O}^{\dagger} = \hat{O}^{-1}$, then the operator is called **unitary**. Show that a unitary operator preserves inner products (that is, if we apply \hat{O} to every element of a Hilbert space, then their inner products with one another are unchanged). Show that the eigenvalues *u* of a unitary operator have unit magnitude (|u| = 1) and that its eigenvectors can be chosen to be orthogonal to one another.
- (d) For a non-singular operator \hat{O} (i.e. \hat{O}^{-1} exists), show that $(\hat{O}^{-1})^{\dagger} = (\hat{O}^{\dagger})^{-1}$. (Thus, if \hat{O} is Hermitian then \hat{O}^{-1} is also Hermitian.)

Problem 2: Maxwell eigenproblems

- (a) In class, we eliminated **E** from Maxwell's equations to get an eigenproblem in **H** alone, of the form $\hat{\Theta}\mathbf{H}(\mathbf{x}) = \frac{\omega^2}{c^2}\mathbf{H}(\mathbf{x})$. Show that if you instead eliminate **H**, you *cannot* get a Hermitian eigenproblem in **E** except for the trivial case $\varepsilon = \text{constant}$. Instead, show that you get a *generalized Hermitian eigenproblem*: an equation of the form $\hat{A}\mathbf{E}(\mathbf{x}) = \frac{\omega^2}{c^2}\hat{B}\mathbf{E}(\mathbf{x})$, where *both* \hat{A} and \hat{B} are Hermitian operators.
- (b) For *any* generalized Hermitian eigenproblem where *B̂* is positive definite (i.e. ⟨E, *B̂*E⟩ > 0 for all E(x) ≠ 0), show that the eigenvalues (i.e., the solutions of *Â*E = λ*B̂*E) are real and that different eigenfunctions E₁ and E₂ satisfy a modified kind of orthogonality. Show that *B̂* for the E eigenproblem above was indeed positive definite.
- (c) Alternatively, show that $\hat{B}^{-1}\hat{A}$ is Hermitian under a modified inner product $\langle \mathbf{E}, \mathbf{E}' \rangle_B = \langle \mathbf{E}, \hat{B}\mathbf{E}' \rangle$ for Hermitian \hat{A} and \hat{B} and positive-definite \hat{B} with respect to the original $\langle \mathbf{E}, \mathbf{E}' \rangle$ inner product; the results from the previous part then follow.
- (d) Show that *both* the **E** and **H** formulations lead to generalized Hermitian eigenproblems with real ω if we allow magnetic materials $\mu(\mathbf{x}) \neq 1$ (but require μ real, positive, and independent of **H** or ω).
- (e) μ and ε are only ordinary numbers for *isotropic* media. More generally, they are 3×3 matrices (technically, rank 2 tensors)—thus, in an *anisotropic medium*, by putting an applied field in one direction, you can get dipole moment in different direction in the material. Show what conditions these matrices must satisfy for us to still obtain a generalized Hermitian eigenproblem in **E** (or **H**) with real eigenfrequencies ω .

¹Technically, we mean u = 0 "almost everywhere" (e.g. excluding isolated points).