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Nanophotonics:	

 classical electromagnetic effects can be	


greatly altered by λ-scale structures	



especially with many interacting scatterers 	



[ D. Norris, UMN (2001) ]	



optical “insulators”	



trapping/guiding	


light in vacuum	



[ R. F. Cregan	


 (1999) ]	



[ Luo (2003) ]	



flat “superlenses”	



easy to study numerically (methods are “practically exact”),	


well-developed scalable 3d methods for arbitrary materials	





Just solve this: ���
macroscopic Maxwell’s equations	



∇ × E = −
∂B
∂t

Faraday:	

 Ampere:	

 ∇ ×H =
∂D
∂t

+ J

∇ ⋅D = ρ
∇ ⋅B = 0

Gauss:	


constitutive equations (here, linear media):	



D = ε ∗E B = µ ∗H

magnetic permeability	


…usually ≈ µ0 at infrared/visible (λ ~ µm)	



electric permittivity	


εr = ε / ε0 = relative permittivity or dielectric constant	


                = n2 (square of refractive index if µ = µ0)	



c2 = 1 / ε0 µ0	



ε, µ depend on frequency (dispersion), i.e. * = convolution	


…negligible for transparent media in narrow bandwidth	



theorists: 	


   often ε0 = µ0 = 1	


       and/or εr = ε 	



(nonzero	


frequency)	





Limits of validity at the 
nanoscale?	



• Continuum material models (ε etc.) have generally proved	


   very successful down to ~ few nm feature sizes	


       [ For metal features at < 20nm scale, some predictions of	


         small nonlocal effects (ballistic transport), but this is mostly neglected ]	


	


• Phenomena from resonant ~ nm features << λ (e.g. spontaneous emission)	


   usually can be incorporated perturbatively / semiclassically	


 	

 (e.g. spontaneous emission ~ stochastic dipole source,	


        	

         spontaneous emission rate ~ local density of states	



	

 	

 	

 	

         ~ power radiated by dipole)	





first, some perspective…	





Development of Classical EM Computations	



1	

 Analytical solutions	



Lord Rayleigh	



vacuum, single/double interfaces	


various electrostatic problems, …	



scattering from small particles,	


periodic multilayers (Bragg mirrors), …	



… & other problems with	


	

very high symmetry	


	

and/or separability	


	

and/or small parameters	





Development of Classical EM Computations	


1	

 Analytical solutions	


2	

 Semi-analytical solutions: series expansions	



Gustav Mie	


(1908)	



e.g. Mie scattering of light by a sphere	


Also called spectral methods:	


Expand solution in rapidly converging Fourier-like basis	


• spectral integral-equation methods:	


      exactly solve homogeneous regions (Green’s func.),	


      & match boundary conditions via spectral basis	


      (e.g. Fourier series, spherical harmonics)	


• spectral PDE methods:	


      spectral basis for unknowns in inhomogeous space	


      (e.g. Fourier series, Chebyshev polynomials, …)	


      & plug into PDE and solve for coefficients	





Development of Classical EM Computations	


1	

 Analytical solutions	


2	

 Semi-analytical solutions & spectral methods	



Gustav Mie	


(1908)	



Expand solution in rapidly converging Fourier-like basis	


	


Strength: can converge exponentially fast	



	

— fast enough for hand calculation	


	

— analytical insights, asymptotics, ���…	



	


Limitation: fast (“spectral”) convergence requires	



	

basis to be redesigned for each geometry	


	

(to account for any discontinuities/singularities	


	

  … complicated for complex geometries!)	



	


(Or: brute-force Fourier series, polynomial convergence)	



e.g. Mie scattering of light by a sphere	





Development of Classical EM Computations	


1	

 Analytical solutions	


2	

 Semi-analytical solutions & spectral methods	


3	

 Brute force: generic grid/mesh (or generic spectral)	



←finite differences	


  (or Fourier series)	


	


     & finite elements→	



PDEs: discretize space into grid/mesh	


— simple (low-degree polynomial)	


     approximations in each pixel/element	



lose orders of magnitude in performance … but re-usable code	


€ computer time  << €€€€ programmer time	



integral equations:	


— boundary elements mesh	


     surface unknowns coupled	


     by Green’s functions	





Computational EM: ���
Three Axes of Comparison	



• What problem is solved?	


— eigenproblems: harmonic modes ~ e–iωt    (J = 0)	


— frequency-domain response: E, H from J(x)e–iωt	


— time-domain response: E, H from J(x, t)	


— PDE or integral equation?	



• What discretization?	


— finite differences (FD)	


— finite elements (FEM) / boundary elements (BEM)	


— spectral / Fourier	


— …	



• What solution method?	


— dense linear solvers (LAPACK)	


— sparse-direct methods	


— iterative methods	



infinitely many unknowns	


⇒ finitely many unknowns	





A few lessons of history	


•  All approaches still in widespread use	



–  brute force methods in 90%+ of papers, typically the first resort to 
see what happens in a new geometry	



–  geometry-specific spectral methods still popular, especially when 
particular geometry of special interest	



–  analytical techniques used less to solve new geometries than to prove 
theorems, treat small perturbations, etc.	



•  No single numerical method has “won” in general	


–  each has strengths and weaknesses, e.g. tradeoff between simplicity/

generalizability and performance/scalability	


–  very mature/standardized problems (e.g. capacitance extraction) use 

increasingly sophisticated methods (e.g. BEM), research fields (e.g. 
nanophotonics) tend to use simpler methods that are easier to modify 
(e.g. FDTD) 	





Understanding Photonic Devices	



420 nm	



[ Notomi et al. (2005). ]	


[ Xu & Lipson, 2005 ]	



10µm	



[Mangan, et al., 	


OFC 2004 PDP24 ]	



Model the whole thing at once?  Too hard to understand & design.	


	


Break it up into pieces first: periodic regions, waveguides, cavities	



20 µm	





Building Blocks: “Eigenfunctions”	


• Want to know what solutions exist in different regions	


   and how they can interact: look for time-harmonic modes ~ e–iωt	



 


∇ ×

E = −µ ∂

∂t

H → iω


H


∇ ×

H = ε ∂

∂t

E +

J → −iωε


E

0	



First task:	


get rid of this mess	



 
∇ ×

1
ε
∇ ×

H =ω 2 H

eigen-operator	


(Hermitian for lossless/real e!)	



eigen-value	

 “eigen-field”	



∇⋅

H = 0

+ constraint	



1	





Electronic & Photonic Eigenproblems	



∇× 1
ε
∇×

H = ω

c
⎛
⎝⎜

⎞
⎠⎟
2 
H

Electronic	

 Photonic	



  

� 

− 
2

2m
∇2 +V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ = Eψ

simple linear eigenproblem	


(for linear materials	



with negligible dispersion)	



nonlinear eigenproblem	


(V depends on e density |ψ|2)	



	


(+ nasty quantum entanglement)	



—many well-known	


       computational techniques	



Hermitian ... real E & ω, … Periodicity = Bloch’s theorem…	





Building Blocks: Periodic Media	



homogeneous	


media	



2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

discrete periodicity: photonic crystals	



waveguides	



common thread:	


	



translational	


symmetry	





Periodic Hermitian Eigenproblems	


[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]	



[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]	



if eigen-operator is periodic, then Bloch-Floquet solutions:	



 

H (x,t) = ei


k ⋅ x−ω t( ) H k (

x)can choose:	



periodic “envelope”	


planewave	



Corollary 1: k is conserved, i.e. no scattering of Bloch wave	



Corollary 2:        given by finite unit cell,	


	

 	

so w are discrete ωn(k)	



 

H k



Electronic and Photonic Crystals	


atoms in diamond structure	



wavevector	
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dielectric spheres, diamond lattice	



wavevector	
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strongly interacting fermions	


weakly-interacting bosons	


… many design degrees of freedom	





A 2d Model System	



square lattice,	


period a	



dielectric “atom”	


ε=12 (e.g. Si)	



a	



a	



E	



H	


TM	





Solving the Maxwell Eigenproblem	



Hn(x) ei(k∙x – ωt)	

� 

∇ + ik( ) × 1
ε
∇ + ik( ) ×Hn = ωn

2

c 2
Hn

∇ + ik( ) ⋅Hn = 0

where field =	



constraint:	



1	



Want to solve for ωn(k),	


& plot vs. “all” k for “all” n, 	



Finite cell è discrete eigenvalues ωn	



Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	
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Solving the Maxwell Eigenproblem: 1	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



—Bloch’s theorem: solutions are periodic in k	



kx	



ky	


first Brillouin zone	



= minimum |k| “primitive cell”	



� 

2π
aΓ	



M	



X	



irreducible Brillouin zone: reduced by symmetry	





Solving the Maxwell Eigenproblem: 2a	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis (N)	



3	

 Efficiently solve eigenproblem: iterative methods	



H =H(xt ) = hmbm (x t )
m=1

N

∑ solve:	

 ˆ A H =ω 2 H

Ah =ω 2Bh

  Aml = bm
ˆ A bl   Bml = bm bl

f g = f * ⋅g∫

finite matrix problem:	



Galerkin method:	

inner product:	





Solving the Maxwell Eigenproblem: 2b	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



� 

(∇ + ik) ⋅H = 0— must satisfy constraint:	



Planewave (FFT) basis	



H(x t ) = HGe
iG⋅xt

G
∑

� 

HG ⋅ G + k( ) = 0constraint:	



uniform “grid,” periodic boundaries,	


simple code, O(N log N)	



Finite-element basis	


constraint, boundary conditions:	



Nédélec elements	


[ Nédélec, Numerische Math.	



35, 315 (1980) ]	



nonuniform mesh,	


more arbitrary boundaries,	



complex code & mesh, O(N)	


[ figure: Peyrilloux et al.,	



J. Lightwave Tech.	


21, 536 (2003) ]	





Solving the Maxwell Eigenproblem: 3a	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



Ah =ω 2Bh

Faster way:	


	

— start with initial guess eigenvector h0	


	

— iteratively improve	


	

— O(Np) storage, ~ O(Np2) time for p eigenvectors	



Slow way: compute A & B, ask LAPACK for eigenvalues	


	

— requires O(N2) storage, O(N3) time	



(p smallest eigenvalues)	





Solving the Maxwell Eigenproblem: 3b	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



Ah =ω 2Bh
Many iterative methods:	



	

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	


	

     Rayleigh-quotient minimization	





Solving the Maxwell Eigenproblem: 3c	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



Ah =ω 2Bh
Many iterative methods:	



	

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	


	

     Rayleigh-quotient minimization	



for Hermitian matrices, smallest eigenvalue ω0 minimizes:	



ω0
2 = min

h

h*Ah
h*Bh

minimize by preconditioned	


 conjugate-gradient  (or…)	



variational	


/ min–max	


theorem	





Band Diagram of 2d Model System���
(radius 0.2a rods, ε=12)	



E	



H	


TM	



a	



fre
qu

en
cy

 ω
  (

2π
c/

a)
  =

 a
 / 
λ	



Γ	

 X	



M	


Γ	

 X	

 M	

 Γ	

irreducible Brillouin zone	




k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photonic Band Gap

TM bands

gap for	


n > ~1.75:1	





The Iteration Scheme is Important	


(minimizing function of 104–108+ variables!)	



Steepest-descent:  minimize (h + α ∇f) over α … repeat 	



ω0
2 = min

h

h*Ah
h*Bh

= f (h)

Conjugate-gradient:  minimize (h + α d)	


	

— d is ∇f + (stuff): conjugate to previous search dirs	



Preconditioned steepest descent:  minimize (h + α d) 	


	

— d = (approximate A-1) ∇f   ~  Newton’s method	



Preconditioned conjugate-gradient:  minimize (h + α d)	


	

— d is (approximate A-1) [∇f + (stuff)]	





The Iteration Scheme is Important	


(minimizing function of ~40,000 variables)	
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preconditioned	


conjugate-gradient	

 no conjugate-gradient	



no preconditioning	





Much more on iterative solvers:���
18.335 at MIT	



See also Numerical Linear Algebra (Trefethen & Bau),	


Templates for the Solution of Linear Systems,	



Templates for the Solution of Algebraic Eigenproblems,	


PETSc and SLEPc libraries, etc.	





The Interfaces are Tricky	



ε?	



E|| is continuous	



E⊥ is discontinuous	


(D⊥ = εE⊥ is continuous)	



Use a tensor ε: 	



� 

ε
ε

ε−1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

E||	



E⊥	

[ Meade et al. (1993) ]	





The ε-averaging is Important	
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backwards averaging	



tensor averaging	



no averaging	



correct averaging	


changes order 	


of convergence	


from ∆x to ∆x2	



reason in a nutshell:	


averaging 	



= smoothing ε	


= changing structure	



… must pick smoothing	


with zero 1st-order	



perturbation	


	



[ Farjadpour et al. (2006) ]	





Closely related to anisotropic 
metamaterial, e.g. multilayer film in 

large-λ limit	



λ >> a	



a	



key to anisotropy is differing	


continuity conditions on E:	



E|| continuous ⇒  ε|| = <ε> 	



D⊥=εE⊥ continuous ⇒  ε⊥ = <ε–1>–1 	



ε effij =
Di

Ej

=
εEi

Ej

=
Di

ε −1Dj



Intentional “defects” are good	



3D Photonic C rysta l with Defects

microcavities	

 waveguides (“wires”)	





Intentional “defects” in 2d	



a

(Same computation, with supercell = many primitive cells)	



(boundary conditions ~ irrelevant	


  for exponentially localized modes)	





Computational Nanophotonics: ���
Cavities and Resonant Devices	



Steven G. Johnson	


MIT Applied Mathematics	





Finite-difference-time-domain (FDTD) is a method to model Maxwell’s 
equations on a discrete time & space grid using finite centered differences	



H	

y	


E	

y	

 E	

x	



H	

x	


E	

z	



H	

z	



K.S. Yee 1966	



A. Taflove & S.C. Hagness 2005	



∇ × E = −
∂B
∂t

∇ ×H =
∂D
∂t

+ J

D = εE B = µH

FDTD: finite difference time domain	





1)   at time t: Update D fields everywhere	


      using spatial derivatives of H, then find E=ε-1D	



Ex +=	

 ∆t 	


ε ∆y 	

( Hz

j+0.5	

 –  Hz
j-0.5

 )	


Ey -=	

 ∆t 	



ε ∆x	

( Hz
i+0.5	

 –  Hz

i-0.5
 )	



2) at time t+0.5: Update H fields everywhere using 
spatial derivatives of E	



Hz +=  	

∆t 	


µ	

 ( Ex

j+1	

– Ex
j	

+ Ey

i	


– Ey

i+1)	


∆x	

∆y	



Hz	



Ex	



Ey	



Ex	



Ey	


Hz	



FDTD: Yee leapfrog algorithm	


2d example:	



CFL/Von Neumann stability: cΔt < 1 / √Δx–2+Δy–2	





Free software: MEEP	



• FDTD Maxwell solver: 1d/2d/3d/cylindrical	


• Parallel, scriptable, integrated optimization, signal processing	


• Arbitrary geometries, anisotropy, dispersion, nonlinearity	


• Bloch-periodic boundaries, symmetry boundary conditions,	



	

+ PML absorbing boundary layers…	



http://ab-initio.mit.edu/meep	





Microcavity Blues	


For cavities (point defects)	


frequency-domain has its drawbacks:	



• Best methods compute lowest-ω eigenvals,	


   but Nd supercells have Nd modes	


   below the cavity mode — expensive	



• Best methods are for Hermitian operators,	


   but losses requires non-Hermitian	





Time-Domain Eigensolvers ���
(finite-difference time-domain = FDTD)	



Simulate Maxwell’s equations on a discrete grid,	


	

+ absorbing boundaries (leakage loss)	



• Excite with broad-spectrum dipole (  ) source	



Δω	



Response is many	


sharp peaks,	



one peak per mode	


complex ωn	

 [ Mandelshtam,	



J. Chem. Phys. 107, 6756 (1997) ]	



tricky	


signal processing	



decay rate in time gives loss	





Absorbing boundaries?	


Finite-difference/finite-element volume discretizations	


need to artificially truncate space for a computer simulation.	



In a wave equation,	


a hard-wall truncation	


gives reflection artifacts.	


	


An old goal: “absorbing 
boundary condition” (ABC) 
that absorbs outgoing 
waves.	


	


Problem: good ABCs are 
hard to find in > 1d.	





Perfectly Matched Layers (PMLs)	


Bérenger, 1994: design an artificial absorbing layer	



	

 	

   that is analytically reflectionless	



Works remarkably well.	


	


Now ubiquitous in FD/FEM	


wave-equation solvers.	


	


Several derivations, cleanest	


& most general via “complex	


coordinate stretching”	


        [ Chew & Weedon (1994) ]	





Perfectly Matched Layers (PMLs)	


Bérenger, 1994: design an artificial absorbing layer	



	

 	

   that is analytically reflectionless	



Even works in inhomogeneous	


media (e.g. waveguides).	





PML Starting point: propagating wave	


• Say we want to absorb wave traveling in +x direction	


   in an x-invariant medium at a frequency ω > 0.	



 fields  f (y, z)e
i kx−ω t( )

(only x in wave	


 equation is via	


	


 terms.)	



∂ / ∂x

(usually, k > 0)	


[ rare “backward-wave”	


  cases defeat PML	


      (Loh, 2009) ] 	





PML step 1: Analytically continue	


Electromagnetic fields & equations are analytic in x,	


so we can evaluate at complex x & still solve same equations	



 
x = x +

iσ
ω
x

 fields  f (y, z)e
i kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω
σ x

unchanged"
(no reflection)"

unchanged"
(no reflection)"



PML step 2: Coordinate transformation	


Weird to solve equations for complex coordinates x,	


so do coordinate transformation back to real x.	



~	



 
x(x) = x + iσ ( ′x )

ω
d ′x

x

∫

 

∂
∂x

→
∂
∂x

→
1

1+ iσ (x)
ω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂
∂x

 fields  f (y, z)e
i kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω

σ ( ′x )d ′x
x

∫

(allow x-dependent	


PML strength s)	



nondispersive materials: k/ω ~ constant	


so decay rate independent of ω	



(at a given incidence angle)	



1	

 2	





PML Step 3: Effective materials	


In Maxwell’s equations,	


coordinate transformations are equivalent to transformed materials	



	

(Ward & Pendry, 1996: “transformational optics”)	



∇ × E = iωµH, ∇ ×H = −iωεE + J,

x PML Jacobian	



J =
1+ iσ /ω( )−1

1
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

{ε,µ}→ J{ε,µ}JT

det J

{ε,µ}→ {ε,µ}
(1+ iσ /ω )−1

1+ iσ /ω
1+ iσ /ω

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

for isotropic starting materials:	



PML = effective anisotropic “absorbing” ε, µ	



effective	


conductivity	



 

∂x
∂x

⎛
⎝⎜

⎞
⎠⎟



Photonic-crystal PML?	



x	



ε not even continuous	


in x direction,	



much less analytic!	



Analytic continuation of Maxwell’s equations is hopeless	


	

— no reason to think that PML technique should work	



FDTD (Meep) simulation:	



?	


?	


?	


?	


?	





Photonic-crystal PMLs: Magic?	


[ Koshiba, Tsuji, & Sasaki (2001) ]	



[ Kosmidou et al (2003) ]	



… & several other authors …	


Low reflections claimed 	

	



	

— is PML working?	


Something suspicious: 	



	

very thick absorbers.	



PM
L	





Failure of Photonic-crystal “pseudo-PML”	



1d test case:	


	



(pseudo-)	


PML in	



periodic ε	


reflection	



doesn’t → 0	


as ∆x → 0	



	


… similar	



to non-PML	


scalar σ	



in uniform ε=1 medium,	


PML reflection → 0	



for exact wave equation	



[ Oskooi et al, Optics Express 16, 11376 (2008) ]	





Redemption of the pseudo-PML:���
slow (“adiabatic”) absorption turn-on	



Any absorber,	


turned on gradually	


enough, will have	


reflections → 0!	



	


PML (when it works)	


just helps coefficient.	



[ Oskooi et al, Optics Express 16, 11376 (2008) ]	





Back to absorption tapers	


• Suppose absorption is: σ(x) = σ0 s(x/L), say s(u) = ud	



• Fix the round-trip reflection:	


 
Rround-trip = e

− # Lσ0 s(u )du
0

1

∫
⇒σ 0 

1
L

⇒ … ⇒ transition reflections ~ O(L–2d–2)	



[ Oskooi et al, Optics Express 16, 11376 (2008) ]	





Reflection vs. Absorber Thickness	



s = u1	



s = u2	



s = u3	



s = u4	



s = u5	



[ Oskooi et al, Optics Express 16, 11376 (2008) ]	





What about DtN / RCWA / Bloch-
mode-expansion / SIE methods?	



— useful, nice methods that can impose outgoing boundary conditions	


     exactly, once the Green’s function / Bloch modes computed	



challenge problem for any method:	


periodic 3d dielectric waveguide bend in air	


  (note: both guided and radiating modes!)	



… DtN / Green’s function / Bloch modes (incl. radiation!) expensive	





Computational Nanophotonics: ���
Sources & Integral Equations	



Steven G. Johnson	


MIT Applied Mathematics	





How can we excite a desired 
incident wave?	



?	

?	



Want some current source	


to excite incident waveguide	


mode, planewave, etc…	


	


— also called transparent	


     source since waves	


     do not scatter from it	


        (thanks to linearity)	


	


— vs. hard source =	


        Dirichlet field condition	





Equivalent currents ���
(“total-field/scattered-field” approach)	



known incident fields	


	


	


in ambient medium	


(possibly inhomogeneous,	


  e.g. waveguide or photonic crystal)	



f + = E
H

⎛
⎝⎜

⎞
⎠⎟

c	



f+	



f+	


f=0	



equivalent	


currents	



want to construct	


surface currents	



c = J
K

⎛

⎝⎜
⎞

⎠⎟

giving same f+ in Ω	



f++f–	

 f–	



[ review article: arXiv:1301.5366 ]	



do simulations	


in finite domain	


+ inhomogeneities	


    / interactions	


 = scattered field f–	





The Principle of Equivalence ���
in classical EM ���

���
(or Stratton–Chu equivalence principle)���

(formalizes Huygens’ Principle)���
(or total-field/scattered-field, TFSF)���

���
(close connection to Schur complement [Kuchment])	



[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]	



[ review article: arXiv:1301.5366 ]	





starting point: solution in all space	



medium χ	


Ω	



incident	


fields f+	



f + = E
H

⎛
⎝⎜

⎞
⎠⎟

6-component	


fields:	



∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f + = −iω ε

µ
⎛

⎝
⎜

⎞

⎠
⎟ f

+ = −iωχf +

solve (source-free) Maxwell PDE (in frequency domain):	





constructing solution in Ω	



Ω	



construct c so that f is a new solution:	



f = 0	



f = f+	



∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχf +δ (∂Ω) n ×H

−n ×E
⎛
⎝⎜

⎞
⎠⎟

= −iωχf + c

equivalent	


“6”-component	


surface currents	


      c	


	



n	



 c	





Exciting a waveguide mode in FDTD	



[ review article: arXiv:1301.5366 ]	



(constant J)	



— compute mode in MPB, then use as source in MEEP	





Problems with equivalent sources	



• Discretization mismatch: at finite resolution, solutions from	


  one technique (MPB) don’t exactly match discrete modes 	


  in another technique (Meep) — leads to small imperfections	



	

— solvable by using the same discretization to find modes	


	


• Dispersion: mode profile varies with ω, so injecting a pulse p(t)	


                      requires a convolution with c(x,ω) ↔ c(x,t)	



Fourier	



currents(x,t) = p(t) * c(x,t) ≈ p(t) c(x,ω)	



ˆ	



(if not solved, undesired excitation of other waves)	



– convolutions expensive, can be approximated by	


   finite-time (FIR/IIR) calculations using DSP techniques	


– specialized methods are known for planewave sources	



[ review article: arXiv:1301.5366 ]	



ˆ	


narrow-bandwidth	



(have numerical dispersion!)	



tim
e 

do
m

ai
n 

on
ly
	





Shortcut: Subtract two simulations	


example: 90° bend of single-mode dielectric waveguide	



simple	


constant-amplitude	



line-current J	

 same J	



1	



2	



1	



want incident, transmitted,	


and reflected energy-flux spectra:	


	


  incident: Poynting flux of fstraight	


	


  transmitted: flux of fbend	


	


  reflected: flux of fbend–fstraight	



f̂1,2bend,straight (x,ω ) = f(x,nΔt)eiωnΔt
n
∑

accumulate (discrete-time)	


Fourier transforms of fields:	



at desired frequencies ω	



2	

ˆ	



2	

ˆ	



1	

ˆ	

 1	

ˆ	



2	





Shortcut: Subtract two simulations	


example: 90° bend of single-mode dielectric waveguide	



(waveguide width) / λ	





Shortcut: Planewave sources ���
for periodic media	



trick #1: incident & scattered fields	


are Bloch-periodic/quasiperiodic	



[ review article:	


   arXiv:1301.5366 ]	



Bloch-periodic eikxa	



trick #2: eikxx current source	


	

  produces planewave	





Reflection spectra example���
for periodic media	



(Fano resonance lineshapes)	



note: ω all above	


          light line	


(req. for incident planewave)	

 entire spectrum at fixed kx	



from single FDTD simulation	


(Fourier transform of pulse)	



⟺ curved line	


         θ = asec(ckx/ω)	


      in (ω,θ) plot	





Fun possibilities in FDTD:���
moving sources [= just some currents J(x,t) ]	



Cerenkov radiation from moving	


point charge in dielectric medium	



Doppler shift from	


moving oscillating dipole	





Cerenkov radiation	


charge density	

 ρ = qδ (x − vt)

⇒  current density	


Jx = qvδ (x − vt)

= qv
2π

eik (x−vt ) dk
−∞

+∞

∫

= ei(kx–ωt)	



if ω(k)=kv	



excites radiating mode ω(kx,ky)	


if  v = ω(kx,ky)/kx	


       = phase velocity in x direction	


       ≥ c/n in index-n medium	



x	

q	





Cerenkov radiation in photonic crystal	


excites radiating mode ω(kx,ky)	


if  v = ω(kx,ky)/(kx + 2πm/a)	


                       for any integer m	


	


⇒ no minimum v	


      [ Smith–Purcell effect ]	



q	

 v	



very different radiation	


patterns & directions	


depending on v,	


due to interactions with	


2d PhC dispersion curves	



[ Luo, Ibanescu, Johnson,	


   & Joannopoulos (Science, 2002) ]	





Surface-integral equations (SIEs)���
and���

boundary-element methods (BEMs)	



[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]	


	


   Harrington, “Boundary integral formulations for homogeneous	


    material bodies,” J. Electromagnetic Waves Appl. 3, 1–15 (1989)	


	


  Chew et al., Fast and Efficient Algorithms	


                       in Computational Electromagnetics (2001) ]. 	


	





Exploiting partial knowledge���
of Green’s functions	



medium 0	



medium 1	



incident	


fields	



scattered	


fields	



interior	


fields	



suppose that we know Green’s functions	


in infinite medium 0 or medium 1	



	

— known analytically for homogeneous media	


	

— computable by much smaller calculation in periodic medium	



a typical scattering problem:	



Can exploit this to derive integral equation for surface unknowns only.	





The Principle of Equivalence ���
in classical EM	



[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]	



medium 0	



medium 1	



incident	


fields f0+	



f 0 = E
H

⎛
⎝⎜

⎞
⎠⎟
= f 0+ + f 0−6-component	



fields:	



scattered	


fields f0–	



interior	


fields f1	



… we want to partition	


into separate medium 0/1	


problems & enforce continuity…	



∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχ (0,1)f

Maxwell PDE:	





Constructing a medium-0 solution	



medium 0	



medium 0	



same 
incident	


fields f0+	



same	


fields f0– 	

 f=0  (!!)	



“equivalent”	


6-component	


surface currents	


      c	


	



∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχ 0f +δ (surface) −n ×H

n ×E
⎛
⎝⎜

⎞
⎠⎟

= −iωχ 0f + c

modified Maxwell PDE:	



 c	



n	





The Principle of Equivalence I	



[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	



medium 0	



medium 0	



incident	


fields f0+	



f 0 = E
H

⎛
⎝⎜

⎞
⎠⎟
= f 0+ + f 0− = f 0+ + Γ0 ∗c

same	


scattered	


fields f0– of c	



f=0  (!!)	



“equivalent”	


6-component	


surface currents	


      c	


	



convolution with	


6x6 Green’s function Γ0	



of homogenous medium 0	





The Principle of Equivalence II	



[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	



medium 1	



medium 1	



f1 = −Γ1 ∗c

opposite-sign	


6-component	


surface currents	


      – c	


	



convolution with	


6x6 Green’s function Γ1	



of homogenous medium 1	



f=0	





Surface-Integral Equations (SIE)	



[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	



medium 0	



medium 1	



f1 = −Γ1 ∗c

f 0 = f 0+ + Γ0 ∗c

c determined by	


continuity of tangential fields	



at 0/1 interface:	



unknown	


c	



Γ0 + Γ1( )∗c
tangential

= −f 0+
tangential



Discretizing the Maxwell SIE	



[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	



unknown	


c	

Γ0 + Γ1( )∗c

tangential
= −f 0+

tangential

pick some basis bn (n=1,…,N→∞)	


for surface-tangential vector fields	



c = xnbn
n
∑ N discrete	



unknowns xn	


⇒ N equations	





Discretizing the Maxwell SIE	



[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	



unknown	


c	

bm Γ0 + Γ1( )∗ xnbn

n
∑⎛⎝⎜

⎞
⎠⎟

= bm −f 0+

pick some basis bn (n=1,…,N→∞)	


for surface-tangential vector fields	



c = xnbn
n
∑ N discrete	



unknowns xn	


⇒ N equations Mx = s	



Galerkin method — require error ⊥ basis:	



Mmn = bm Γ0 + Γ1( )∗bn =Gmn
0 +Gmn

1

sm = bm −f 0+



Discretized SIE: Two Objects	



c1 = xn
1bn
1

n
∑

medium 1	



medium 2	



medium 0	



c2 = xn
2bn

2

n
∑

⇒ linear equations Mx = s	



M =G0 + G1

0
⎛

⎝⎜
⎞

⎠⎟
+ 0

G2

⎛

⎝⎜
⎞

⎠⎟

… + straightforward generalizations to more objects,	


        	

 	

nested objects, etcetera	





SIE basis choices	


• Can use any basis for c = any basis of surface functions	



	

… basis is not incoming/outgoing waves	


	

 	

& need not satisfy any wave equation	



	


• Spectral bases: spherical harmonics, Fourier series, …	



	

 	

 	

 	

… nice for high symmetry	


	

 	

 	

 	

 	

~ uniform spatial resolution	



• Boundary Element Methods (BEM):	


	

localized basis functions defined on irregular mesh	



“RWG” basis (1982):	


	


vector-valued bn defined	


on pairs of adjacent triangles	


via degree-1 polynomials	





BEM strengths	


especially small surface areas in a large (many-λ) volume, e.g.:	



[ Johannes Feist, Harvard ]	



silver	


nanotip	



surface plasmons (metals):	


extremely sub-λ fields	



complex impedance	


of passive structures	



[ Llatser et al. (2012) ]	



Graphene	


~ delta-function	


   surface conductivity	


= jump discontinuity	


     (~ E) in H field	





The bad news of BEM	



Mmn = bm Γ0 + Γ1( )∗bn =Gmn
0 +Gmn

1

• Not well-suited for nonlinear, time-varying, or	


	

non-piecewise-constant media	



	


• BEM system matrix	


	



	

— singular integrals for overlapping bm, bn	


	

 	

…special numerical integration techniques	


	

— M is not sparse, but:	


	

 	

often small enough for dense solvers (≲ 104×104) 	


	

 	

+ “fast solvers:” approximate sparse factorizations	


	

 	

 	

 	

 	

(fast multipole method, etc.)	


	

— lots of work every time you change Γ 	


	

 	

(e.g. 3d vs. 2d, periodic boundaries, anisotropic, …)	


	

 	

… but independent of geometry	





The good news of BEM:���
You don’t have to write it yourself	



Free software developed by Dr. Homer Reid	


	

(collaboration with Prof. Jacob White @ MIT)	



	



 	

 	

 	

 	

 	

   SCUFF-EM	



[ http://homerreid.ath.cx/scuff-EM ]	





http://homerreid.com/scuff-EM	


* to be released by end of October-ish	





SCUFF usage outline	





Geometries in SCUFF	





Geometries in SCUFF	



(discretization of SIE at junctions of 3+ materials is a bit tricky)	





Periodic geometries in SCUFF	



(implementing periodicity is nontrivial: changes Green’s function!	


    SCUFF: periodic Γ = Σ(nearest neighbors) + Ewald summation)	





Using SIE/BEM solutions	


Solving the SIE gives the surface currents c, and	


from these (via Γ*c) one can obtain any desired fields, but…	


	


It is much more efficient to compute as much as possible	


directly from c (~ n × surface fields).  Examples:	


	


• Scattering matrices (e.g. spherical-harmonic waves in → out):	


       obtain directly from multipole moments of “currents”	


• Any bilinear function of the surface fields can be computed	


   directly from bilinear functions of c:  	



	

— scattered/absorbed power, force, torque, …	


• Net effects of quantum/thermal fluctuations in matter can	


   be computed from norm/det/trace of M or M–1:	



	

— thermal radiation, Casimir (van der Waals) forces, …	





Resonant modes ���
(and eigenvalues)	



• BEM scattering problems are of the form M(ω)x = s.	


   Resonances (and eigenvalues) are ω where this system	


   is singular, i.e. the nonlinear eigenproblem	


	


                      det M(ω) = 0	


	


  For passive (⇒causal) systems, solutions can only occur	


  for Im ω ≤ 0.  	


	


• Various algorithms exist, including an intriguing algorithm	


  using contour integrals of M(ω) [ Beyn (2012) ].	





Computational Nanophotonics: ���
Optimization and “Inverse Design”	



Steven G. Johnson	


MIT Applied Mathematics	





Many, many papers that parameterize���
by a few degrees of freedom and optimize…���

���
���

Today, focus is on large-scale optimization,���
also called inverse design:���

so many degrees of freedom (102–106)���
that computer is “discovering” new designs.	





Outline	



• Brief overview/examples of	


   large-scale optimization work in photonics	


	


• Overview of optimization terminology,	


   problem types, and techniques.	


	


• Some more detailed photonics examples.	





Outline	



• Brief overview/examples of	


   large-scale optimization work in photonics	


	


• Overview of optimization terminology,	


   problem types, and techniques.	


	


• Some more detailed photonics examples.	





Topology optimization	



Given two (or more) materials	


A and B, determine what arrangement	



— including what topology —	


optimizes some objective/constraints.	



A	


B	



B	



Continuous relaxation:	


   allow material to vary in [A,B]	


   continously at every point	


	


• Not uncommon for optimum to	


   yield A or B almost everywhere	


• Possible to add “penalty” to	


   objective for intermediate values	





Discretizing Topology Optimization	



some computational grid	



for computer, need finite-dimensional parameter space	



Level-set method: value of	


   “level-set” function φ(x) varies	


   continuously at each pixel	


    ⇒ material A or B if φ > 0 or < 0	



Continuous relaxation: material	


   varies in [A,B] at each pixel	


	


e.g. in electromagnetism, let ε at each	


       pixel vary in [A,B].	



…or…	





Dobson et al. (Texas A&M)	



TM gap, bands 3 & 4	

 TM bands 6 & 7	


SIAM J. Appl. Math. 59, 2108 (1999)	



(maximizes ~∆ω,	


not fractional gap!)	



(square lattices only)	



optimize TM localization in supercell	


SIAM J. Appl. Math 64, 762 (2004)	



optimized TE gaps	


square lattice	



thousands of iterations	


& still not optimal!	



J. Comput. Phys 158,	


214 (2000)	





2d (TE or TM) transmission optimization���
Sigmund, Jensen, Pederson et al. [ www.topopt.dtu.dk ]	



bend optimization	



Opt. Express 12, 1996 (2004)	

 OE 12, 5916 (2004)	



crossings (2d TE) Elec. Lett. 42, 1031 (2006)	



T-junctions	


JOSA B 22, 1191 (2005)	



low-index	


(scalar approx.)	



dispersion-	


compensating fibers	



JOSA B 25, 88 (2008)	





Dispersion optimization���
Sigmund, Jensen, Pederson et al. [ www.topopt.dtu.dk ]	



… also band gaps for 2d (scalar) phononic crystals…	



low-index	


(scalar approx.)	



dispersion-	


compensating fibers	



JOSA B 25, 88 (2008)	



constant group-velocity	


band in 2d TE line-defect	



optimized	


phononic gap ∆ω	



bands 1 & 2	



optimized 2d scalar	


phononic crystals	


[ Phil. Trans. Roy. Soc.	


   London A 361, 1001 (2003) ]	





Kao, Osher, and Yablonovitch���
2d TM and TE square-lattice gaps via level sets	



Appl. Phys. B 81, 235 (2005)	



TM gap,	


bands 6 & 7	



(maximizes ∆ω,	


not fractional gap!)	



TE gap,	


bands 5 & 6	





Frei et al. (UIUC)	



2d TM “directional” emission	


via level-set method	



Frei, Opt. Lett. 32, 77 (2007)	



via topology optimization	


APL 86, 111114 (2005)	



optimizing 3d Q	


J. Appl. Phys 103, 033102 (2008)	



(level-set + MMA)	





Other Topology Optimizers	



2d TM bend	


[ Tsuji, Phot. Tech. Lett. 20, 982 (2008) ]	



“2d” (really 1d) TE filter	


Byun, IEEE Trans. Magnetics 43, 1573 (2007)	



2d TM gap (∆w)	


bands 3 & 4	



He et al.,	


 J. Comput. Phys. 225, 891 (2007)	





Optimization with many discrete degrees of freedom	



2d TM “lens” design	


genetic algorithms: moving cylinders around	



[ Håkansson, IEEE J. Sel. Ar. Commun. 23, 1365 (2005)	



2d TM “bender”	


moving cylinders around���

(steepest-descent)	


[ Seliger, J. Appl. Phys. 100, 034310 (2006) ]	





Outline	



• Brief overview/examples of	


   large-scale optimization work in photonics	


	


• Overview of optimization terminology,	


   problem types, and techniques.	


	


• Some more detailed photonics examples.	





A general optimization problem	



 
min
x∈n

f0 (x) minimize an objective function f0	


with respect to n design parameters x	



(also called decision parameters, optimization variables, etc.)	



— note that maximizing g(x)	


     corresponds to f0 (x) = –g(x)	

subject to m constraints	



fi (x) ≤ 0
i = 1,2,…,m

note that an equality constraint	


h(x) = 0	



yields two inequality constraints	


fi(x) = h(x) and fi+1(x) = –h(x)	



(although, in practical algorithms, equality constraints 
	

typically require special handling)	

x is a feasible point if it	



satisfies all the constraints	


feasible region = set of all feasible x	





Important considerations	


•  Global versus local optimization	


•  Convex vs. non-convex optimization	


•  Unconstrained or box-constrained optimization, and 

other special-case constraints	


•  Special classes of functions (linear, etc.)	


•  Differentiable vs. non-differentiable functions	


•  Gradient-based vs. derivative-free algorithms	


•  …	


•  Zillions of different algorithms, usually restricted to 

various special cases, each with strengths/weaknesses	





Global vs. Local Optimization	


•  For general nonlinear functions, most algorithms only 

guarantee a local optimum	


–  that is, a feasible xo such that f0(xo) ≤ f0(x) for all feasible x 

within some neighborhood ||x–xo|| < R (for some small R)	


•  A much harder problem is to find a global optimum: the 

minimum of f0 for all feasible x	


–  exponentially increasing difficulty with increasing n, practically 

impossible to guarantee that you have found global minimum 
without knowing some special property of f0	



–  many available algorithms, problem-dependent efficiencies	


•  not just genetic algorithms or simulated annealing (which are popular, 

easy to implement, and thought-provoking, but usually very slow!)	


•  for example, non-random systematic search algorithms (e.g. DIRECT), 

partially randomized searches (e.g. CRS2), repeated local searches from 
different starting points (“multistart” algorithms, e.g. MLSL), …	





Convex Optimization	



All the functions fi (i=0…m) are convex:	


fi (αx + βy) ≤ α fi (x) + β fi (y) where	



α + β = 1
α,β ∈[0,1]

f(x)	



x	

 y	



αf(x) + βf(y)	



f(αx+βy)	



convex:	

 f(x)	



x	

 y	



not convex:	



For a convex problem (convex objective & constraints)	


any local optimum must be a global optimum	



	

⇒ efficient, robust solution methods available	



[ good reference: Convex Optimization by Boyd and Vandenberghe,	


free online at www.stanford.edu/~boyd/cvxbook ]	





Important Convex Problems	



•  LP (linear programming): the objective and 
constraints are affine: fi(x) = ai

Tx + αi	



•  QP (quadratic programming): affine constraints + 
convexquadratic objective xTAx+bTx	



•  SOCP (second-order cone program): LP + cone 
constraints ||Ax+b||2 ≤ aTx + α	



•  SDP (semidefinite programming): constraints are that 
ΣAkxk is positive-semidefinite	



all of these have very efficient, specialized solution methods	





Non-convex local optimization:���
a typical generic outline	



1	

 At current x, construct approximate model of fi	


—e.g. affine, quadratic, … often convex	



2	

 Optimize the model problem ⇒ new x	


	

— use a trust region to prevent large steps	



3	

 Evaluate new x:	


	

— if “acceptable,” go to 1	


	

— if bad step (or bad model), update	


	

 	

trust region / model and go to 2	



[ many, many variations in details !!! ]	





Important special constraints	


•  Simplest case is the unconstrained optimization 

problem: m=0	


–  e.g., line-search methods like steepest-descent, 

nonlinear conjugate gradients, Newton methods …	


•  Next-simplest are box constraints (also called 

bound constraints): xk
min ≤ xk ≤ xk

max	


–  easily incorporated into line-search methods and many 

other algorithms	


–  many algorithms/software only handle box constraints	



•  …	


•  Linear equality constraints Ax=b	



–  for example, can be explicitly eliminated from the 
problem by writing x=Ny+x, where x is a solution to 
Ax=b and N is a basis for the nullspace of A	





Derivatives of fi	


•  Most-efficient algorithms typically require user to 

supply the gradients ∇xfi  of objective/constraints 	


–  you should always compute these analytically	



•  rather than use finite-difference approximations, better to just 
use a derivative-free optimization algorithm	



•  in principle, one can always compute ∇xfi with about the same 
cost as fi, using adjoint methods	



–  gradient-based methods can find (local) optima of 
problems with millions of design parameters	



•  Derivative-free methods: only require fi values	


–  easier to use, can work with complicated “black-box” 

functions where computing gradients is inconvenient	


–  may be only possibility for nondifferentiable problems	


–  need > n function evaluations, bad for large n	





Removable non-differentiability	


consider the non-differentiable unconstrained problem:	



 
min
x∈n

f0 (x) f0(x)	


–f0(x)	



x	



 
min
x∈n

max f0 (x),− f0 (x){ }( )
equivalent to minimax problem:	



…still nondifferentiable…	



…equivalent to constrained problem with a “temporary” variable t:	



 
min

x∈n , t∈
t t ≥ f0 (x)

t ≥ − f0 (x)
f1(x) = f0 (x) − t( )
f2 (x) = − f0 (x) − t( )

subject to:	



optimum	





Example: Chebyshev linear fitting	



a	



b	



N points	


(ai,bi)	



fit line	


ax1+x2	

find the fit that minimizes	



the maximum error:	



min
x1 ,x2

max
i

x1ai + x2 − bi( )
… nondifferentiable minimax problem	



equivalent to a linear programming problem (LP):	



min
x1 ,x2 , t

t subject to 2N constraints:	



x1ai + x2 − bi − t ≤ 0
bi − x1ai − x2 − t ≤ 0



Gap Optimization���
via nonlinear constraints	



we want:	

 max
ε

2
min
k
ωn+1(k)⎡

⎣
⎤
⎦ − max

k
ωn (k)⎡

⎣
⎤
⎦

min
k
ωn+1(k)⎡

⎣
⎤
⎦ + max

k
ωn (k)⎡

⎣
⎤
⎦

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

not differentiable at accidental degeneracies	



an equivalent problem:	


	


	



…with	


(mostly) differentiable	


nonlinear constraints:	



max
ε

2 f2 − f1
f2 + f1

⎛
⎝⎜

⎞
⎠⎟

subject to:
f1 ≥ωn (k)
f2 ≤ωn+1(k)



Optimizing 1st TM and TE gaps ���
for a triangular lattice with 6-fold symmetry���

(between bands 1 & 2)	



48.3% TM gap (e = 12:1)	



30 iterations of optimizer	



51.4% TE gap (e = 12:1)	





Optimizing 1st complete (TE
+TM) 2d gap	



21.1% gap (e = 12:1)	



20.7% gap (e = 12:1)	





+ some local minima	



–0.5% gap	



–10% gap	



–2% gap	



good news: only a handful of minima (in 103-dimensional space!)	





Relaxations of Integer Programming	


If x is integer-valued rather than real-valued (e.g. x ∈ {0,1}n),	


the resulting integer programming or combinatorial optimization	


problem becomes much harder in general (often NP-complete).	


	


However, useful results can often be obtained by a continuous	


relaxation of the problem — e.g., going from x ∈ {0,1}n to x ∈ [0,1]n	


… at the very least, this gives an lower bound on the optimum f0	


… and penalty methods (e.g. SIMP) can be used to gradually	


     eliminate intermediate x values.	





Early Topology Optimization	


design a structure to do something, made of material A or B…	



let every pixel of discretized structure vary continuously from A to B	



ex: design a cantilever	


to support maximum weight	


with a fixed amount of material	



density of each pixel	


varies continuously from 0 (air) to max	

 force	



optimized structure,	


deformed under load	


	


[ Buhl et al, Struct. Multidisc. Optim. 19, 93–104 (2000) ]	





Some Sources of Software	



• Decision tree for optimization software:	


	

http://plato.asu.edu/guide.html	



   — lists many packages for many problems	


	


• CVX: general convex-optimization package	



	

http://www.stanford.edu/~boyd/cvx	


	


• NLopt: implements many nonlinear optimization algorithms 	


  (global/local, constrained/unconstrained, derivative/no-derivative)	



	

http://ab-initio.mit.edu/nlopt	


	





Outline	



• Brief overview/examples of	


   large-scale optimization work in photonics	


	


• Overview of optimization terminology,	


   problem types, and techniques.	


	


• Some more detailed photonics examples.	





Key questions occur before���
choosing optimization algorithm:	



• How to parameterize the degrees of freedom	


	

— how much knowledge of solution to build in?	



	


• Which objective function & constraints?	



	

— many choices for a given design goal,	


	



	

… can make an enormous difference in the	


	

 	

computational feasibility	


	

 	

 	

& the robustness of the result.	





Today: Three Examples	



• Optimizing photonics without solving Maxwell’s equations	


	

— transformational inverse design	



	


• Ensuring manufacturability of narrow-band devices	



	

— robust optimization in photonics design	


	


• Optimizing eigenvalues without eigensolvers	



	

— microcavity design and the 	


	

 	

frequency-averaged local density of states	





Today: Three Examples	



• Optimizing photonics without solving Maxwell’s equations	


	

— transformational inverse design	



	


• Ensuring manufacturability of narrow-band devices	



	

— robust optimization in photonics design	


	


• Optimizing eigenvalues without eigensolvers	



	

— microcavity design and the 	


	

 	

frequency-averaged local density of states	



[ X. Liang et al., manuscript in preparation ]	





3d Microcavity Design Problem	



???	

planar (2d) pattern	

etched in 3d slab	

???	



Want some 2d pattern	


that will confine light in 3d	


with maximal lifetime (“Qrad”)	


and minimal modal volume (“V”) 	



radiation loss	


   (finite Qrad)	



V	



Many ad hoc designs,	


   trading off Qrad and V…	



ring resonators	



 [ Song, (2005) ]	



 [ Loncar, 2002 ]	



 [ Akahane, 2003 ]	



(“defects”	


in periodic	


structures)	





Topology optimization?  Mostly 2d…	



Vuckovic (2011): ~ min V	


2d heuristic for the radiation loss	



Can we formulate a practical approach to solve the full problem,	


computing the true 3d radiation loss?	


	


Goals: understand ultimate limits on cavity performance,	


            & eventually push cavity design into new regimes	



 [ Kao and Santosa, 2008 ]	


in-plane Q, no V	





Not just maximizing Q or Q/V!	


Typical figure of merit is “Purcell factor” Q/V	



	

(~ enhancement of light-matter coupling) 	


	


Naively, should we maximize Q/V?	



R	



V ~ R	


Qrad ~ exp(# R)	



 Trivial design problem: maximum Q/V = ∞	


     [ e.g. perfect ring resonator of ∞ radius ] 	





V =
ε E 2∫

maxε E 2

set by bandwidth, loss tolerance,	


& fabrication capabilities	



Real design problem:	


     minimize V	


   such that Q ≥ Q0	



     maximize Q	


   such that V ≤ V0	



or	





Transforming the problem…	



minimize modal volume V	


subject to Q ≥ Q0	



Maximize mean LDOS (local density of states)	


            (= power of dipole)	


         over bandwidth ω0/Q0	



Maximize LDOS at complex ω=ω0(1+i/2Q0) 	



Minimize 1/LDOS at ω0(1+i/2Q0) 	



turn difficult eigenproblem	


into easier scattering problem:	



  Q/V is really just LDOS	



complex analysis:	


   contour integration	


      + causality	



technical issue:	


    avoid optimizing along	


       “narrow ridge”	


(avoid ill-conditioned Hessian)	



a series of nonobvious transformations makes the problem much easier	





LDOS: Local Density of States	


[ review: arXiv:1301.5366 ]	



Maxwell eigenproblem:	

 Maxwell vector-Helmholtz:	



Power radiated by a current J (Poynting’s theorem)	



special case of a dipole source: LDOS	





Why a “density of states”	


[ review: arXiv:1301.5366 ]	



consider a	


finite domain	



(periodic/Dirichlet)	



countable eigenfunctions	


E(n) and frequencies ω(n)	



+ small absorption	



+ iγ(n)	



P =	



loss → 0: a localized measure of spectral density	





Now, a few results…	



Minimize 1/LDOS at ω0(1+i/2Q0) 	



…Let every pixel be a degree of freedom (ε in [1,12])	


	

~ 105 degrees of freedom	



…Solve with (mostly) standard methods:	


	

FDFD solver (sparse-direct + GMRES)	


	

adjoint sensitivity analysis	


	

quasi-Newton optimization (L-BFGS)	





PML absorbing boundaries	



degrees	


of freedom	



2d test case: Out-of-plane J,���
starting from vacuum initial guess	



finds	


“Bragg onion”	


structure	


	


(No Q vs. V	


  tradeoff)	



~105 pixels	


can vary	


ε in [1,12]	





2d test case: Out-of-plane J,���
starting from PhC initial guess	



starting guess	


has PhC resonant	


mode already,	


but optimization	


converts back	


to Bragg onion	





in-plane J	



2d test case: In-plane J (breaks symmetry),���
starting from vacuum initial guess	





4 out of 10	

 6 out of 10	



in-plane J	



Jx	



Jy	

Maximizing LDOS for random in-plane J���
= max[LDOS(ω,Jx)+LDOS(ω,Jx)]/2	



Spontaneous symmetry breaking!  “Picks” one polarization randomly	





3d results: Photonic-crystal slab	



Next: 2d pattern in 3d slab	


	


(including radiation loss via	


     PML absorbing boundaries)	



Optimize with Q0=104	


	


i.e. prefer Q ≥ 104 but	


      after that mainly	


      minimize V	





2d pattern in 3d slab	



3d Slab Results	



Q ~ 30,000, V ~ 0.06(λ/n)3	



vs. hand-optimized:	


	

Q ~ 100,000, V ~ 0.7(λ/n)3	


	

Q ~ 300,000, V ~ 0.2(λ/n)3	



	

and others…	


	



after deleting “hairs”:	


        Q ~ 10,000	


(without re-optimizing)	





Today: Three Examples	



• Optimizing photonics without solving Maxwell’s equations	


	

— transformational inverse design	



	


• Ensuring manufacturability of narrow-band devices	



	

— robust optimization in photonics design	


	


	


	


• Optimizing eigenvalues without eigensolvers	



	

— microcavity design and the 	


	

 	

frequency-averaged local density of states	



[ Oskooi et al., Optics Express 20, 21558 (2012). ]	


[ Mutapcic et al., Engineering Optim. (2009) ]	



	





Robustness of optimized designs	


a “nominal” optimization problem:	

 minimize	



design parameters p	


objective(p)	





Robustness of optimized designs	


a “nominal” optimization problem:	

 minimize	



design parameters p	


objective(p,0)	



Problem: real objective is inexact, due to uncertainties	


	

 	

in modeling, fabrication, materials, etcetera	


	

 	

… is a function objective(p,u) of p 	


	

 	

     and unknown/uncertain parameters u ∊ U	



	


Problem: optimization sometimes finds solutions	



	

 	

that are “delicate” and destroyed by uncertainty	


	

 	

… i.e. objective(p, actual u) >> objective(p,0)	



… can easily happen in single-frequency wave-optics designs	


	

where optimization finds a delicate interference effect…	





slow	


light	



Slow light	


Any periodic waveguide has a band edge where group velocity → 0	



Enhances light-matter interactions, dispersion phenomena, tunable time delays	


… but hard to couple to ordinary waveguide: large “impedance mismatch”	





A slow-light optimization problem	



going from uniform waveguide      …    to periodic waveguide	



or	


or	



parameter s = 0	



parameter s = 1	


(e.g. s ~ flange width,	



	

  hole radius,	


              block width, …)	



	

   	



or…	



z	



s=1	



s=0	



z=0	

 z=L	



design	


s(z)	


	

…100s of parameters…	



[ Mutapcic, Boyd, Farjadpour, Johnson, Avniel (2009) ]	


[ Oskooi et al., Optics Express 20, 21558 (2012). ]	


	



[ Povinelli, Johnson, Joannopoulos (2005) ]	



nominal problem:	


Find s(z) minimizing loss...	





A nominal optimum	



finds a	


delicate interference	


cancellation giving	


reflection < 10–6	



any tiny	


manufacturing defect	


will kill this cancellation	



(stretching design taper — a simple perturbation)	





The solution: Robust optimization	


[ Mutapcic, Boyd, 
Farjadpour, Johnson, 
Avniel (2009) ]	



	


• Minimize worst-case	


   reflection:	


	


    min   max   R(s, u)	


	


	


	


• Robust design still	


   works when random	


   disorder introduced:	


	


   brute-force results =	


       40× better than	


    nominal optimum	


 with surface roughness	


	



s	

 u	


(manufacturing	



variation)	



(worst-case minimax)	





A more realistic, slow-light structure	



In the presence of disorder, 
robust is orders of magnitude 
better than nominal optimum. 
 
Nominal optimum is worthless: 
reflections > 10%. 
 
Making taper too long makes 
things worse: disorder kills you. 

Slow-light waveguide for TE (in-plane polarization), tapers contain no narrow gaps, 
corresponds to contiguous, low-aspect ratio structure in 3d. 
… Operate close to band edge, group velocity c/34. 

[ Oskooi et al., Optics Express 20, 21558 (2012). ]	



(different design for each length)	



robust design, to scale 



Today: Three Examples	



• Optimizing photonics without solving Maxwell’s equations	


	

— transformational inverse design	



	


	


	


• Ensuring manufacturability of narrow-band devices	



	

— robust optimization in photonics design	


	


• Optimizing eigenvalues without eigensolvers	



	

— microcavity design and the 	


	

 	

frequency-averaged local density of states	



[ Gabrielli, Liu, Johnson & Lipson, Nature Commun. (2012) ]	


[ Liu et al., manuscript in preparation. ]	





Gradient-index Multimode Optics	


Lipson group @ Cornell	


	

can make smoothly varying 
“gradient-index” structures 
by grayscale lithography	



(variable-thickness waveguide 
= gradient effective index)	



Transformation optics:	


design materials that mathematically	



mimic coordinate transformations 	





Transformational Optics	



Idea: warping light with x'(x) 
 

 
= material transformations 
 
 
    (J = Jacobian matrix) 

Pro: exact transformation of 
Maxwell solutions, so no 
reflections or scattering 

 • transforms all modes same 
way, preserving relative 
phase → multimode optics 

Cons: most transformations 
give difficult-to-achieve ε, µ:  

 • anisotropy; µ ≠ µ0,  
 … “round” to isotropic index 

 
 • n may be too big / small  

 

'	



n ≈ εµ / ε0µ0

[ Ward & Pendry (1996) ]	





Transformational Inverse Design	


Given a transformation x'(x), we can evaluate its manufacturability	


                (need minimal anisotropy, attainable indices)	



	

  quickly, without solving Maxwell’s equations 	


	


 … so optimization can rapidly search many transformations	



	

 	

to find the “best” manufacturable design	



effective index 

“mode squeezer”	

 multimode bend	



want small	


radius R	





Technical���
outline	



For a given radius R, minimize the maximum anisotropy,	


subject to index constraints, over “all” transformations x'(x):	



min
′x (x)

max
x
anisotropy(x)⎡

⎣
⎤
⎦ = min

′x (x),t
t

subject to: 1.6 ≤  n(x) ≤ 3.2              t ≥ anisotropy(x) (= “Distortion”–1) 
                                             at all x 

~ 30,000	


constraints	


(100×100 x grid)	



where smooth transformations x'(x) are parameterized by	


exponentially convergent Chebyshev/sine series	



… so cheap that almost any (local) optimization algorithm is okay …	


[ use COBYLA derivative-free sequential LP algorithm of Powell (1994) ]	



~ 100	


parameters	



–1 + tr JTJ / 2 det J ≥ 0	


(J = Jacobian)	





An optimized multimode bend	



effective index	



input	



optimized index profile	

 FEM simulation	



[ arXiv:1304.1553 ]	





Experimental (Si/SiO2) Realization	


[ Gabrielli, Liu, Johnson & Lipson, Nature Commun. (2012) ]	



10μm	

 measured	


14dB	



reduction	


in loss	



(conversion)	


of the	



fundamental	


mode	



(λ=1.55μm)	


vs.	



circular bend	



(80μm bend radius)	




