18.369:

Mathematical Methods in Nanophotonics

overview lecture slides

(don't get used to it: most lectures are blackboard)

Prof. Steven G. Johnson **MIT Applied Mathematics**

Light is a Wave (and a quantum particle) color \Leftrightarrow wavelength $\lambda \approx \frac{1}{2000}$ mm for visible light (a little laser) wave spreading: diffraction speed $c \approx 186,000 \text{ miles/sec}$ out-of-plane electric field

James Clerk Maxwell 1864

Maxwell's Equations

 $\nabla \cdot \mathbf{B} = 0$

Gauss:

constitutive $\nabla \cdot \mathbf{D} = \rho$ relations:

Ampere:

 $\varepsilon_0 \mathbf{E} = \mathbf{D} - \mathbf{P}$

 $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$

 $\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$

Faraday:

 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

electromagnetic fields:

E = electric field

sources: \mathbf{J} = current density

 \mathbf{D} = displacement field

 ρ = charge density

 $\mathbf{H} = \text{magnetic field / induction}$

 $\mathbf{B} = \text{magnetic field} / \text{flux density}$

material response to fields:

constants: ε_0 , μ_0 = vacuum permittivity/permeability $c = \text{vacuum speed of light} = (\varepsilon_0 \, \mu_0)^{-1/2}$

 \mathbf{P} = polarization density

 \mathbf{M} = magnetization density

When can we solve this mess?

- Very small wavelengths: ray optics
- Very large wavelengths:

quasistatics (8.02)

& lumped circuit models (6.002)

[wikipedia]

- Wavelengths comparable to geometry?
 - handful of cases can be ~solved analytically: planes, spheres, cylinders, empty space (8.07, 8.311)
 - everything else just a mess for computer...?

...the magic of symmetry...

[Emmy Noether, 1915]

Noether's theorem: symmetry = conservation laws

In this case, periodicity

- = conserved "momentum"
- = wave solutions without scattering [Bloch waves]

Felix Bloch (1928)

Mathematically, use *structure* of the equations, not explicit solution: linear algebra, group theory, functional analysis, ...

A slight change? Shrink λ by 20% an "optical insulator" (photonic bandgap) light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

Back to Maxwell, with some simplifications

- source-free equations (propagation of light, not creation): $\mathbf{J} = 0$, $\rho = 0$
- Linear, dispersionless (instantaneous response) materials:

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} \qquad \Longrightarrow \qquad \mathbf{D} = \varepsilon_0 (1 + \chi_e) \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

 $\boldsymbol{M}=\boldsymbol{\chi}_m\;\boldsymbol{H}$

 $\mathbf{B} = \mu_0 (1 + \chi_m) \mathbf{H} = \mu_0 \mu_r \mathbf{H}$

(nonlinearities very weak in EM ... we'll treat later) (dispersion can be negligible in narrow enough bandwidth)

where $\varepsilon_{\rm y} = 1 + \chi_{\rm e}$ = relative permittivity (drop r subscript) or dielectric constant $\mu_{\rm r} = 1 + \chi_{\rm m}$ = relative perme

 $\varepsilon \mu = (\text{refractive index})^2$

- *Isotropic* materials: ϵ , μ = scalars (not matrices)
- *Non-magnetic* materials: $\mu = 1$ (true at optical/infrared)
- Lossless, transparent materials: ϵ real, > 0 (< 0 for metals...bad at infrared)

Molding Diffraction for Lighting

[another MIT startup (by a colleague): Luminus.com]

ultra-bright/efficient LEDs

periodic pattern gathers & redirects it in one direction

new projection TVs, pocket projectors, lighting applications,

Simplified Maxwell

$$\nabla \cdot \mathbf{H} = 0 \qquad \nabla \cdot \varepsilon \mathbf{E} = 0$$

$$\nabla \times \mathbf{H} = \varepsilon_0 \varepsilon(\mathbf{x}) \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\mu_0 \mu \frac{\partial \mathbf{H}}{\partial t} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$

• Linear, time-invariant system: \Rightarrow look for sinusoidal solutions $\mathbf{E}(\mathbf{x},t) = \mathbf{E}(\mathbf{x})e^{-i\omega t}$, $\mathbf{H}(\mathbf{x},t) = \mathbf{H}(\mathbf{x})e^{-i\omega t}$ (i.e. Fourier transform)

$$\nabla \times \mathbf{H} = -i\omega \varepsilon_0 \varepsilon(\mathbf{x}) \mathbf{E} \qquad \qquad \nabla \times \mathbf{E} = i\omega \mu_0 \mathbf{H}$$

... these, we can work with