$18.369:$
Mathematical Methods
in Nanophotonics
overview lecture slides
(don't get used to it: most lectures are blackboard)
Prof. Steven G. Johnson
MIT Applied Mathematics

electromagnetic fields:
$\mathbf{E}=$ electric field
$\mathbf{D}=$ displacement field

Maxwell's Equations

Gauss:	$\nabla \cdot \mathbf{B}=0$	constitutive
	$\nabla \cdot \mathbf{D}=\rho$	relations:
Ampere:	$\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}$	$\varepsilon_{0} \mathbf{E}=\mathbf{D}-\mathbf{P}$
		$\mathbf{H}=\mathbf{B} / \mu_{0}-\mathbf{M}$

Faraday: $\quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
$\mathbf{H}=$ magnetic field / induction
$\mathbf{B}=$ magnetic field / flux density
sources: $\mathbf{J}=$ current density
$\rho=$ charge density
constants: $\varepsilon_{0}, \mu_{0}=$ vacuum permittivity/permeability
material response to fields:
$c=$ vacuum speed of light $=\left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2}$
$\mathbf{P}=$ polarization density $\mathbf{M}=$ magnetization density

When can we solve this mess?

- Very small wavelengths: ray optics
- Very large wavelengths:
quasistatics (8.02)

\& lumped circuit models (6.002)

- Wavelengths comparable to geometry?
- handful of cases can be \sim solved analytically: planes, spheres, cylinders, empty space $(8.07,8.311)$
- everything else just a mess for computer...?

small particles:
Lord Rayleigh (1871)
why the sky is blue

Waves Can Scatter

here: a little circular speck of silicon

Multiple Scattering is Just Messier?

scattering by spheres: solved by Gustave Mie (1908)

Not so messy, not so boring...

the light seems to form several coherent beams
that propagate without scattering
.. and almost without diffraction (supercollimation)

...the magic of symmetry...

[Emmy Noether, 1915]

Noether's theorem:
symmetry = conservation laws
In this case, periodicity
= conserved "momentum"
= wave solutions without scattering
[Bloch waves]

Mathematically, use structure of the equations, not explicit solution: linear algebra, group theory, functional analysis,

A slight change? Shrink λ by 20% an "optical insulator" (photonic bandgap)

light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

Structural Color in Nature

bandgap $=$ wavelength-selective mirror $=$ bright iridescent colors

Back to Maxwell, with some simplifications

- source-free equations (propagation of light, not creation): $\mathbf{J}=0, \rho=0$
- Linear, dispersionless (instantaneous response) materials:

$$
\begin{aligned}
& \mathbf{P}=\varepsilon_{0} \chi_{\mathrm{e}} \mathbf{E} \\
& \mathbf{M}=\chi_{\mathrm{m}} \mathbf{H}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \mathbf{D}=\varepsilon_{0}\left(1+\chi_{\mathrm{e}}\right) \mathbf{E}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathbf{E} \\
& \mathbf{B}=\mu_{0}\left(1+\chi_{\mathrm{m}}\right) \mathbf{H}=\mu_{0} \mu_{\mathrm{r}} \mathbf{H}
\end{aligned}
$$

(nonlinearities very weak in EM ... we'll treat later) (dispersion can be negligible in narrow enough bandwidth)
where $\varepsilon_{\mathrm{r}}=1+\chi_{\mathrm{e}}=$ relative permittivity (drop r subscript) or dielectric constant $\mu_{\mathrm{r}}=1+\chi_{\mathrm{m}}=$ relative perme $\varepsilon \mu=(\text { refractive index })^{2}$

- Isotropic materials: $\varepsilon, \mu=$ scalars (not matrices)
- Non-magnetic materials: $\mu=1$ (true at optical/infrared)
- Lossless, transparent materials: ε real, >0 (<0 for metals...bad at infrared)

Molding Diffraction for Lighting

[another MIT startup (by a colleague): Luminus.com]

ultra-bright/efficient LEDs
periodic pattern gathers \& redirects it in one direction
new projection TVs, pocket projectors, lighting applications, Simplified Maxwell

$$
\begin{gathered}
\nabla \cdot \mathbf{H}=0 \quad \nabla \cdot \varepsilon \mathbf{E}=0 \\
\nabla \times \mathbf{H}=\varepsilon_{0} \varepsilon(\mathbf{x}) \frac{\partial \mathbf{E}}{\partial t} \quad \nabla \times \mathbf{E}=-\mu_{0} \mu \frac{\partial \mathbf{H}}{\partial t}=-\mu_{0} \frac{\partial \mathbf{H}}{\partial t}
\end{gathered}
$$

- Linear, time-invariant system:
\Rightarrow look for sinusoidal solutions $\mathbf{E}(\mathbf{x}, t)=\mathbf{E}(\mathbf{x}) e^{-i \omega t}, \mathbf{H}(\mathbf{x}, t)=\mathbf{H}(\mathbf{x}) e^{-i \omega t}$ (i.e. Fourier transform)

$$
\nabla \times \mathbf{H}=-i \omega \varepsilon_{0} \varepsilon(\mathbf{x}) \mathbf{E} \quad \nabla \times \mathbf{E}=i \omega \mu_{0} \mathbf{H}
$$

